+ All Categories
Home > Documents > Amerongen90rudder.pdf

Amerongen90rudder.pdf

Date post: 07-Aug-2018
Category:
Upload: bereza-ana
View: 212 times
Download: 0 times
Share this document with a friend

of 6

Transcript
  • 8/20/2019 Amerongen90rudder.pdf

    1/12

    Automatica

    Vol. 26 No. 4. pp. 679-690 1990

    Printed in Great Britain.

    0005-1098/90 3.00+ 0.013

    Pergamon Press pie

    1990 Internation alFederation

    of utomatic

    Control

    R u d d e r R o l l S t a b i l i z a t i o n f o r S h i p s

    J . VAN A M E R O N G E N , t P . G . M. V AN O ER K L U G T ~: a n d H . R . VAN

    N A U T A L E M K E §

    Advanced contro l a lgor i thms us ing LQG and adapt ive contro l techniques

    enable the design o f an econom ically attractive alternative fo r c onve ntiona l

    f in s tabi lizers and ha ve prov ed to be robus t dur ing s imula t ion exper iments

    and full scale trials.

    K e y W o r d s - - A d a p t i v e c o n t r o l ; a u t o m a t i c g a in c o n t r o l ; n o n l i n e a r c o n t r o l s y s te m s ; o p t i m a l c o n t r o l;

    s h i p c o n t r o l ; s t a b i l iz e r s .

    A b s t r a c t - - T h i s p a p e r d e s c r i b e s t h e d e s i g n o f a n a u t o p i l o t f o r

    r u d d e r r o l l s t a b i l i z a t i o n f o r s h i p s . T h i s a u t o p i l o t u s e s t h e

    r u d d e r n o t o n l y f o r c o u r se k e e p i n g b u t a l s o f o r r e d u c t io n o f

    t h e r o l l . T h e s y s t e m h a s a s e r i e s o f p r o p e r t i e s w h i c h m a k e

    t h e c o n t r o l l e r d e s i g n f a r f r o m s t r a i g h t f o r w a r d : t h e p r o c e s s

    h a s o n l y o n e i n p u t ( t h e r u d d e r a n g l e ) a n d t w o o u t p u t s ( t h e

    h e a d i n g a n d t h e r o l l a n g l e ) ; t h e t r a n s f e r f r o m r u d d e r t o r o l l

    i s n o n - m i n i m u m - p h a s e ; b e c a u s e l a r g e a n d h i g h - f r e q u e n c y

    r u d d e r m o t i o n s a r e n e c e s s a r y , t h e n o n - l i n e a r i t i e s o f t h e

    s t e e r i n g m a c h i n e c a n n o t b e d i s r e g a r d e d ; t h e d i s t u r b a n c e s

    c a u s e d b y t h e w a v e s v a r y c o n si d e r a b l y in a m p l i t u d e a n d

    f r e q u e n c y s p e c t r u m .

    I n o r d e r t o s o l v e t h e s e p r o b l e m s a n e w a p p r o a c h t o t h e

    L O G m e t h o d h a s b e e n d e v e l o p e d . T h e c o n t r o l a l g o r i th m s

    w e r e t e s t e d b y m e a n s o f c o m p u t e r s i m u l a t i o n s , s c a l e - m o d e l

    e x p e r i m e n t s a n d f u l l - s c a l e t r i a l s a t s e a . T h e r e s u l t s i n d i c a t e

    t h a t a r u d d e r r o l l s t a b i l i z a t i o n s y s t e m i s a b l e t o r e d u c e t h e

    r o l l a s w e l l a s a c o n v e n t i o n a l f i n s t a b i l i z a t i o n s y s t e m , w h i l e i t

    r e q u i r e s l e s s i n v e s t m e n t s . B a s e d o n t h e r e s u l t s o b t a i n e d i n

    t h i s p r o j e c t t h e R o y a l N e t h e r l a n d s N a v y h a s d e c i d e d t o

    i m p l e m e n t r u d d e r r o l l s t a b i l i z a t i o n o n a s e r i e s o f s h i p s u n d e r

    c o n s t r u c ti o n a t t h i s m o m e n t .

    1 . I N T R O D U C T I O N

    BESXDES COWrROL of the hea din g, on so m e ships

    ( f o r i n s t a n c e o n f e r r i e s a n d n a v a l s h i p s )

    r e d u c t i o n o f t h e r o l l mo t i o n s i s a l s o d e s i r e d . A n

    a t t r a c t i v e s o l u t i o n i s Ru d d e r Ro l l S t a b i l i z a t i o n

    ( R R S ) w h e r e t h e r u d d e r a l o n e i s u s e d f o r

    * R e c e i v e d 1 8 F e b r u a r y 1 9 88 ; r e v i s e d 1 2 J a n u a r y 1 9 89 ;

    r e c e i v e d i n f i n a l f o r m 2 2 S e p t e m b e r 1 9 8 9 . T h e o r i g i n a l

    v e r s io n o f t h is p a p e r w a s p r e s e n t e d a t t h e 1 0 th I F A C W o r l d

    C o n g r e s s w h i c h w a s h e l d i n M u n i c h , F . R . G . d u r i n g J u l y

    1 98 7. T h e P u b l i s h e d P r o c e e d in g s o f t h i s I F A C m e e t i n g m a y

    b e o r d e r e d f r o m : P e r g a m o n P r e ss p i e, H e a d i n g t o n H i l l H a l l ,

    O x f o r d , O X 3 0 B W , U . K . T h i s p a p e r w a s r e c o m m e n d e d f o r

    p u b l i c a t i o n i n r e v i s e d f o r m b y A s s o c i a t e E d i t o r L . K e v i c z k y

    u n d e r t h e d i r e c t i o n o f E d i to r H . A u s t i n S p a n g I I I .

    t C o n t r o l , S y s te m s a n d C o m p u t e r E n g i n e e r i n g L a b o r a -

    t o r y , D e p a r t m e n t o f E l e c t r i c a l E n g i n e e r i n g , U n i v e r s i t y o f

    T w e n t e , P . O . B o x 21 7 , 7 5 0 0 A E , E n s c h e d e , T h e

    N e t h e r l a n d s . A u t h o r t o w h o m a l l c o r r e s p o n d e n c e s h o u l d b e

    a d d r e s s e d .

    ~ : V a n R i e t s c h o t e n & H o u w e n s B . V . , P . O . B o x 5 0 5 4,

    3 0 0 8 A B R o t t e r d a m , T h e N e t h e r l a n d s .

    § C o n t r o l L a b o r a t o r y , D e p a r t m e n t o f E l e c tr i ca l E n g i n e e r -

    i n g , D e l f t U n i v e r s i t y o f T e c h n o l o g y P . O . B o x 5 0 3 1 , 2 6 0 0 G A

    D e l f t , T h e N e t h e r l a n d s .

    679

    c o n t r o l l i n g t h e h e a d i n g a s w e l l a s r e d u c i n g t h e

    ro l l . The idea o f rudder ro l l s t ab i l i za t ion i s

    n o t c o m p l e t e l y n e w . C o w l e y a n d L a m b e r t ( 1 97 2 ,

    1 9 7 5 ) , Ca r l e y ( 1 9 7 5 ) a n d L l o y d ( 1 9 7 5 ) d e s c r i b e d

    i t b e f o r e . H o w e v e r , t h e i r a t t e m p t s n e v e r

    r e s u l t e d i n s u c c e s s f u l a p p l i c a t io n s ; p r o b a b l y

    b e c a u s e a t t h a t t i me a p p r o p r i a t e c o n t r o l

    a l g o r i t h ms w e r e n o t y e t a v a i l a b l e . T h e f i r s t

    s u c c e s s fu l fu l l- s c a le t r i a ls w e r e r e p o r t e d b y Ba i t i s

    ( 1 9 8 0 ) w h o u s e d t h e r u d d e r f o r a u t o ma t i c r o l l

    s t ab i l i za t ion , wh i l e the head ing con t ro l was s t i l l

    d o n e m a n u a l l y b y t h e h e l m s m a n . A s y s te m

    w h i c h s i mu l t a n e o u s l y c o n t r o l s t h e h e a d i n g a n d

    the ro l l o f a sh ip i s descr ibed in th i s paper .

    E a r l i e r r e s u l t s o f t hi s p r o j e c t c a n b e f o u n d i n v a n

    A m e r o n g e n a n d v a n C a p p e l l e ( 1 9 8 1 ) a n d v a n

    A m e r o n g e n

    et al.

    (1983 , 1984) . Th i s paper

    s u mma r i z e s t h e r e s u l t s o f t h i s p r o j e c t , i n c l u d i n g

    s o me r e s u l t s w h i c h w e r e p u b l i s h e d , i n p a r t , i n

    s e v e r a l r e c e n t p a p e r s ( v a n A m e r o n g e n

    et al.

    1 9 8 6 b ; 19 87 a, b ) . R e c e n t e x p e r i me n t a l r e s u l t s

    wi th a sys t em s imi l a r to tha t o f Bai t i s (1980) a re

    repor t ed by K/ i l l s t r~Sm

    et al.

    (1988).

    Se c t i o n 2 d e s c r i b e s t h e ma t h e ma t i c a l mo d e l s

    w h i c h a r e n e c e s s a r y f o r t h e d e s i g n o f a c o n t r o l l e r

    as wel l as fo r the f i r s t s imula t ions .

    Se c t i o n 3 d e s c r i b e s t h e d e s i g n o f t h e

    c o n t r o l l e r . Be c a u s e o f i t s s i mp l i c i t y t h e me t h o d

    o f o p t i m a l L Q G c o n t r o l h a s b e e n u s e d ,

    a l t h o u g h t h e r e a r e a f e w p r o b l e m s . T h e s e c a n b e

    s o l v e d b y i n t r o d u c i n g a d a p t i v e w e i g h t i n g f a c t o r s

    i n t h e q u a d r a t i c c r i t e r i o n , f o l l o w e d b y o n - l i n e

    c o m p u t a t i o n o f t h e c o n t r o l l e r g a i ns . T h i s r e s u l t s

    i n a c o n t r o l l e r w h i c h g i v e s t h e ma x i mu m p o s s i b l e

    ro l l reduc t ion in h igh sea s t a t es , wh i l e i t swi t ches

    i t se l f o f f wh en th e ro l l ang les a re so smal l t ha t

    r o l l r e d u c t i o n i s n o t w a n t e d a n y mo r e . Be s i d e s , i t

    g u a r a n t e e s t h a t t h e c o u r s e - k e e p i n g p e r f o r m a n c e

    h a r d l y d e t e r i o r a t e s .

    Se c t i o n 4 d e s c r i b e s t h e e x p e r i me n t s . Co r n -

  • 8/20/2019 Amerongen90rudder.pdf

    2/12

    680 J. VAN AMERONGENet al.

    puter simulations were carried out in an early

    stage of the project to test the possibilities of

    rudder roll stabilization. These simulations were

    followed by experiments with an 8 meter long

    scale model and by several series of full-scale

    trials at sea. The conclusions are summarized in

    Section 5, where suggestions for further research

    have also been given.

    2. MATHEMATICALMODELS

    2 .1 . T h e s h i p ' s d y n a mi c s

    The model which describes the transfer from

    rudder angle to heading and from rudder angle

    to roll can be derived from the hydrodynamical

    models which are used by shipbuilding engineers

    (van Amerongen and van Cappelle, 1981). In

    this paper the model of Fig. 1 (van der Klugt,

    1987) will be used, where

    6 = the rudder angle

    = the roll angle

    = the heading or yaw angle

    v = t h e sway velocity, caused by the

    rudder

    w~, w~, = coloured noise with non-zero mean

    w~ describes the influence of the disturbances on

    the roll moment

    w~, describes the influence of the disturbances on

    the yaw moment.

    The parameters of this model were found from

    a series of full-scale modeling trials. They

    depend on such things as the ship design and the

    speed of the ship. A relation between these

    parameters and the hydrodynamical models can

    also be found (van der Klugt, 1987).

    2.2.

    T h e d i s t u r b a n c e s

    The disturbances acting on a ship are due to

    the wind, the waves and the current. When the

    current is supposed to be steady, uniform and

    horizontal it does not play a role in the control

    system considered here.

    Wind can be modeled as a stochastic signal

    with non-zero mean. Only the mean value of the

    wind disturbance will be taken into account. The

    stochastic variations could be added as a white

    noise signal. The non-zero mean causes a

    constant roll angle as well as a stationary

    heading error. Because the constant roll angle

    cannot adequately be compensated for by the

    rudder-roll stabilization system, the mean value

    of the measured roll angle is suppressed by an

    appropriate high-pass filter. Variations in the roll

    angle and the heading are mainly caused by the

    waves. Waves can be described by means of a

    frequency spectrum, for instance the Bret-

    schneider spectrum (Bhattacharyya, 1978). This

    frequency spectrum can be simulated by a

    summation of a series of sinusoidal signals with

    appropriate amplitudes or by using a coloring

    filter driven by white noise. The following filter

    gives a good approximation:

    K s

    H = s 2 2z tors + to} (2.1)

    The disturbances can be added to the model of

    the ship dynamics by means of the signals w, and

    wu, as indicated in Fig. 1.

    2 .3 . T h e s t e e ri n g ma c h i n e

    For the purpose of designing a controller and

    for simulation of the system the steering machine

    is sufficiently accurately described by the block

    diagram of Fig. 2. The rudder angle is either

    limited by the mechanical constraints of the

    steering machine (in general the rudder angle is

    always smaller than 35°), or intentionally at a

    lower value. The maximum rudder speed is

    L I I

    °~

    m

    ~ + 2 z ~ , ~ . ~ 2

    L I 1 I

    FIG. 1. Simplified dynamics between rudder and yaw and roll.

  • 8/20/2019 Amerongen90rudder.pdf

    3/12

    Ru d d e r r o ll s t a b i li z a t io n f o r s h i p s 6 81

    8r

    F I G 2 T h e s te e r i n g m a c h i n e

    I I

    8

    7

    d e t e r m i n e d b y t h e m a x i m u m c a p a c i t y o f t h e

    h y d r a u l i c p u mp s .

    3 C O N T R O L L E R D E S IG N

    T h e c o n t r o l l e r d e s i g n w i l l b e d o n e i n t w o

    s teps . F i r s t a con t ro l l e r wi l l be des igned fo r the

    s y s t e m w i t h o u t a s t e e r i n g ma c h i n e . T h e s e c o n d

    s t e p i s t o mo d i f y t h e c o n t r o l l e r i n o r d e r t o d e a l

    w i t h t h e n o n - l i n e a r d y n a mi c s o f t h e s t e e r i n g

    ma c h i n e .

    3.1. The l inearized system

    L e t t h e p r o c e s s b e d e s c r i b e d b y t h e m o d e l o f

    F i g . 1 . A s t a t e - f e e d b a c k c o n t r o l l e r f o r t h i s

    p rocess requ i res tha t t he head ing ang le lp , i t s

    d e r i v a t i v e d~p/dt, the rol l angle ~0, i t s derivat ive

    dqg/dt a n d t h e s i g n a l v ' b e a v a i l a b l e t o t h e

    c o n t r o l l e r . T h e h e a d i n g a n g l e a n d t h e r o l l a n g l e

    c a n b e me a s u r e d w i t h g y r o s . T h e i r d e r i v a t i v e s

    c a n b e m e a s u r e d w i t h r a t e - g y r o s o r m a y b e

    o b t a i n e d f r o m a s t a t e e s t i ma t o r . I n g e n e r a l t h e

    s i g n a l v ' c a n o n l y b e o b t a i n e d f r o m a s t a t e

    e s t im a t o r . T h e s y s te m c a n b e d e s c r i b e d b y t h e

    f o l lo w i n g s t a t e - s p a c e e q u a t i o n s :

    i = A x + B u + D w (3 .1 )

    w h e r e

    x r = ( t p , ~ , v ' , ~ , ~ p ) a nd u = 5 .

    A a n d B a r e d e s c r i b e d b y

    A =

    a n d

    B

    0 1 0 0 O~

    - t o .

    -2 z , to~

    .onkvp 0 0

    0 0 - l / r ~ 0 0

    0 0 k . , / v~ - l / r ~ 0

    0 0 0 1 0

    kdv/

    k a;/ ~

    (3 .2 )

    0 0 0 H~ ,,/r , O (3 .3 )

    D = 0 H w p t o 0 0 0

    A p p l i c a t io n o f th e L Q G m e t h o d r e q u i r e s t h a t a

    q u a d r a t i c c r i t e r i o n b e d e f i n e d :

    J = l im ( x r Q x + u r Ru ) d t ( 3 . 4)

    T .~oo

    w h e r e Q i s a ( s e mi - ) p o s i t i v e - d e f i n i t e w e i g h t i n g

    mat r ix ; R i s a pos i t ive-def in i t e weigh t ing mat r ix .

    A p r o b l e m w h i c h r e m a i n s i s s e l e c t i o n o f t h e

    weigh t ing fac to rs in th i s c r i t e r ion . Th i s wi l l be

    d i s c u s s e d l a t e r o n i n mo r e d e t a i l . T h e f e e d b a c k

    g a i n s c a n b e f o u n d b y m e a n s o f a c o m p u t e r

    p r o g r a m w h i c h s o l v e s t h e m a t r i x R i c a t t i

    e q u a t i o n s .

    A m o d e l - r e f e r e n c e a d a p t i v e s t a t e e s t i m a t o r

    ( v a n A me r o n g e n , 1 9 8 4 ) i s u s e d t o s u p p r e s s

    h i g h - f r e q u e n c y c o m p o n e n t s i n t h e h e a d i n g a n d

    r a t e - o f - t u r n s i g n al s . T h e l o w - f r e q u e n c y c o m-

    p o n e n t s o f th e r o l l a n g l e a r e s u p p r e s s e d b y

    me a n s o f a n a d a p t i v e h i g h - p a s s f i l t e r ( v a n d e r

    Klug t , 1987) . Wi th th i s sys t em l a rge ro l l

    r e d u c t i o n s c a n b e o b t a i n e d . H o w e v e r , t h e

    r e q u i r e d r u d d e r a n g l e s a n d r u d d e r s p e e d s a r e

    t o o l a r g e t o b e r e a l i s t i c . T h e r e f o r e i t i s e s s e n t i a l

    t h a t t h e n o n - l i n e a r i t ie s o f t h e s t e e r i n g m a c h i n e

    b e t a k e n i n t o a c c o u n t .

    3.2. The non -l inear sys tem

    T h e c o n t r o l s y s t e m o f F ig . 3 is c o n s i d e r e d .

    T h e n o n - l in e a r m o d e l o f th e s t e e r i n g m a c h i n e

    h a s b e e n g i v e n i n F i g . 2 . T h e m a x i m u m r u d d e r

    ang le l imi t s the ro l l - reduc t ion ab i l i t y o f the

    s y s t e m d i r e c t l y . T h e l i m i t e d r u d d e r s p e e d

    r e d u c e s t h e a m p l i tu d e o f t h e c o n t r o ll e r o u t p u t ,

    a n d i n t r o d u c e s p h a s e l a g . T h i s p h a s e l a g i s n o t

    o n l y a f u n c t i o n o f t h e f r e q u e n c y , b u t a l s o o f t h e

    a m p l i t u d e o f t h e c o n t r o l l e r s ig n a l. E v e n f o r

    s ma l l p h a s e l a gs th e p e r f o r ma n c e o f th e s y s t e m

    r a p i d l y d e t e r i o r a t e s a n d t h e r e f o r e i t i s e s s e n t i a l

    t h a t p h a s e l a g b e p r e v e n t e d . Be s i d e s t h a t t h e

    s t e e r i n g ma c h i n e h a s t o b e r e d e s i g n e d i n o r d e r

    t o e n s u r e h i g h e r r u d d e r s p e e d s , t h e c o n t r o l l e r

    m u s t p r e v e n t t h e s t e e r i n g m a c h i n e f r o m

    satu ra t ing .

    D u r i n g t h i s p r o j e c t t h r e e m e t h o d s h a v e b e e n

    inves t iga ted to ach ieve th i s :

    ( 1 ) O p t i m i z a t i o n o f t h e c o n t r o l l e r g a i n s b y

    means o f h i l l c l imbing .

  • 8/20/2019 Amerongen90rudder.pdf

    4/12

    682 J. VAN AMERONGEN

    et al.

    Steering

    achine

    I

    Ship

    )

    FIG. 3 . The RR S c ont ro l sys te m

    (2) Introduction of automatic gain control.

    (3) Introduction of an adaptive criterion.

    3.2.1. Opt im i za t ion by m e ans o f h i l lc l imbing .

    The system given in Fig. 3 has been simulated,

    using the simulation package PSI (van den

    Bosch, 1981). This package enables optimization

    of a system by means of a hillclimbing

    procedure. Its use is not restricted to linear

    systems nor to quadratic criteria. This makes it

    possible to use more appropriate criteria (van

    Amerongen et al . 1984) and to take into

    account the non-linear steering machine

    dynamics.

    This method has been used in the first stage of

    the project, to determine values of the maximum

    rudder speed, necessary for realizing the

    required roll reduction. The Rudder Roll

    Stabilization system was developed in parallel

    with the design of a new series of ships of the

    Royal Netherlands Navy. This made it possible

    to formulate demands for the ship design, with

    respect to the required rudder speed as well as

    with respect to the ship's dynamics.

    Because of the non-linear nature of the

    problem it is not possible to find one set of

    controller parameters for all situations. But the

    method may be used to determine a gain-

    scheduling table, which contains the controller

    gains as a function of the amplitude and

    dominating frequency of the disturbances. This

    table can be used for manual adjustment of the

    controller during the experiments or, when

    estimates of the amplitude and frequency of the

    waves are available, for automatic gain schedul-

    ing. The problem which remains is to measure or

    estimate the amplitude and frequency of the

    disturbances during normal operation. A

    Kalman-filter type of observer was designed for

    this purpose. It gave good results in simulations

    but it did not perform satisfactorily during the

    full-scale trials. The results obtained with a

    controller designed with this method are given in

    the Sections 4.1-4.3.

    3.2.2. Introduct ion of autom at ic gain control.

    The method described in Section 3.2.1 gives the

    best controller for each situation and for an

    arbitrary criterion. A disadvantage is that

    generation of the gain-scheduling table necessit-

    ates a lot of computations for each particular

    i n c l u d i n g t h e s t e e r i n g m a c h i n e .

    situation. In addition, the method does not

    guarantee that saturation of the rudder speed

    will be prevented.

    It will be shown later that saturation of the

    rudder speed as well as saturation of the rudder

    angle can be prevented by changing the

    weighting factors of the criterion used for

    LQ-optimization. In order to achieve the

    maximum possible roll reduction in a changing

    environment, the weighting factors, and thus the

    controller gains should be continuously read-

    justed. Because this takes too long a time when

    high rudder speeds are suddenly demanded,

    another mechanism was developed. This mecha-

    nism reduces the output of the controller,

    automatically and instantaneously, as soon as the

    rate of change of the controller output is so large

    that this would cause saturation in the steering

    machine. The mechanism hardly affects the

    shape of the rudder signal and the introduced

    phase lag is kept to a minimum. When there is

    no further risk for saturation the gain is

    gradually increased until the standard value of 1

    is reached again. The result of application of

    such a mechanism is in fact that the rudder speed

    limiter is removed from the control loop, and

    therefore its phase lag is no longer able to cause

    the performance of the system to deteriorate.

    This patented Automatic Gain Controller

    (AGC) has proven to be a robust and simple

    algorithm.

    The AGC can be compared with the

    automatic gain control used in audio equipment.

    The latter prevents non-linear distortion by

    adjusting the gain of the amplifier. The

    difference is that the AGC prevents the rudder

    speed from becoming too large, rather than the

    rudder angle.

    The AGC can be explained with the aid of

    Fig. 4, where

    u = the

    6 = the

    ~m,x = the

    y = the

    1)

    2)

    (3)

    controller output

    setpoint of the rudder

    maximum rudder rate

    maximum of three signals:

    the maximum rudder rate

    the absolute value of the derivative

    o f u

    the output of a memory function

  • 8/20/2019 Amerongen90rudder.pdf

    5/12

    R ud de r ro l l s t ab i l i za t ion fo r sh ips 683

    . . d

    d t

    A B S

    m ax i m um

    rate

    8max

    ;

    m ax i m um

    dete tor

    ×

    8g

    ========~

      max

    /

    Y

    mem

    m e m o ~ :

    function

    F IG 4 T h e A u t o m a t i c G a in C o n t r o ll e r

    A = T h e g a in n e e d e d t o a d j u s t t h e c o n t r o l l e r

    o u t p u t

    0 < A - < 1 )

    = 6 m J y

    T h e a u t o ma t i c g a i n c o n t r o l i s a c h i e v e d b y

    mu l t i p l y i n g t h e c o n t r o l l e r o u t p u t u w i t h a f a c t o r

    A A -< 1) such tha t :

    wi th

    6 g = A u

    A ~ I~rn ax

    Y

    W h e n t h e m e m o r y f u n c t i o n i s d i s r e g a r d e d , y i s

    the m ax im um of tw o s igna ls : tSm~x and

    Id u / d t l :

    y = t~m~, i fd~m ,x- d .~

    y = i f bm~ <

    w h e r e

    d u / d t

    i s t h e r u d d e r s p e e d d e m a n d e d

    b y th e c o n t r o l le r , c o m p u t e d b y n u m e r i c a l

    d i f fe ren t i a t ion o f u .

    T h i s m e c h a n i s m , w i t h o u t t h e m e m o r y f u n c -

    t i o n , t a k e s c a r e t h a t 6 g i s r e d u c e d a s l o n g a s

    I d u / d t l > ~ m ~

    W i t h o u t f u r t h e r m e a s u r e s t h e

    s h a p e o f t h e r u d d e r s i g n a l w o u l d s t i l l b e

    d i s t o r t e d a n d p h a s e l a g w o u l d b e i n t r o d u c e d .

    T h i s c a n b e i mp r o v e d b y i n t r o d u c i n g t h e

    m e m o r y f u n c t i o n . W h e n y n o l o n g e r i n c r e a s e s ,

    t h e o u t p u t o f t h e m e m o r y f u n c t i o n g r a d u a l l y

    d e c r e a s e s :

    Y m e m k )

    = o t Y m c m ( k I )

    wh ere o~ i s a co ns tan t c lose to 1 a~ < 1 ) which

    d e t e r m i n e s t h e r a t e o f c h a n g e o f Ymem- A S l o n g

    a s :

    Y m em > b m ax a n d Y m e m > d ~

    t h e m a x i m u m s e l e c t o r m a k e s

    Y

    ~ Yllnern

    and thus :

    y k ) - - e y k - 1 ).

    T h i s i mp l i e s t h a t w h e n t h e a b s o l u t e v a l u e o f

    d u / d t

    i s n o l o n g e r t o o l a r g e , t h e m e m o r y

    f u n c t i o n t a k e s c a r e f o r a s l o w i n c r e a s e o f A . T h i s

    m e m o r y f u n c t i o n i s t h e m a j o r r e a s o n t h a t t h e

    p h a s e l a g i n t r o d u c e d b y t h e s t e e r i n g ma c h i n e i s

    r e d u c e d t o a m i n i m u m .

    T h e p e r f o r m a n c e o f t he A G C c a n b e j u d g e d

    f rom Fig . 5 . A s inuso ida l s igna l wi th increas ing

    a m p l i t u d e f o r m s t h e i n p u t u . W i t h o u t t h e A G C

    t h e r u d d e r a n g l e 6 w s h o w s t h e t y p i c a l tr i a n g u l a r

    s h a p e c a u s e d b y t h e r a t e l im i t er , W i th t h e A G C

    diw rem ains a s inuso id a l s igna l , w i th a c ons tan t

    m a x i m u m a m p l i t u d e . T h e s m a l l e r p h a s e l a g

    w h e n t h e A G C i s a p p l i e d i s c l e a r ly v i s i bl e in t h is

    f igure.

    d e s * ~ d c u a ~ e r i n g l e u

    . . . . ~ , ~ l ~ h o u~ A G e

    _ _ ~ w ,l h A G e

    L , O

    / ' , // ~.

    • . / h - k t

    4 0

    F IG 5 I n f l u e n c e o f t h e A G C C w i t h i n c re a s i n g c o n t r o l l e r

    o u t p u t u

  • 8/20/2019 Amerongen90rudder.pdf

    6/12

    684 J. VAN AMERONGEN

    et a l .

    A l t h o u g h t h e A G C i s a b l e t o s o l v e t h e

    p r o b l e m o f th e l i m i t e d r u d d e r s p e e d i n a r o b u s t

    w a y , i t d o e s n o t r e a l i z e a n o p t i m u m c o n t r o l l e r .

    I t s e f f e c t o n t h e c o n t r o l l e r c a n b e e x p r e s s e d a s a

    r e d u c t i o n o f a l l t h e f e e d b a c k g a i n s s i m u l -

    t a n e o u s l y a n d w i t h t h e s a m e r a t e . T h i s i s n o t

    n e c e ss a r il y a n o p t i m u m s o l u t i o n .

    3.3. A d a p t i v e L Q G - m e t h o d

    3.3.1.

    I n t r o d u c t i o n o f a n a d a p t i v e c r it e ri o n.

    B e c a u s e o p t i m i z a t i o n o f t h e c o n t r o l l e r g a i n s w i t h

    t h e a i d o f a g a i n - s c h e d u l i n g m e c h a n i s m d i d n o t

    g i v e g o o d r e s u l t s i n p r a c t i c e , a n o t h e r a d a p t a t i o n

    m e c h a n i s m h a d t o b e s o u g h t . I n a d d i t i o n , t h e

    A G C is pr i m a ri ly a s a f e t y m e c h a n i s m w h i c h m a y

    y i e ld a n o n - o p t i m a l c o n t r o l l e r .

    I n t h is s e c t io n t h e id e a o f a n A d a p t i v e

    C r i t e ri o n c o m b i n e d w i t h t h e L Q G a p p r o a c h

    w i l l b e i n t r o d u c e d . T h i s m e t h o d w i l l b e f u r t h e r

    r e f e r r e d t o a s A d a p t i v e L Q G , o r A L Q G . I t

    e n a b l e s t h e d e f i n i t i o n o f c ri t e r i a w h ic h a r e m o r e

    a p p r o p r i a t e f o r a p a r t i c u l a r p r o b l e m t h a n t h e

    o th e r w i s e n e c e s s a r y , q u a d r a t i c c r i t e r i a .

    L e t a p r o c e s s , d e s c r i b e d b y t h e f o l l o w i n g

    s t a t e - s p a c e e q u a t i o n s , b e g iv e n b y :

    it = A x + B u + D w

    (3.5)

    y = C x .

    W i t h o u t l o s s o f g e n e r a l i t y f o r t h e m e t h o d

    m e n t i o n e d b e l o w i t i s a s s u m e d t h a t w d e n o t e s

    w h i t e n o i s e w i th a z e r o m e a n .

    I f t h e p ro c e s s i s t i m e i n v a r i a n t , th e o p t i m a l

    c o n t r o l l e r , w i th r e s p e c t t o c r i t e r i o n ( 3 . 4 ) , c a n b e

    c a l c u l a t e d o f f - l i n e ( s e e f o r i n s t a n c e K w a k e r n a a k

    and S ivan , 1972) :

    u = - K x 3 . 6 )

    w h e r e t h e f e e d b a c k g a i n s K m a y b e c o m p u t e d

    f r o m t h e s t e a d y - s t a t e s o l u t i o n o f t h e R i c a t t i

    e q u a t i o n :

    K = R - 1 B r p

    (3 .7)

    0 = A r p + P A + C r Q C - P B K .

    W h e n t h e p a r a m e t e r s o f t h e p r o c e s s ( A , B , C

    a n d D ) , o r t h e w e i g h t i n g f a c t o r s ( Q a n d R )

    c h a n g e , n e w o p t i m a l c o n t r o l l e r g a i n s h a v e t o b e

    c o m p u t e d . V a n A m e r o n g e n

    et a l .

    (1986a)

    p r o p o s e a r o b u s t r e a l - t i m e m e t h o d t o c a l c u l a t e

    t h e o p t i m a l c o n t r o l l e r . I t i s b a s e d o n t h e

    t r a n s l a ti o n o f e q u a t i o n ( 3 .7 ) t o t h e n o n - l i n e a r

    i n n o v a t i o n p r o c e s s ( 3 .8 ) w h i c h h a s as i n p u t s

    u , , t h e w e ig h t i n g f a c to r s o f c r i t e r i o n ( 3 . 4 ) . T h i s

    m e t h o d c a n b e u s e d t o c o m p u t e t h e c o n t r o l l e r

    g a i n s w h e n t h e p r o c e s s p a r a m e t e r s o r t h e

    w e ig h t i n g f a c to r s i n t h e c r i t e r i o n v a r y s l o w ly :

    Xm = A m x m B , , u , .

    (3 .8)

    y , , = C m x m

    w h e r e

    A T p + P A - P B K ~-~A , , x , ,

    C T Q C ~ B , , u , ,

    R - 1 B r p ~ C m x r, .

    O n - l i n e s i m u l a t i o n b y m e a n s o f n u m e r i c a l

    i n t e g r a t i o n y i e l d s , a s o u t p u t s ( y , , ) o f t h e

    i n n o v a t i o n p r o c es s , t h e o p t i m a l c o n t r o l l e r

    ga ins , K.

    W h e n t h e p r o c e s s p a r a m e t e r s a r e k n o w n b y

    o n - l i n e p a r a m e t e r i d e n t i f i c a t i o n o r b y g a i n

    s c h e d u l in g ( f o r i n s t a n c e , a s a f u n c t i o n o f t h e

    s h i p ' s s p e e d ) t h e p r o p o s e d m e c h a n i s m t a k e s c a r e

    o f t h e a d a p t i v e c o n t r o l l e r a d j u s t m e n t .

    B u t a l s o c h a n g i n g t h e w e i g h t i n g f a c t o r s o f t h e

    c r i t e r i o n , f o r i n s t a n c e i f t h e s t e e r i n g m a c h in e i s

    s a tu r a t i n g , w i l l g r a d u a l l y r e s u l t i n a n o th e r

    o p t i m a l c o n t r o l l e r. B y m u l t i p l y i n g e a c h

    e l e m e n t o f

    d x , , / d t

    w i th a s c a l i n g f a c to r l i , t h e

    r a t e o f c o n v e r g e n c e o f t h i s i n n o v a t i o n p r o c e s s

    ( a n d t h u s t h e s p e e d o f a d a p t a t i o n ) c a n b e

    c o n t r o l l e d .

    3 .3 .2 .

    A d a p t a t i o n o f t h e c r it e ri o n .

    T h e w o r d

    o p t i m a l i n r e la t i o n t o t h e L Q G m e t h o d i s

    m o r e a n i n d i c a t i o n f o r t h e m e t h o d t h a n a

    g u a r a n t e e o f o p t i m u m p e r f o r m a n c e . T h i s is e v en

    m o r e t r u e w h e n a n a d a p t i v e c r i t e r i o n i s u s e d .

    A p p a r e n t l y , t h e r e i s a c r i t e r i o n b e h i n d t h e

    q u a d r a t i c c r i t e r i o n w h ic h r e a l l y d e f i n e s t h e

    o p t i m u m p e rf o rm a n c e . V a n A m e r o n g e n

    et a l .

    ( 1 9 8 6 a ) d e s c r i b e a s u i t a b l e a d j u s t m e n t m e c h a n -

    i s m f o r v a r i o u s t y p e s o f n o n - l i n e a r e l e m e n t s ,

    s u c h a s a d e a d b a n d , a l imi t e r a n d a r a t e l imi t e r .

    T h e l a t t e r i s m o s t r e l e v a n t f o r r u d d e r r o l l

    s t a b i l i z a t i o n .

    I n p r a c t i c e , i t i s n o t p o s s ib l e t o s o lv e t h i s

    p r o b l e m w i th a s i n g l e l i n e a r c o n t r o l l e r . A

    c o n t r o l l e r w h ic h g iv e s s a t i s f a c to r y r e s u l t s f o r

    s ma l l r o l l a n g l e s , ma y g iv e n o r o l l r e d u c t i o n

    w h e n t h e r o l l a n g l e s a re l a r g e , i n r o u g h w e a t h e r .

    F u r t h e r m o r e , t h e o p e r a t i o n a l r e q u i r e m e n t s m a y

    c h a n g e ; a s h i p 's o p e r a t o r m a y w a n t t o h a v e a s

    m u c h r o l l r e d u c t i o n a s p o s s i b l e e v e n i f t h a t

    i n t r o d u c e s l a r g e r h e a d i n g d e v i a t i o n s , o r h e m a y

    b e s a t is f i e d i f t h e h e a d in g e r r o r a n d r o l l a n g l e

    s t a y b e lo w a c e r t a in l imi t . T h i s i n d i c a t e s t h a t i t i s

    n o t p o s s i b le t o d e f i n e o n e c r i t e ri o n w h i c h c o v e r s

    a l l c o n d i t i o n s t o b e me t i n p r a c t i c e . T h e c r i t e r i o n

    h a s t o c h a n g e w i t h t h e c o n d i t i o n s . F u r t h e r m o r e ,

    i t s h o u l d b e p o s s i b l e f o r t h e o p e r a t o r t o e a s i l y

    c h a n g e t h e c r i t e r i o n b a s e d o n t h e o p e r a t i o n a l

    d e m a n d s . T h e d e s i re d p e r f o r m a n c e o f th e

    r u d d e r r o l l s t a b i l i z a t i o n s y s t e m c a n b e d e f i n e d a s

    a s e r i e s o f d e ma n d s :

    D e m a n d

    1 . T h e r o l l a n g l e i s n o t a l l o w e d t o

  • 8/20/2019 Amerongen90rudder.pdf

    7/12

    R u d d e r r o ll s t ab i li z a t i o n fo r s h i p s 6 85

    ex ceed a ce r t a i n v a l u e , s e t b y t h e s h i p ' s

    o p e r a t o r .

    D e m a n d 2 . T h e d e m a n d e d r u d d e r s p e e d i s n o t

    a l l o w ed t o b e l a rg e r t h an t h e l i mi t a t i o n p o s ed b y

    t h e s t e e r i n g mach i n e .

    T h e A u t o m a t i c G a i n C o n t r o l l e r d e s c r i b e d i n

    S e c t i o n 3 . 2 . 2 p r e v e n t s t h e s y s t e m ' s p e r f o r m a n c e

    f ro m d e t e r i o r a t i n g i f t h i s co n s t r a i n t i s t em-

    p o ra r i l y n o t me t . T h i s mech an i s m d o es n o t g i v e

    t h e s o l u t i o n t o t h e ac t u a l p ro b l em, i . e . t h e

    co n t ro l l e r i s b a s ed o n a w ro n g c r i t e r i o n ; h o w ev e r

    i t d o es a l l o w s o me t i me fo r a s l o w er mech an i s m

    t o s o l v e t h a t p ro b l em.

    D e m a n d 3 . U n d e r s o me co n d i t i o n s ro l l s t ab i -

    l iz a t io n b y t h e ru d d e r mi g h t i n c r ea s e t h e h ead i n g

    d ev i a t i o n s . I f t h e s e d ev i a t i o n s r each a c e r t a i n

    l imi t ( s e t b y t h e s h i p 's o p e r a t o r ) m o re w e i g h t

    s h o u l d b e g i v en t o a g o o d co u r s e -k eep i n g

    p e r f o r m a n c e .

    D e m a n d 4 . I f t h e ro l l rema i n s b e l o w a ce r t a i n

    l i mi t ( s e t b y t h e s h i p ' s o p e ra t o r ) l e s s w e i g h t

    s h o u l d b e g i v en t o r o l l r ed u c t i o n i n o rd e r t o

    r ed u ce t h e w ea r an d t e a r o f t h e s t e e r i n g

    mach i n e .

    D e m a n d 5 . T h e co n t ro l l e r d e s i g n , i n d i ca t ed i n

    Sect ion 3 .2 .3 , wi l l resu l t in a s t ab le sys tem.

    H o w e v e r , d u e t o n o n - l i n e a r a n d u n m o d e l e d

    d y n a m i c s , p r o b l e m s m a y o c c u r . T h e r e f o r e , t o

    av o i d s t ab i l i t y p ro b l ems , t h e co n t ro l l e r p a r am-

    e t e r s a r e n o t a l l o w ed t o b eco me t o o l a rg e .

    D e m a n d

    6 . T h e a d j u s t m e n t o f t h e c o n t r o l le r

    p a r a m e t e r s s h o u l d b e s l o w e n o u g h t o f o ll o w o n l y

    w ea t h e r ch an g es .

    Fo r g i v en d i s t u rb an ce co n d i t i o n s , s u f f i c i en t

    k n o w l ed g e i s av a i l ab l e (w h e t h e r a p r i o r i o r f r o m

    m e a u r e m e n t s ) t o d e r i v e a p r o p e r c r i t e r i o n . O n l y

    i f t h e d i s t u rb an ce co n d i t i o n s ch an g e i s c r i t e r io n

    a d j u s t m e n t n e c e s s a ry .

    I f a s h i p i s co n s i d e r ed w i t h t h e ru d d e r a s i t s

    o n l y ac t u a t o r c r i t e r i o n 3 . 4 may b e r ew r i t t en a s

    J = ( q ~ J ~ + J ~ , )

    (3.9)

    w h e r e

    3

    Jq~ = ~ q i E [ y i Y i] + E [ ~ 0 ~ , ] ( 3 . 1 0 )

    i=1

    d es c r i b e s t h e i n f l u en ce o f t h e ro l l mo t i o n s o n t h e

    cr i t e r ion whi le J~ , i s se l ec ted to be s imi lar to the

    c o u r s e - k e e p i n g c r it e r io n , g i v en b y v a n A m e r o n -

    gen (1984) .

    6 ~ i n d ic a t es t h e c o m p o n e n t s o f th e r u d d e r

    an g l e n eed ed fo r r o l l r ed u c t i o n .

    q ; co r r e s p o n d s to t h e e l em en t s o f t h e w e i g h t -

    ing mat r ix Q in c r i t e r ion (3 .4 ) .

    y T= (qg, fib , v ' ) .

    Fu r t h e r s i mp l i f i c a t i o n i s o b t a i n ed b y ch o o s i n g

    f i x ed v a l u e s fo r t h e w e i g h t i n g p a r ame t e r s q i -

    T h e re fo r e , i t r ema i n s o n l y n eces s a ry t o ch o o s e

    t h e w e i g h t i n g p a r a m e t e r q ~ d e p e n d i n g o n t h e

    w ea t h e r co n d i t i o n s . W i t h q ~ i t i s p o s s i b l e t o

    ex ch an g e t h e ro l l r ed u c t i o n ag a i n s t t h e co u r s e -

    k e e p i n g p e r f o r m a n c e .

    T h e a b o v e - m e n t i o n e d d e m a n d s c a n e a s i l y b e

    t r an s l a t ed i n t o a r a t e o f ch an g e A q o f th e

    w e i g h t i n g p a r ame t e r q ~ . T h e r e s u l t i n g r a t e o f

    ch nge mq

    o f p a r a m e t e r q ~ , i n c o r p o ra t i ng t h e

    d e m a n d s w h i c h w e r e m e n t i o n e d a b o v e , i s c h o s e n

    to be :

    A q - ~ A q l ' ~ A q2 ~ - A q 3 - l- . (3 .11)

    F o r s o m e o f t h e d e m a n d s t h e a d j u s t m e n t o f

    Aqi is i l lust rated in Fig. 6 .

    In th i s f igure the fo l lowing ho lds :

    A qi = t h e r a t e o f ch an g e o f w e i g h t i n g p a r am e t e r

    q ~ w i th r e s p e c t t o d e m a n d i

    6 g = t he d e m a n d e d r u d d e r s p e e d

    ~ m x = t h e m a x i m u m r u d d e r s p e e d

    o2~ = the var ianc e of the rol l an gle q0

    = t h e a l l o w ed v a r i an ce o f t h e ro l l an g l e

    o-$w= t h e v a r i an ce o f t h e h e ad i n g d ev i a t i o n s ~p

    ~ s = t h e a l lo w e d v a r ia n c e o f t he he a d in g

    d ev i a t i o n s

    q ~g = t h e ma x i mu m a l l o w ab l e v a l u e o f q~ .

    T h e w e i g h t i n g p a r ame t e r s q ~ w i l l b e ad j u s t ed

    accord ing to :

    q~p = qo +

    f

    q

    d t

    (3 .12)

    w h e r e a i s a p a r a m e t e r w h ic h is i n t r o d u c e d to

    d e t e r m i n e t h e s p e e d o f t h e a d a p t a t i o n .

    T h e w e i g h t i n g p a r am e t e r s q ~ an d q,- a r e u s e d

    as t h e in p u t v a r i ab le s o f t h e i n n o v a t i o n

    p r o c e s s m e n t i o n e d i n S e c t i o n 3 .2 . T h e o u t p u t s o f

    t h i s p ro ces s ap p ro ach t h e d e s i r ed co n t ro l l e r

    p a r a m e t e r s . I f t h e w e a t h e r c o n d i t io n s c h a n g e

    s l o w l y , c o m p a r e d t o t h e c o n v e r g e n c e s p e e d o f

    t h e i n n o v a t i o n p ro ces s , t h e r e s u l ti n g co n t ro l -

    l e r w i l l b e o p t i ma l w i t h r e s p ec t t o t h e d eman d s

    s t a t ed ab o v e .

    T h e r e s u l t s o b t a i n ed w i t h t h i s me t h o d a r e

    d es c r i b ed i n Sec t i o n s 4 . 4 -4 . 5 .

    T h e p r o p o s e d m e t h o d o f t ra n s la t in g o p e r a -

    t i o n a l r eq u i r emen t s i n t o a c r i t e r i o n fu n c t i o n i s

    r e l a t ed t o t h e t h eo ry o f f u zzy s e t s ( s ee fo r

    i n s t a n c e v a n A m e r o n g e n e t a l . , 1977) . Th i s

    t h eo ry mi g h t o f f e r s o me b e t t e r t o o l s f o r s u ch a

    t rans la t ion .

    4 EXPERIMENTAL RESULTS

    4 . 1 . S i m u l a t i o n

    In an ea r l y s tag e o f t h e p ro j ec t , t h e co n t ro l l e r s

    d es i g n ed b y t h e h i l l - c l i mb i n g o p t i mi za t i o n ,

    d e s c r i b ed i n Sec t i o n 3 . 2 . 1 w h e re t e s t ed d u r i n g

  • 8/20/2019 Amerongen90rudder.pdf

    8/12

    686 J. VAN AMERONGEN

    et al .

    l z ~ q z

    ~ m a x

    l Z ~ q

    -1

    q)) ram.) q==~

    ~ m a x

    t A q 6

    I

    % a x

    /

    t A q

    - 1

    F I G . 6 . T h e c o n t r o l l e r d e s i g n d e m a n d s .

    extensive computer simulations. Besides simula-

    tions with the model according to Fig. 1, a series

    of simulations were carried out with a more

    extensive model available at the computer of the

    Maritime Research Institute in the Netherlands

    (MARIN) .

    The MARIN model is based on a hydrodyna-

    mical approach and describes other ship motions

    as well. During these simulations the controller

    itself was implemented in a second computer.

    Both computers were coupled by AD- and

    DA-converters, in order to simulate as realistic a

    situation as possible. The main purpose of these

    experiments was to determine the required

    rudder speed for a rudder roll stabilization

    system as well as to do a sensitivity analysis for

    variations in the controller gains. It could be

    concluded that for the naval ship simulated

    during the experiments, a rudder speed of

    15deg s -] would be appropriate (van Ameron-

    gen

    et al .

    1984). This rudder speed is

    considerably higher than the usual rudder

    speeds. The latter are in the range 3- 7 deg s -z.

    Based on this result the ship s designers could

    select an appropriate steering machine.

    In addition, the sensitivity analysis showed

    that it is important that the controller gains are

    not selected too large as this leads to saturation

    of the rudder-speed limiter. This causes de-

    terioration not only of the roll reduction, but

    also of the course:keeping performance. Large,

    low-frequency heading deviations are observed

    in this situation.

    4.2.

    S c a l e m o d e l e x p e r i m e n t s

    After the simulation experiments a series of

    trials with an 8 met er long scale were car ried

    out. Because of the length of the model and the

    duration of each run it was not possible to carry

    out the experiments in a towing tank. A suitable

    location for the trials seemed to be in the

    Harvingvliet, a former sea arm in the South

    West of the Netherlands; the distance from

    shore to sho re was 3 km, while a measu rement

    post of the Royal Netherlands Navy was

    available to install the equipment. Furthermore,

    the waves were expected to represent sea waves

    with respect to the model.

    The model was propelled by a diesel engine

    and equipped with gyros and a speed log in

    order to measure yaw, yaw rate, roll, roll rate

    and the ship s speed. Radio communications

    channels were used to send these data to the

    shore where the compute r with the autopilot was

    installed. The desired rudder angle as well as the

    signals used to control the diesel engine were

  • 8/20/2019 Amerongen90rudder.pdf

    9/12

    Rudder roll stabilization for ships 687

    FIG. 7. Impressionof the scale model.

    transmitted from the shore to the ship. The

    photos of Fig. 7 give an impression of the model.

    The trials lasted 7 days. The constantly

    changing weather conditions made it difficult to

    obtain good results and to verify the earlier

    simulation results. Only at the end of the series

    of experiments could roll reductions be demon-

    strated. However, the trials were still very

    useful. The main benefit of the trials was that

    several realistic situations which were not

    foreseen during the simulations were encoun-

    tered. The steering problems related to these

    situations were recognized and had to be solved

    by modifications or extensions of the controller

    algorithms. This resulted in the research towards

    the Automatic Gain Controller.

    4.3. Ful l s ca le t r ia l s

    The controller, extended with the AGC was

    tested in several series of full-scale trials. These

    trials have been described extensively by van

    Amerongen

    et al

    1984). The AGC mechanism

    appeared to contribute a great deal to the

    success of these trials. During the first series of

    trials the parameters of the state feedback

    controller were adjusted manually, based on an

    off-line optimization procedure hill-climbing).

    Because the ship which was used had a rudder

  • 8/20/2019 Amerongen90rudder.pdf

    10/12

    6 8 8 J .

    V A N A M E R O N G E N

    e t a l

    t

    tO

    [ d e ( ] ]

    - 1 5

    I

    i

    I : I

    i ; I

    n . l . _ i l l. J ~ . I t ,. l l l l l l .J . I . J , . . . . . . , .,, I . . . . . . . . , l~ t _ . i . . . . . . ' l ~ k - l l- l l . ~ h I . . , [ d h l . , a ~ , . l . I . . . ~ , . I I L i , .l

    [ d e q ] I . . . . . ~ . . . . " " " ~ . . . . . ' . . . . . : ' ,

    • - A S A - - R R S - i - S h i p ' s s q s f e m -

    I

    . . . . L J a . L L I ~ I M IW l= ..J u .' a u U J l L - l I= I1 ~ - a -I l u u : . = ~

    - 3 0 ~

    ~,

    ,

    I

    3 0

    ~ , i . I . I L [ L . I h l I I , ~ l . . . a l , l ~ l , . , , d - . . d . l l ~ I . . ,

    [deg] ~ . . . . . .

    , " '~ , . , , , , -~ ,

    gmTIrlmerlr'll~'lrql' ~111,~I~I~111

    i

    - ] 0

    i i

    i

    ~o ', 6 0 0 ~b o , ~o o ,

    t [ s e c ]

    F I G . 8 . R u d d e r R o l l S t a b i l i z a t i o n d u r i n g f u l l - s c a l e t r i a l s .

    speed of only 7d eg s -~, the achievable roll

    reduction was limited. A typical example of

    these trials is given in Fig. 8.

    The Rudder Roll Stabilization autopilot

    (RRS) is compared with an adaptive autopilot

    (ASA) and with the ship's standard autopilot.

    The roll angle (qg), the heading error (~p) and

    the actual and desired rudder angle (~,~ and 6g)

    are shown. Even with this slow rudder, the

    roll reduction is clearly visible, while the

    variance of the heading error does not increase

    when rudder roll reduction is applied. By

    comparing the results of the full-scale trials with

    those of the simulations, it may be concluded

    that the roll reduction with a rudder 15 deg s -~

    will be at least as good as the reduction which

    can be obtained with the present fin stabilizer

    system•

    4.4.

    Simulations with the adaptive LQG method

    The performance of this method will be

    illustrated with some simulations• The following

    conditions were simulated:

    ---the wave spectrum is chosen such that roll

    angles of about 10degrees occur if no roll

    stabilization is applied. The angle of incidence

    of the waves is 90 degrees.

    -- The following criterion is used:

    J = rlim=-~ q~ qgZ+ P2/og~)+~p2/3.+aZ)dt

    (4.1)

    where

    3.=0.5

    co, = the natural roll frequency of the ship

    --the maximum rudder speed = 15 deg s-t

    the maximum rudder angle = 22 deg

    the ship's speed = 20 knots.

    Figure 9 compares a ship with roll stabilization

    (solid lines) and the same ship without roll

    stabilization. Figure 10 shows the fluctuations of

    the controller parameters during this simulation.

    After approximately 20 s the controller gains g3

    w i t h R R S

    - - - - -- w i t h o u t R R S

    . . . . . . ; . . . . , ~ , , ; , , , , , ,~ , ,

    u I -v ~ / ~ . a ' l l V ~ ~dM .V v 'y , - , z , ,~ , , q r '; , T r'~

    - 3 , J , j , •

    ,5

    V V V J v v v v v v

    i f

    5 0 1 0 0 1 5 0 t ( s e c )

    F IG . 9. R o l l r e d u c t i o n w i t h t h e a d a p t i v e c r i t e r i o n ( r u d d e r

    1 5 d e g s - l ) .

  • 8/20/2019 Amerongen90rudder.pdf

    11/12

    R ud de r ro l l s t ab i l i za t ion fo r sh ips 689

    I _

    l [ - 2 . 5

    k ~ J

    k 3 I 0 , J _ _ ~ ' -

    k 4 i

    2 . ' i 0 ~ - - - - ~ -

    J

    . . . . . . -

    5 0 1 0 0 1 5 0 t ( s e c )

    F IG . 1 0. A d a p t a t i o n o f t h e c o n t r o l l e r p a r a m e t e r s .

    K 4 a n d K 5 ( f e e d b a c k o f v , ~p a n d ~ ) r e a c h t h e

    d e s i r e d v a l u e . A f t e r a p p r o x i ma t e l y 3 0 s i t i s

    d e t e c t e d t h a t r o l l r e d u c t i o n i s n e e d e d ; t h e

    cr i t e r ion i s ad ju s t ed , resu l t ing in a chan ge o f the

    c o n t r o l l e r g a i n s K t , K 2 a n d K 3 ( f e e d b a c k o f q o ,

    a n d v ) .

    F i g u r e 9 c l e a r l y d e mo n s t r a t e s t h e r o l l r e d u c -

    t i o n . T h e c o u r s e d e v i a t i o n s r e ma i n s ma l l . W h e n

    t h e d i s t u r b a n c e s w o u l d b e mu c h l a r g e r o r w h e n

    t h e r u d d e r w o u l d b e m u c h s l o w e r , t h e c o n t r o l l e r

    s h o u l d b e a d j u s t e d . T h i s i s d e mo n s t r a t e d w i t h

    Fig . 11 where the exper imen t o f F ig . 9 i s

    r e p e a t e d , f o r a r u d d e r w i t h a m a x i m u m r u d d e r

    s p e e d o f 5 d e g s- a . A r u d d e r s p e e d a s l o w a s t h is

    n o r ma l l y r e s u l t s i n a s y s t e m w h i c h , w i t h o u t

    p r e c a u t i o n s , i s h i g h l y n o n - l i n e a r , e v e n i n l o w

    s e a - st a te c o n d i t io n s . T h e p e r f o r m a n c e o f th e

    A d a p t i v e L Q G m e t h o d c a n t h e r e f o r e b e

    d e m o n s t r a t e d b y s i m u la t in g t h e r u d d e r o f

    5 d e g s - L I n t h e f ir st e x p e r i m e n t t h e c o n t r o l le r

    p a r a m e t e r s w e r e k e p t o n t h e v a l u e s w h i c h w e r e

    o p t im a l f o r a r u d d e r o f 1 5 d e g s - L I n s t e a d o f

    b e i n g r e d u c e d , t h e r o l l a n g l e s i n c r e a s e , j u s t a s

    t h e c o u r s e d e v i a t i o n s d o . I n a s e c o n d e x p e r i me n t

    u n d e r t h e s a me c o n d i t i o n s t h e a d a p t a t i o n o f t h e

    w i t h R R S

    - - - - - - w i t h o u t R R S

    _ ,

    A :.~ ,

    . ;_' , , ; .~, f

    o [

    ..,, v

    v v V U v v

    + ++

    3

    - - - v ~ v v v

    8

    2 ~ A A A A A A A A A A A A A A A . ^ ~ A

    . 2 ~ , , V V V V , v V V V V V V v V v . v . - v

    5 0 1 0 0

    1 5 0

    t ( s e c )

    F I G . 1 1 . P e r f o r m a n c e w i t h a f i x e d c o n t r o l l e r r u d d e r

    5 d e g s - I , c o n t r o l l e r a d j u s t e d f o r a r u d d e r o f 1 5 d e g s - 1 .

    w i th R R S

    - - - - - - w i t h o u t R R S

    it a x

    - 3 - q . , '

    . ~ . ~ , , ~ z - , . : , - v . . . . - ~ , v . . . . . .

    ~ S ̂ ^ A A A A A A A A A A ^ A A A A ^ ^ ^ A

    2 O ~ T ~

    V V V v , V V V V v ~ - - v v v v v - - - v v

    | J J

    So 1O0 150 t se¢)

    F I G . 1 2 . P e r f o r m a n c e w i t h t h e a d a p t i v e c r i t e r i o n t r u d d e r

    5 d e g s - t .

    0

    i - 2 . 5 -

    k l 0

    k 2 I - 5 .

    k 4 [ - 2 5 .

    o '

    k 5 I - 2 . 5

    i

    50 100 150

    F I G . 1 3 . A d a p t a t i o n o f t h e c o n t r o l l e r p a r a m e t e r s ,

    t

    s e e )

    cr i t e r ion i s swi t ched on aga in . F igure 12

    d e mo n s t r a t e s t h a t i n t h i s c a s e r o l l r e d u c t i o n i s

    p o s s i b l e , a l t h o u g h w i t h l o w e r c o n t r o l l e r g a i n s

    a n d o f c o u r s e w i t h l e s s r e d u c t i o n , e s p e c i a l l y f o r

    t h e l a r g e r r o l l a n g l e s . T h e c o n t r o l l e r p a r a me t e r s

    be long ing to F ig . 12 a re shown in F ig . 13 .

    N o m a n u a l a d j u s t m e n t s o f th e c o n t r o l le r w e r e

    m a d e w h e n t h e r u d d e r s p e e d c h a n g e d f r o m 1 5 t o

    5 d e g s - 1. T h i s d e m o n s t r a t e s t h e r o b u s t n e s s o f

    t h e me t h o d . N e i t h e r i s i t v e r y s e n s i t i v e t o

    v a r i a t io n s in t h e p a r a m e t e r s o f t h e ma t h e ma t i c a l

    m o d e l . H o w e v e r , w h e t h e r t h e p e r f o r m a n c e c a n

    b e i mp r o v e d b y o n - li n e e s t i ma t i o n o f t h e p r o c e s s

    parameters i s s t i l l be ing inves t iga ted .

    4.5.

    Full scale trials with the adaptive LQG

    method

    D u e t o u n f a v o r a b l e w e a t h e r c o n d i t i o n s , t h e

    a d a p t i v e c o n t r o l l e r c o u l d n o t y e t b e f u l l y t e s t e d

    i n r o u g h w e a t h e r c o n d i t i o n s a t s e a . T h e

    e x p e r i m e n t s w h i c h w e r e p o s s i b l e s h o w e d a g o o d

    c o r r e s p o n d e n c e w i t h t h e s i mu l a t i o n e x p e r i me n t s .

    T h e e x p e r i m e n t s w i t h a n e x t e n s i v e h y d r o d y n a m -

    i c a l mo d e l , s i m i l a r t o t h o s e d e s c r i b e d a b o v e ,

    i n d i c a t e t h a t t h e p e r f o r m a n c e o f t h e a d a p t i v e

  • 8/20/2019 Amerongen90rudder.pdf

    12/12

    690 J . V AN A MER O N G EN e t a l .

    c o n t r o l l e r i s c l o s e t o t h e p e r f o r m a n c e o f t h e

    o p t i m a l ly a n d m a n u a l l y a d j u s t e d c o n t r o l le r

    w h i c h w a s t e s t e d a t se a . T h e l a t t e r r e q u i r e d

    c a r e f u l t u n i n g , w h i l e t h e a d a p t i v e c o n t r o l l e r

    r e q u ir e s n o m a n u a l a d j u s t m e n t s t o c o m p e n s a t e

    f o r a c h a n g i n g e n v i r o n m e n t .

    5 . C O N C L U S I O N S A N D S U G G E S T I O N S

    L i n e a r c o n t r o l t e c h n i q u e s a r e n o l o n g e r

    a p p l ic a b le w h e n s a t u r a t i o n t y p e o f n o n -

    l i n ea r i ti e s a r e d o m i n a t i n g t h e b e h a v i o u r o f t h e

    p r o c e ss . T h i s p a p e r d e m o n s t r a t e s t h e a p -

    p l i ca b i li t y o f v a r i o u s n e w c o n t r o l a l g o r i t h m s .

    T h e y c a n b e u s e d t o c o n t r o l n o n - l i n e a r

    p r o c e s s es , b a s e d o n e a s y - t o - d e fi n e o p e r a t i o n a l

    d e m a n d s , r a t h e r t h a n u s i n g a q u a d r a t i c c r i te r i o n .

    T h e s e m e t h o d s w e r e d e v e l o p e d in o r d e r t o

    r e a l iz e a n a u t o p i l o t f o r r u d d e r r o ll s ta b i l i z a ti o n

    o f s h i p s .

    T h e A u t o m a t i c G a i n C o n t r o l a l g o r i t h m

    p r e v e n t s t h e r a t e o f c h a n g e o f th e a c t u a t o r i n p u t

    f r o m b e c o m i n g t o o l a rg e . F u l l -s c a le e x p e r i m e n t s

    w i t h t h is a l g o r i t h m h a v e d e m o n s t r a t e d i ts

    u s e f u l n e s s a n d r o b u s t n e s s . B e c a u s e i t r e d u c e s a ll

    c o n t r o l l e r g a i n s s i m u l t a n e o u s l y , t h e r e s u l t i n g

    c o n t r o l l e r w i ll n o t b e a n o p t i m a l c o n t r o l l e r . I t

    s h o u l d o n l y b e a p p l i e d a s a s a f e t y m e c h a n i s m .

    T h e a d a p t i v e a d j u s t m e n t o f t h e w e i g h t i n g

    f a c t o r s o f t h e c r i t e r i o n i n c o m b i n a t i o n w i t h t h e

    o n - l i n e c a l c u l at i o n o f t h e o p t i m a l c o n t r o l l e r

    s o lv e s t hi s p r o b l e m . T h e a d a p t a t i o n m e c h a n i s m

    i s b a s e d o n a s e r ie s o f s i m p l e r u l e s , w h i c h

    t ra n s la t e t h e o p e r a t i o n a l d e m a n d s i n to th e

    w e i g h t i n g f a c t o r s t h e m s e l v e s .

    S i m u l a t i o n r e s ul ts h a v e d e m o n s t r a t e d t h a t th is

    m e t h o d i s r o b u s t a g a i n s t v a r i a t i o n s o f t h e

    c h a r a c t e r i st i c s o f t h e d i s t u r b a n c e s a n d o f t h e

    p r o c e s s p a r a m e t e r s , i n c l u d i n g v a r i a t i o n s in

    t h e n o n - l i n e a r i t y .

    D u r i n g t h e e x p e r i m e n t s w i t h th e A L Q G

    m e t h o d i t w a s a s s u m e d t h a t th e p a r a m e t e r s o f

    t h e p r o c e s s w e r e k n o w n . ( T h e i n fl u e n ce o f

    v a r i a ti o n s o f th e s h i p s p e e d o n t h e s e p a r a m e t e r s

    w a s t a k e n i n t o a c c o u n t b y a g a i n s c h e d u l i n g

    t a b le . ) L a r g e v a r i a ti o n s i n t h e s e p a r a m e t e r s w e r e

    m a d e i n o r d e r t o d e t e r m i n e t h e s e n s it iv i t y o f

    t h e se v a r ia t io n s . A l t h o u g h n o s e ri o u s p r o b l e m s

    w e r e e n c o u n t e r e d , t h e a d d i t i o n o f a n o n -

    l in e p a r a m e t e r e s t i m a t o r m a y i m p r o v e t h e

    p e r f o r m a n c e .

    R E F E R E N C E S

    Amerongen, J . van (1984).

    Adaptive s teering of ships---a

    model reference approach. Automatica 20, 3-14.

    Amerongen, J. van, and J. C. L. van Cappelle (1981).

    Mathema tical m ode ling fo r rudder roll stabilization. 6th

    Ship Control Systems Symposium, Ottawa, Canada.

    Amerongen, J . van, P. G. M. van der Klugt and H. R. van

    Nauta Lemke (1983). Roll s tabil izat ion of ships by me ans

    of the rudder. Proc. Third Yale Worksh op on Applications

    o f Adap t ive Sys tems Theory pp. 19-26. New Haven, CT.

    Amerongen, J . van, P. G. M. van der Klugt and H. R. van

    Nauta Lemke (1986a) . Adapt ive ad jus tmen t o f the

    weighting factors in a criterion. Journal A

    27, 163-168.

    Amerongen, J . van, P. G. M. van der Klugt and H. R. van

    Nauta Lemke (1987a) .

    Adapt ive Contro l Aspec t s o f a

    Rudd er Ro ll Stabil izat ion System. IFAC Congress, Munich

    F .R .G .

    Am erong en, J . van, P. G. M. van der Klugt and J. B. M.

    Pieffers (1984). Mo del tests and ful l-scale tr ials with a

    rudder roll stabilization system.

    7th Ship Control Systems

    Symposium, Bath, U.K.

    Amerongen, J . van, P. G. M. van der Klugt and J. B. M.

    Pieffers (1987b). Rudder Ro l l S tab i l i za t ion- -Contro l le r

    design and experimental results .

    Sh ip Control Systems

    Symposium, The Hague, The Netherlands.

    Amerongen, J . van, H. R. van Nauta Lemke and P. G. M.

    van der Klugt (1986b) . Rudder Roll Stabil izat ion:

    controller design based on an adaptive criterion.

    American

    Control Conference, Seattle, WA.

    Amerongen, J . van, H. R. van Nauta Lemke and J. C. T.

    van der Veen (1977). An autopilot fo r ships designed with

    fuzzy se t s . IFAC/IFIP Symposium on Digi ta l Computer

    Applicat ions to Process Control , The Hague, The

    Netherlands.

    Bait is , A. E. (1980). The development and evaluat ion of a

    rudder r ol l stabil isat ion system fo r the W HE C Ham ilton

    Class.

    D T N S R D C R e p o r t

    Bethesda, MD.

    Bhattacharyya, R. (1978).

    Dynamics of marine vehicles.

    Wiley, New York.

    Bosch, P. P. J . van den (1981). PSI--Software Tool for

    Control System D esign.

    Journa l A

    22, 55-61.

    Carley, J . B. (19 75). Feas ibi l i ty study of steering and

    stabilising by rudder. Proc. 4th Ship Control Syst. Syrup.

    The Hague, The Netherlands.

    Cowley, W. E., and T. H. Lambert (1972). The use of the

    rudder as a roll stabiliser.

    Proc. 3rd Ship Co ntrol Syst.

    Syrup. Bath, U.K.

    Cowley, W. E., and T. H. Lambert (1975). Sea tr ials on a

    roll stabiliser using the sh ip's rudder. Proc. 4th Ship

    Control Syst . Syrup. Th e

    Hague, The Netherlands.

    K/illstr6m, C. G., P. Wessel, and S. Sj61ander (1988). Roll

    Reduction by Rudder Control . Spring Meeting/STAR

    Symposium/3rd IMSDC, Pit tsburgh, PA.

    Klugt , P. G. M. van der (1987). Rudder Roll Stabil izat ion.

    Ph.D. the sis , Delft Universi ty of Technology, T he

    Netherlands.

    Kwakeruaak, H . and R . S iva n (1972) .

    Linear Opt imal

    Control Systems. Wiley, New York.

    Lloyd, A. E. J. M. (1975). Roll stabilisation by rudder.

    Proc.

    4th Ship Control Syst. Syrup. Th e H a gue , The

    Netherlands.