+ All Categories
Home > Documents > Amination: An Overview · The definition of amination - The process by which an amine group is...

Amination: An Overview · The definition of amination - The process by which an amine group is...

Date post: 28-Aug-2018
Category:
Upload: phungque
View: 246 times
Download: 0 times
Share this document with a friend
39
Amination: An Overview Roxanne Atienza Long Literature Presentation September 22, 2008
Transcript

Amination: An Overview

Roxanne AtienzaLong Literature Presentation

September 22, 2008

The definition of amination

- The process by which an amine group is introduced into an organic molecule through the formation of a new C-N bond.

NH

O

O

R2

R1

X

1) KOH

2) H2NNH2R2

R1

NH2

Gabriel Amine Synthesis

Buchwald-Hartwig Reaction

X

R

+ H2NR'

Pd0 catalyst

NaOt-Bu

dioxane

100oC

NHR'

R

Gabriel, S. Ber. Dtsch. Chem. Ges. 1887, 20, 2224.

Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 5969-5970.

Importance of Nitrogen

- Nitrogen is a constituent element in amino acids, proteins, and nucleic acids.

- Carbon-nitrogen bonds are found in the majority of organic molecules, especially biologically active molecules.

- Nitrogen containing compounds are valuable and commercially important bulk chemicals and pharmaceuticals.

- Nitrogen is involved in important biological linkers such as peptide linkers.

- The lone pair on nitrogen allows for hydrogen bonding which is key in the 3D structures adopted by DNA and proteins.

F

F

F

NH2

N

O

NN

N

CF3H3PO4 H2O

Januvia (Merck)inhibitor of DPP-4

for treatment of type 2 diabetes

O

O

HNCO2H

OMe

Me

O

Dynemycinpromising anti-cancer drug

Types of Amination- Electrophilic Amination Combination of nucleophilic carbon and an electrophilic aminating agent

- Reductive Amination Conversion of a carbonyl group to an amine via an intermediate imine and its subsequent

reduction

- Hydroamination Addition of an N-H bond over an alkene or alkyne

- Nucleophilic Amination Introduction of an amino group via a nucleophilic aminating agent

Example: Gabriel amine synthesis

R2N

R1

Z+ Nuc

R2N

R1

Nuc+ Z

R1 NH2 +O

R3R2

-H2O NR1

R3R2

NHR1

R3R2

Rcatalyst MeR

NR2or R

NR2

H

HNR2

Electrophilic AminationCombination of nucleophilic carbon and an electrophilic aminating agent

- This can be accomplished through the use of various aminating agents such as:

- hydroxylamines - oxaziridines

- oximes - azido compounds

- azo compounds - nitroso compounds

R2N

R1

Z+ Nuc

R2N

R1

Nuc+ Z

H2NO

SO2

Me

N

R1 R2

OH

N

N

CO2Et

EtO2C

Ar

N NEt2

O

O

ArSO2

N3

O

NR

Electrophilic Amination with hydroxylamines

t-BuO NH

O

OSO2

Me

n-BuLi

THF

–78 oC

t-BuO N

O

OSO2

Me

Li

n-BuLi

PhCu

t-BuO NH

O

t-BuO NH

O

Ph

n-BuLi 71%

40%

- O-sulfonylhydroxylamines: synthesis of N-protected amines

Asymmetric synthesis of !-amino acid derivatives

Ph

O

N O 1) n-BuLi, –78 oC

2) CuCN,

–78 oC to 0 oCPh

O

Li

Ph

O

CuCN

1

Ph

O

NHBocXc Xc Xc

LiBocNOTs 1

77%, >99% de

Genet, J.P.; Mallart, S.; Greck, C.; Piveteau, E. Tetrahedron Lett. 2008, 32, 2359-2362.

Zheng, N.; Armstrong III, J. D.; McWilliams, J. C.; Volante, R. P. Tetrahedron Lett. 1997, 38, 2817-2820.

Electrophilic Amination

- O-acylhydroxylamines: synthesis of secondary and tertiary amines

O

NHPh O

O

O

O

Ph

KH2PO4

DMF

O

NO

O

PhR2Zn

[CuOTf]2·C6H5

O

NR

Berman, A. M.; Johnson, J. S. J. Am. Chem. Soc. 2004, 126, 5680-5681.

- O-phosphinylhydroxylamine

O

OEt1) KOt-Bu, THF, –78 oC

2) ArPO2NH2 2, –78 oC ~ 23 oC

3) Ac2O, Et3N O

OEt

NHAc

OP

ONH2

MeO

MeO 2

67%

Smulik, J. A.; Vedejs, E. Org. Lett. 2003, 5, 4187-4190.

O

NPh

O

N

CO2Et

O

NBn

80% 91% 77%

Electrophilic Amination

- O-trimethylsilylhydroxylamine

N OMe3Si

H

SiMe3+ R2Cu(CN)Li2 N O

Me3Si

Li

SiMe3+ RCu(CN)Li + R-H

Cu

R

Li CN Cu

R

LiNC

N

O

SiMe3

SiMe3R

NH

SiMe3

Casarini, A.; Dembech, P.; Lazzari, D.; Marini, E.; Reginato, G.; Ricci, A.; Seconi, G. J. Org. Chem. 1993, 58, 5620-5623.

Electrophilic Amination with oximes

N

R2R1

OR3

+ R4 MN

R2R1

R4

(+ MOR3)

H3OR4 NH2

Competing side reactions- Neber rearrangement - Beckmann rearrangement

N

R2R1

OR3

N

R1

R2

(+ –OR3)

H2O

R2

O

NH

R1N

R2

OR3

(+ HOR3)

H2O

R2

O

R1

H

R1

NH2

N

R2R1

NR1

R2base

General scheme

Electrophilic AminationO-tosyloximes- tetraphenylcyclopentadienone O-tosyloxime

- bis[3,5-bis(trifluoromethyl)phenyl]ketone O-tosyloxime

N

Ph

Ph

Ph

Ph

OSO2p-Tol

+O

LiTHF

–78 oC

N

Ph

Ph

Ph

Ph

OSO2p-TolO

N

Ph

Ph

Ph

Ph

ONH2OH

aq. pyridine N

Ph

Ph

Ph

Ph

OH

O

NH2

+

90%95%

Hagopian, R. A.; Therian, M. J.; Murdoch, J. R. J. Am. Chem. Soc. 1984, 106, 5753-5754.

R-MgBr+

NOSO2p-Tol

F3C

CF3 CF3

CF3

3

toluenert N

Ar Ar

R 1) H3O2) BzCl, Et3N R-NHBz

R= Ph, 96% Et, 87% t-Bu, 35%

98%

Me

Me

Ph Me

MgCl

ca. 91% eetoluene

–70 oC

Ph Me

N Ar

Ar

1) HCl aq.2) AcCl, Et3N Ph Me

NHAc

Tsutsui, H.; Ichikawa, T.; Narasaka, K. Bull. Chem. Soc. Jpn. 1999, 72, 1869-1878.

Hoffman, R. W.; Holzer, B.; Konpff. Org. Lett. 2001, 3, 1945-1948.

25%, 90% ee

N

Ar Ar

OTs

Electrophilic Amination

- O-(phenylsulfonyl)oximes

O O

NOSO2Ph

MeMe Me

Me

+ R-MgBr

PhCl

or CH2Cl2

0 oC ~ rtO O

NR

MeMe Me

Me

R NH3 Cl

R= alkyl and aryl substituents, 89-94% 7 examples

4

R MgBr

CuCN·2LiCl P(OMe)3, THF, rt

R CuCN(MgBr)4, THF, rt

O O

N

R

1 M HCl in Et2O

MeOH, rtNH3 ClR

R= CO2Et, 87% CN, 91%

Kitamura, M.; Suga, T.; Chiba, S.; Narasaka, K. Org. Lett. 2004, 6, 4619-4621.

Ricci, Alfredo. Amino Group Chemistry; Wiley-VCH: Weinheim, 2008.

H

N

R'O OR'

OSO2Ph

Electrophilic Amination with azo compounds

O

Me

Me

R

O

+N

N

EtO2C

CO2Et ClCH2CH2Cl

50 oC, 20h

O

MeMe

R

O

N

NHEtO2C

CO2Et

R= Me, 96% OEt, 73%

NiO

O O

O

H

H- Azodicarboxylates

Clariana, J.; Galvez, N.; Marchi, C.; Moreno-Marias, M.; Vallribera, A.; Molins, E. Tetrahedron 1999, 55, 7331-7344.

Me

(2 mol)

+N

N

EtO2C

CO2Et

1 mol SnCl4, CH2Cl2, –60 oC

Li

liquid NH3.

-60 oC

MeN

NHCO2Et

CO2Et87% (E : Z = 11:1)

86%

Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5261-5263.

Me

HN

CO2Et

2H2O

Electrophilic Amination

- Arylazo sulfones

NH2

NaNO2

HBF4, rtN2 BF4

TsNaCH2Cl2, rt N N

Ts

1) Ar2MgBr

–20 oC

2) C3H7I, NMP

20 oC

N NTs

ZnAcOH/TFA

(5:1)

X= Br, OMe, I, CN

Y= CO2Et, OTf, Me, OMe64-86%

Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 897-900.

X X

X

N NTs

XX

NH

Y

X

Y

64-95%

X= Br, 80%

Electrophilic Amination with oxaziridines

CN

NO

NEt2

O1) LDA

2)

THF, –78 oC

t-BuO Me

O

Ph

O

Me NC Me

O

PMeEtO

EtOt-BuO

O

Ph

O HN

Me

HN NEt2

O

NEt2

O

NC

O

PEtO

EtOHN

HN

Me

NEt2

O

NEt2

O

substrate substrateproduct product

55%

60%

51%

56%

Me R2

R1SC6H13

O NBoc

EtO2C CO2Et

CH2Cl2, –78 oC - rt Me R2

R1SC6H13

N

Boc

Me R2

R1[2,3] NBocC6H13S

R1 R2 % %ee

H Me 69 >95

H CO2Et 72 >95

Me CO2Et 77 >94

Armstrong, A.; Challinor, L.; Cooke, R. S.; Moir, J. H.; Treweeke, N. R. J. Org. Chem. 2006, 71, 4028-4030.

R

H

EWGHN

R

EWG

O

NH2

Armstrong, A.; Atkin, M. A.; Swallow, S. Tetrahedron Lett. 2000, 41, 2247-2251.Armstrong, A.; Edmonds, I. D.; Swarbrick, M. E.; Treweeke, N. R. Tetrahedron, 2005, 61, 8423-8442.

Electrophilic Amination with azides

SPhN3MgBr

Ph1)

2) (MeCO)2O

THF, –78 oC

NPh N

OMe

N SPhn-Bu4N+HCO2

DMF, 45 oCNH

PhMe

O

- with Grignard reagents

86%

- with enolates

Ph

O

N O

O

Ph

1) KN[Si(NMe2)3]

2) trisN3, THF, –78 oC

3) CH3CO2H, THF

rt

Ph

O

N O

O

Ph

N3

91% (97:3)

Trost, B. M.; Pearson, W. J. Am. Chem. Soc. 1981, 103, 2483-2485.

Evans, D. A.; Britton, T. C.; Ellman, J. A.; Dorow, R. L. J. Am. Chem. Soc. 1990, 112, 4011-4030.

Electrophilic Amination with nitroso compounds

Me

Me NO2

Cl+ N

Me

Me Cl

NOH OHMe

Me

Cl

HN OHH2O

Ricci, A. Modern Amination Methods; Wiley-VCH: Weinheim, 2000.

Me

+

N

O

Me

Me

O

Metoluene, reflux

Me

N

OH

O

Me

Keck, G. E.; Yates, J. B. Tetrahedron Lett. 1979, 20, 4627-4631.

Reductive Amination

Conversion of a carbonyl group to an amine via an intermediate imine and its subsquent reduction

R1 NH2 +O

R3R2

-H2O NR1

R3R2

NHR1

R3R2

O

HH+

HCOOH+ H2O

RN

H

RO

H

H

RNR

HO

NOH

R

RN

R

R H

H

O

OHN CH3

R

R-H2O -CO2

Eschweiler-Clarke reaction

H

+ CO2R2N-H R2N-CH3

Reductive Amination with NaBH(OAc)3

O

OO + HN N Ph

O

ON N Ph 78%

NaBH(OAc)3AcOH

DCE, rt

Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.

- Sodium triacetoxyborohydride

OBnN

Y

CHO MeO

O

NH2

R1

R2+

NaBH(OAc)3

AcOH

CH3CN

0 oC, then refluxBnN N

O

Y

O

R1

R2

Y= alkyl, Ph, OBn

27-99%

OBnN

Y

HNCO2Me

R1R2

BnHN NCO2Me

R1R2

OY

Beshore, D. C.; Dinsmore, C. J. Org. Lett. 2002, 4, 1201-1204.

Y

NH2

ClR1 +

O

R2 R3

Y

HN

ClR2

R3NaBH(OAc)3TFA

i-PrOH, rt R1 72-97%

McLaughlin, M.; Palucki, M.; Davies, I. W. Org. Lett., 2006, 8, 3307-3310.

Reductive Amination with NaBH4

- Sodium Borohydride

O

R2R1+ H2N-R3

R2R1

OHN R3(i-PrO)3Ti

Ti(i-PrO)4THF, rt

NaBH4

THF/EtOH(3:1), rt

R2R1

HNR3

72-88%

Kumpaty, H. J.; Bhattacharyya, S.; Rehr, E. W.; Gonzalez, A. M. Synthesis, 2003, 2206-2210.

O

R2R1

1) Ti(i-PrO)4

NH3 (5 M in EtOH)

2) NaBH4R2R1

NH2

O

HR

1) Ti(i-PrO)4, NH4Cl, NEt3, EtOH, rt

2) NaBH4

R NH

R

65-96%

Miriyala, B.; Bhattacharyya, S.;Williamson, J. S. Tetrahedron, 2004, 60, 1463-1471.

62-78%

Reductive Amination with B10H14

- Decaborane

OMe

Me+ H2N NO2 HN NO2

MeMe

96%

30 mol% B10H14

MeOH

Bae, J. W.; Lee, S. H.;Cho, Y. J.;Yoon, C. M. J. Chem. Soc., Perkin Trans. 1 2000, 145-146.Bae, J. W.;Cho, Y. J.;Lee, S. H.; Yoon, C.-O. M.;Yoon, C. M. Chem. Commun. 2000, 1857-1858.

MeO

ONH

MeO

ONO2

O+

1) 10 mol% Pd/C, 30 mol% B10H14

MeOH, 40 oC

2) 20 mol% B10H14, rt

Me NHNO2

1) 10 mol% Pd/C, 30 mol% B10H14

AcOH, MeOH, reflux

2) aldehyde, 20 mol% B10H14, rt OH

93%

90%Me

Reductive Amination with Hantzsch ester- Hantzsch ester

NH

EtO2C CO2Et

MeMe

O

CO2EtMeH2N-PMP+

Hantzsch ester

5 mol% (S)-VAPOL-PA

toluene

50 oC

HN

CO2EtMe

PMP

*88%, 99% ee

Li, G.; Liang, Y.; Antilla, J. C. J. Am. Chem. Soc. 2007, 129, 5830-5831.

Ph Ph

O OP

OHO

(S)-VAPOL-PA

Me

OY

O

R1+

NH2

OR2

Y

HN

R1

OR2

Hantzsch ester

(R)-TRIP

cyclohexane

5 Å MS

50 oC

Ar

Ar

O

OP

O

OH

(R)-TRIP

O

O

n-Bu

HN

O

n-Bu

OEt

HN

n-Bu

OEt

HN

n-Bu

OEt

HN

n-Bu

OEt

Ar=

Zhou, J.; List, B. J. Am. Chem. Soc., 2007, 129, 7498-7499.

Y= C, O, S

72-78%, 86-96% ee

Reductive Amination

- !-picoline-borane

O

H + H2N

pic-BH3

solvent/ AcOH(10:1)

rt

HN

H

In MeOH: 95%In water: 91%neat: 99%

Sato, S.;Sakamoto, T.;Miyazawa, E.;Kikugawa, Y. Tetrahedron. 2004, 60, 7899-7906.

- polymethylhydrosiloxane

Ph NH

PhMe

O

H+

5 mol% PMHS

0.5 mol% [IrCl(cod)]2THF, 50 oC

Ph N Ph

Me

93%

Mizuta, T.;Sakaguchi, S.;Ishii, Y. J. Org. Chem., 2005, 70, 2195-2199.

N CH3

BH3

Si O Si

H

O Si

n

Hydroamination

The addition of an N-H bond over an alkene or alkyne

Rcatalyst R

NR2or R

NR2

Methods include

- BrØnsted Acid Catalysis

- Base Catalysis

- Metal Catalysis

- Microwave Irradiation

HNR2

Hydroamination - BrØnsted acid catalysis

-Bronsted Acid Catalyzed Intermolecular hydroamination

R1 R2

+

NH2

X

Et2O 5 mol%

R1 R2

HX R1 R2

H HNX

R1 R2

HNH2

X

Anderson, L. L.; Arnold, J.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 14542-14543.

R1 R2 + TsNH2

5% TfOHtoluene

R1 R2

H NHTs

Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175-4178. Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179-4182.

NH3 B(C6F5)4

alkene X A:B norbornene H 84% 1:1 4-Cl 56% A only 4-OMe 32% 1:2 3,5-CF3 80% A onlycyclohexadiene 3,5-CF3 20% A only

A

B

Hydroamination

-Brønsted Acid Catalyzed Intramolecular hydroamination

R

X X

NH

PG

20 mol% TfOH

toluene, 100 oC

NRX

X

PG

( )n

Schlummer, B.; Hartwig, J. F. Org. Lett. 2002, 4, 1471-1474.

R1

R1

NHR2

20 mol% R3NHX1,4 dioxane NR1

R1Me

R2

20 mol% TfOH

toluene, 100 oC

Me

MeMe

NHTsMeCO2Me

TsN

Me Me

Me

CO2MeH

Me

Haskins, C. M.; Knight, D. W. Chem. Commun. 2002, 2724-2725.

Hydroamination - base catalysis

- Base catalyzed intermolecular hydroamination

+N

HN

Bn

n-BuLiTHF R1

N

NBn

N

N

R2

O

N

R3

Kumar, K.; Michalik, D.; Garcia Castro, I.; Tillack, A.; Zapf, A.; Arlt, M.; Heinrich, T.;Bottcher, H.;Beller, M. Chem. Eur. J. 2004,10, 746-757.

R1

O

Ot-Bu

NLi

R3R2

toluene, -78 oCPh Ph

MeO OMe

R1

O

Ot-Bu

NR3R2

Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka, K. J. Am. Chem. Soc. 2003, 125, 2886-2887.

R1 R1

65-99%

64-95%68-99% ee

Hydroamination

- Base catalyzed intramolecular hydroamination

NHMe

Ph

NMe

Ph

NMe

Ph

NMe

Ph

+

99%, 91% ee

94% 5%

10 mol% BOX

5 mol% n-BuLi

5 mol% HNi-Pr2toluene, -60 oC

10 mol% n-BuLi

15 mol% HNi-Pr2THF

-78 oC to rt

Ogata, T.; Ujihara, A.; Tsuchida, S.; Shimizu, T.; Kaneshige, A.; Tomioka, K. Tetrahedron Lett. 2007, 48, 6648-6650.

Hydroamination

Co

HN

N

O

O

OMe

Me

Me

Me

O

O

Br + N

N

CO2t-Bu

t-BuO2C

5 mol% Co(III) cat.PhSiH3, EtOH

Br Me

NBoc 90%

PhMe

EtO2CMe

Ph

NBoc

EtO2C

NBoc

Me

BocHN

BocHN

BocHN

Me

88%

66%

Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676-5677.

- hydrohydrazination

MeOH

substrate product

Hydroamination- microwave irradiation

Ph

HN

O

NHTs

O2S

Me

NHTs

+ TsNH2

1-5 mol% (PR3)AuOTfDCE, mw irradiation

TsN

CH2

O2S

Me

NTs

CH2

N

O

Ph

H2C

NHTs

Liu, X.Y.; Li, C. H.; Che, C. M. Org. Lett. 2006, 8, 2707-2710.

H

H

H

H

Hydroamination - metal catalysis

Ph

NH2

1) 5 mol % cat.2) NaBH3CN/ZnCl2

HN

Ph

NTi

NEt2

NEt2

N

Ar= Ph, C6F5

Li, C.; Thomson, R. K.; Gillon, B.; Patrick, B. O.; Schafer, L. L. Chem. Commun. 2003, 2462-2463.

NH2

R1R2 5 mol % cat A or B

NR2 R1 H

N

R2

R1

+

R1, R2= H; cat A

94:6

94%

R1= 4-MeC6H4, R2= Et; cat B

100:0

93%

HN

TiNEt2

NEt2

OAr

2

SO2

SO2

NZr

NEt2

NEt2

N

SO2

SO2

A B

Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956-11963.

97-98%

Hydroamination of aminoallenes- Two-pathway mechanism of the hydroamination of aminoallenes

L2M(NMe2)2

- 2HNMe2

+ RNH2

N

R

ML2

N ML2

N

R

ML2

RHN

R

RNH2

HN

R

RNH2

N ML2

R

NML2

NHR

RNH

R

N

R

Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125, 11956-11963.

Hydroamination

NH2

MeO

MeO

+ R

5 mol% cat.

benzene, 65 oCN

MeO

MeO

R

TFA, heatNH

MeO

MeO

R

R =Me

X

X

NTi

NEt2

NEt2Ph

2

MeMe

Me

Me

catalyst

Zhang, Z.; Schafer, L. L.; Org. Lett. 2003, 5, 4733-4736.Zhang, Z.; Leitch, D. C.; Lu, M.; Patrick, B. O.; Schafer, L. L. Chem. Eur. J. 2007, 13, 2012-2022.

Metal-catalyzed Amination

X

R

+ H2NR'

Pd0 catalyst

NaOt-Bu

dioxane

100oC

NHR'

R

Buchwald-Hartwig Reaction

Pd0(dppf)X

Ph2P

PdII

Ph2P

Ar

X

Ph2P

PdII

Ph2P

Ar

NHR'

Ph2P

PdII

Ph2P

Ar

Ot-Bu

NaOt-Bu

NaXH2NR'

HOt-Bu

HNR'

Metal-catalyzed Amination

+ H2N

10 mol% Cp*2LaCH(SiMe3)290 oC, C7D8, TOF 11h

HN N

+ H2N

10 mol% Cp*2LaCH(SiMe3)290 oC, C7D8, TOF 6h

HNN

Cp2*La

H

H

NH

Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584-12605.

Nonmetal-catalyzed Amination

Ph H

O+

20 mol% cat.

20 mol% DBU

CH2Cl2, 0 oCN

N

Ph

O

PhN

N

O

O

Ph

PhPh

N

N

NMe

Me

Mes H

O

Ph

Ph

O

HN

NN

Me

Mes

Me

Ph

OH

NN

N

Me

Mes

Me

N

N

Ph

O

Ph

Ph

O

NN

N

Me

Mes

Me

N

N Ph

Ph

O

N

N

O

O

Ph

Ph Ph

HN

NH

Ph

O

Ph

Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740-2741.

N

N

Ph

O

Ph

Nonmetal-catalyzed Amination

MeO2C

CN

Et N

N

Boc

Boc

10 mol %(DHQ)2PYR

CH2Cl2, -24 oC+

MeO2C

CN

Et

NNHBoc

Boc

84%, 98% ee

EWG

EWG

RB*

EWG

EWG

R

B*H

ElectrophileEWG

EWG

R

EH

*

Poulsen, T. B.; Alemparte, C.; Jorgensen, K. A. J. Am. Chem. Soc. 2005, 127, 11614-11615.

(DHQ)2PYR

N N

OO

N N

MeO OMe

N

Me

N

Me

Nonmetal-catalyzed amination

Bertelson, S.; Marigo, M.; Brandes, S.; Diner, P.; Jorgensen, K. A. J. Am. Chem. Soc. 2006, 128, 12973-12980.

O

Me

N

N

CO2Et

EtO2C

10 mol% cat.PhCO2Htoluene

+

NH

OTMS

ArAr

Ar= 3,5-(CF3)2C6H3

O

Me

N

HNCO2Et

CO2Et

56%, 89% ee

O

R

HH

HN

R

TMSO

ArAr

N

R

TMSO

ArAr

E*R

E*

O

cat Elec

Nonmetal-catalyzed Amination

O

HR+ H2N-Ar

0.1 equiv. thiourea

Hantzch ester

toluene, 5 Å MS

70 oC

R NH

Ar

NH

CO2EtEtO2C

Me Me

Hantzch ester

S

H2N NH2

thiourea

O2N

O

H

H2N

OMe

O

HMe

Me

O

HH2N

O

Me

O2N

NH

OMe

Me

MeNH

OMe

NH

O

Me

aldehyde amine product

93%

83%

72%

Menche, D.; Arikan, F. Synlett. 2006, 841-844.

Conclusion

• Nitrogen containing compounds are present in a majority of organicmolecules spanning from synthetic reagents to pharmaceuticals.

• There are many methods available when there is a need to introduce anitrogen to an organic molecule.

+N

HN

Bn

20 mol % n-BuLiTHF, 24h, rt N

NBn

Kumar, K.; Michalik, D.; Garcia Castro, I.; Tillack, A.; Zapf, A.; Arlt, M.; Heinrich, T.;Bottcher, H.;Beller, M. Chem. Eur. J. 2004,10, 746-757.

FF

2 equiv. 1 equiv.

10 mol % Pd(OH)2/C

H2, 40oC

10 mol % Et3N, EtOH

7h

N

NH

F

[Pd(PhCN)2Cl2]

dppf, Et3N, CO,

130oC, tolueneNH

Br

N

N

F

ONH

83%

In three catalytic steps, different 5-HT2A receptor antagonists have been

synthesized in good yields.


Recommended