+ All Categories
Home > Documents > AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND...

AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND...

Date post: 02-Oct-2018
Category:
Upload: hoangbao
View: 213 times
Download: 0 times
Share this document with a friend
13
AMMONITES FROM LUMPY LIMESTONES IN THE LOWER PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS S. R. Fernández-Lópezl , L. V. Duarte2 andM.H.P. Henriques2 1Depto. y UEI de Paleontología, Facultad de CienciasGeológicas (UCM) e Instituto de GeologíaEconómica(CSIC-UCM), 28040-Madrid, Spain. E-mail: [email protected] 2Depto. Cienciasda Terra, Centrode Geocié'ncias, Universidade de Coimbra, 3001-40I-Coimbra, Portugal. E-mail: [email protected], [email protected] Abstract: Preservational features of ammonites recorded in fue Lower Pliensbachian lumpy limestones of fue Lusitanian Basin confirm fue deep marine origin previously established for this facies. These deposits can be subdivided into three main taphofacies which are distinguished by preservational ammonite features: 1) lumpy lin1estones and marly intervals with reelaborated ammonites, 2) larninated marls and bituminous shales with accumulated ammonites, and 3) homogeneous limestones with resedimented ammonites. The background sedimentation of suboxic (dysaerobic, bioturbated lumpy muds; taphofacies 1) to anoxic conditions (anaerobic, laminated muds; taphofacies 2) on deep zone was interrupted by depositional events related to distal gravity flows (taphofacies 3). Lumpy limestones containing reelaborated ammonites, and showing gradational boundaries and inverse grading developed in deep environments due to sedimentary starving. The stratigraphic intervals of taphofacies 1 represent fue lowest values of sedimentation and accumulation Tales. Taphofacies of type 1 altemate with taphofacies of type 2 composing stratigraphic cycles of metric order. Such cycles resulted from cyclical environmental changes of hundreds of thousands of years. Deepening episodes of 4th-order led to fue development of dysaerobic to anaerobic environments, whilst subsequent shallowing episodes increased . fue levels of bottom oxygenatlon. Key words: appliedtaphonomy, sequence stratigraphy,ammonites, taphofacies, carbonate platforms, environmental cycles,palaeobathymetry, Lower Jurassic, Lusitanian Basin, Iberia. Resumen: Las características tafonómicas de los ammonites registrados en las calizas grumosas del Pliensbachiense inferior de la CuencaLusitana confirman el origen marino profundo previamente establecido para esta facies. Estos depósitospuedenser subdivididos en tres tafofacies principales quesedistinguen por las características tafonómicas delos ammonites: 1) calizas grumos as e intervalos margosos con ammonites reelaborados, 2) margas con laminaciónparalelay margas bituminosas con ammonites resedimentados, y 3) calizas homogéneas con ammonites resedimentados. La sedimentación de fondo en ambientes marinosprofundos,que lateralmente pasaba de condiciones subóxicas (en los de Iodos grumosos, bioturbadosy disaeróbicos; tafofacies 1) a anóxicas(en los Iodos laminadosy anaeróbicos; tafofacies 2), estuvo interrumpida por eventos deposicionales debidosa flujos distales de gravedad (tafofacies3). Las calizasgrumosas con ammonites reelaborados, que presentan límites gradacionales y granoclasificación inversa,se formaron en ambientes marinos profundos,debido al déficit de aporte de sedimentos. Los intervalos estratigráficosde esta tafofacies 1 representan los menores valoresde tasade sedimentación y de velocidad de sedimentación. Las tafofaciesde tipo 1 alternan con las tafofaciesde tipo 2 constituyendo ciclos estratigráficos, de escala métrica, que son el resultadode modificaciones ambientales cíclicas de cientosde miles de años. Durante los episodios de profundización de 4° orden se desarrollaron ambientes disaeróbicos a anaeróbicos, en tanto que durante los subsecuentes episodios de somerización aumentaronlos niveles de oxígeno en los sedimentos del fondo. Palabras clave: tafonomía aplicada, estratigrafía secuencial,ammonites,tafofacies, plataformas carbonáticas, ciclos ambientales, paleobatimetría, Jurásico Inferior, Cuenca Lusitánica, Iberia. Fernández-López, S., Duarte,L. V. & Henriques, M.H.P. (2000): Arnmonitesfrom lumpy limestones in fue Lower Pliensbachian of Portugal; taphonomic analysis and palaeoenvironmental implications. Rev.Soco Geol. España, 13 (1): 3-15 Yo" ~",. no"l ¡¡'"nnñn 1 '?{ l} ?nnn
Transcript
Page 1: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONITES FROM LUMPY LIMESTONES IN THE LOWERPLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND

PALAEOENVIRONMENTAL IMPLICATIONS

S. R. Fernández-Lópezl , L. V. Duarte2 and M.H.P. Henriques2

1 Depto. y UEI de Paleontología, Facultad de Ciencias Geológicas (UCM) e Instituto de Geología Económica (CSIC-UCM),28040-Madrid, Spain. E-mail: [email protected]

2 Depto. Ciencias da Terra, Centro de Geocié'ncias, Universidade de Coimbra, 3001-40I-Coimbra, Portugal. E-mail:

[email protected], [email protected]

Abstract: Preservational features of ammonites recorded in fue Lower Pliensbachian lumpy limestonesof fue Lusitanian Basin confirm fue deep marine origin previously established for this facies. Thesedeposits can be subdivided into three main taphofacies which are distinguished by preservationalammonite features: 1) lumpy lin1estones and marly intervals with reelaborated ammonites, 2) larninatedmarls and bituminous shales with accumulated ammonites, and 3) homogeneous limestones withresedimented ammonites. The background sedimentation of suboxic (dysaerobic, bioturbated lumpymuds; taphofacies 1) to anoxic conditions (anaerobic, laminated muds; taphofacies 2) on deep zonewas interrupted by depositional events related to distal gravity flows (taphofacies 3). Lumpy limestonescontaining reelaborated ammonites, and showing gradational boundaries and inverse grading developedin deep environments due to sedimentary starving. The stratigraphic intervals of taphofacies 1 representfue lowest values of sedimentation and accumulation Tales. Taphofacies of type 1 altemate withtaphofacies of type 2 composing stratigraphic cycles of metric order. Such cycles resulted from cyclicalenvironmental changes of hundreds of thousands of years. Deepening episodes of 4th-order led to fuedevelopment of dysaerobic to anaerobic environments, whilst subsequent shallowing episodes increased

.fue levels of bottom oxygenatlon.

Key words: applied taphonomy, sequence stratigraphy,ammonites, taphofacies, carbonate platforms,environmental cycles, palaeobathymetry, Lower Jurassic, Lusitanian Basin, Iberia.

Resumen: Las características tafonómicas de los ammonites registrados en las calizas grumosas delPliensbachiense inferior de la Cuenca Lusitana confirman el origen marino profundo previamenteestablecido para esta facies. Estos depósitos pueden ser subdivididos en tres tafofacies principalesque se distinguen por las características tafonómicas de los ammonites: 1) calizas grumos as e intervalosmargosos con ammonites reelaborados, 2) margas con laminación paralela y margas bituminosas conammonites resedimentados, y 3) calizas homogéneas con ammonites resedimentados. La sedimentaciónde fondo en ambientes marinos profundos, que lateralmente pasaba de condiciones subóxicas (en losde Iodos grumosos, bioturbados y disaeróbicos; tafofacies 1) a anóxicas (en los Iodos laminados yanaeróbicos; tafofacies 2), estuvo interrumpida por eventos deposicionales debidos a flujos distalesde gravedad (tafofacies 3). Las calizas grumosas con ammonites reelaborados, que presentan límitesgradacionales y granoclasificación inversa, se formaron en ambientes marinos profundos, debido aldéficit de aporte de sedimentos. Los intervalos estratigráficos de esta tafofacies 1 representan losmenores valores de tasa de sedimentación y de velocidad de sedimentación. Las tafofacies de tipo 1alternan con las tafofacies de tipo 2 constituyendo ciclos estratigráficos, de escala métrica, que son elresultado de modificaciones ambientales cíclicas de cientos de miles de años. Durante los episodiosde profundización de 4° orden se desarrollaron ambientes disaeróbicos a anaeróbicos, en tanto quedurante los subsecuentes episodios de somerización aumentaron los niveles de oxígeno en lossedimentos del fondo.

Palabras clave: tafonomía aplicada, estratigrafía secuencial, ammonites, tafofacies, plataformascarbonáticas, ciclos ambientales, paleobatimetría, Jurásico Inferior, Cuenca Lusitánica, Iberia.

Fernández-López, S., Duarte, L. V. & Henriques, M.H.P. (2000): Arnmonites from lumpy limestonesin fue Lower Pliensbachian of Portugal; taphonomic analysis and palaeoenvironmental implications.Rev. Soco Geol. España, 13 (1): 3-15

Yo" ~",. no"l ¡¡'"nnñn 1 '?{ l} ?nnn

Page 2: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

4 S. R. Femández-López, L. V. Doarte and M. H. P. Henriqoes

Ammonite taphonomyLumpy limestones and bituminous shales occurwithin the Lower Jurassic deposits of the LusitanianBasin, especially in some localities along the presentdar coastline from Peniche to Brenha, North of theriver Tagus. The lithofacies of lumpy limestones isvery common in the Lower Pliensbachian of the Lu-sitanian Basin, having been studied at Peniche, S.Pedro de Moel, Coimbra, Raba~al and Brenha (Fig.lA). Deposits of this lithology are known as "Valedas Fontes marls and marly limestones" at the lowerportion of the Quiaios Formation (Soares et al.1993). The term Brenha Formation (Fig. 2) was firstused in lithostratigraphic schemes developed duringpetroleum exploration in the 1970s, and then emplo-red in some papers (Wright & Wilson, 1984; Wilsonet al., 1989; Watkinson, 1989). The Brenha Forma-tion is a distinctive stratigraphic unit of Early andMiddle Jurassic age, showing a strongly diachronous(Sinemurian-Pliensbachian) lower boundary. Pre-vious studies on these lumpy limestones were pre-dominantly focussed on biostratigraphy (cf.Mouterde, 1955, 1967; Mouterde, Dommergues &Rocha, 1983; Phelps, 1985; Dommergues, 1987),though sedimentological aspects have algo been dis-cussed (Hallam, 1971, 1986; Dommergues et al.,1981; Wright & Wilson, 1984; Dromart & Elmi,1986; Elmi et al., 1988; Watkinson, 1989; Soares etal., 1993; Parkinson, 1996). In the present study at-tention has mainly been focussed on the section ofPeniche, although some of the figured specimenscome from the outcrop of Brenha. The purpose ofthis study is to carry out a taphonomic analysis ofthe ammonites preserved in this limestones, inor-der to assess the palaeoenvironmental implications.

The stratigraphical succession analysed consists ofover 20 m of limestones and shales, exposed alongthe cliffs of the northem side of fue Peniche peninsula(Fig. lB). This succession is of Early Pliensbachian age(Mouterde, 1955; Dommergues, 1987; Elmi et al., 1988).The succession is formed by thin, heavily bioturbatedlimestones, alternating with thicker and weakerbioturbated, marly intervals (Fig. 3). Limestone intervalscomprise mudstone to wackestone with recrystallizedbioclasts (ammonoids, brachiopods, belemnites, thinshelled gastropods, spicules of sponges, bivalves,radiolaria, ostracods, fragments of echinoderms andalgae). Carbonized wood fragments of centimetric size arealgO presento Chondrites and other bioturbation structuresare common. Marly intervals include lump levels,altemating with laminated mudstones and shales.

The lumps included in fue limestone beds and marlyintervals are micritic, calcareous concretions, subsphericaland angular in shape, millimetric or centimetric in size.Sometimes several lumps are clumped together to formlarger concretions up to 3 cm diameter. Contacts betweenlumps and matrix are sharp and well defined in marlyintercalations, but may be gradational in some limestonelevels. These concretions mar be aligned on certainsedimentary surfaces. Some lumps are covered by micriticlaminae as cryptalgal oncolite structures (Elmi et al.,1988). These concretions are not represented in thebituminous shales.

Ammonite fossils are recorded throughout fue studiedsections, and they locally show little size. The degree ofammonite packing (estimated by the difference betweenthe number of specimens and the number of fossiliferouslevels divided by fue number of fossiliferous levels) and

.Z".«LlJUo

U1-Z«...J1-« ..'

Figure 1.- A) Location map of fue main sections oí Vale das Fontes marls and marly limestones (Quiaios Fm.) in fue Lusitanian Basin (1 -Brenha, 2 - Coimbra, 3 - Raba~al, 4 - S. Pedro de Moel, 5 - Tomar, 6 - Porto de Mós, 7 - Peniche). B) Geological map of the Lower Jurassic in fuePeniche Peninsula (S/P - SinemurianlPliensbachian boundarv: Pff - Pliensbachiantroarcian boundarv).

Rev. Soc. Geol.España, 13(1), 2000

Page 3: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONITES, LOWER PLIENSBACHIAN, PORTUGAL 5

fue arnmonite stratigraphical persistence (proportion of 2.1 ~fossiliferous levels) display high values. Ammonite shells ~

and internal moulds normally appear scattered in the t5sediment, showing no pattern of imbricated or encased 2 ~

a.regrouping. The aragonitic shells have been dissolved. ffi ~Moldic porosity is completely filled by spar cemento 1 ~ ~

The studied Pliensbachian deposits can be subdivided ~ ti>into three main taphofacies, distinguished by the 1preservational features of the ammonites: 1) lumpylimestones and marly intervals with reelaborated

. ammonites, 2) laminated marls and bituminous shales 1

with accumulated ammonites, and 3) homogeneouslimestones with resedimented ammonites. 1

. ,11 ' h t ' h ' - 1/)

~ LII oslra Igrap IC IV C

E unlls C al 1:;,,~ Sequential units (in DUARTE, 1997; ~ E~ § SOARES & DUARTE, 1997) 'g éc ~ N ... c.'-E al > 1~ c C

E u al

o Q)c:~ MSTP4 malgamated ooIltic and '6 ro., clclastic Ilmestone facies :!2 -1Q) ~ Q)

5 c:Q) iñ ":

Q) ro.c E Eo ,,= MSTP3 ~ 1

~ ffi .~ ~ N Marl/grainstone altemations '5.g'u Q) ~ UJ (peloidal and oolitic facies) O In~ a. OO C 'lO1- O _O C3 Marl/limestone alternations 1.- MSTP2- rn wrth cephalopods

o 10"o -N E ~ Ilimestone altemations with

~ ~ MSTP2 nticular siliciclastic facies 1LL arl/limestone decimetric

'O LU MSTP1 altemations very rich c.lO C of smal! brachiopods Eo .c lO ~1ñ~ C E ~ N Decimetric limestones and ~Q) ., ~ = C - centimetric marls alternations

Q)C ~ Q) .,.!2 ID C ~ ~ ossiliferous decimetric ro.c O E 6 rl/limestone altemations c::ti ; ~"gj luding lumpy limestones ro O

o.c Q) ¡: E ~ nd bltumineux shales) '0 -eo 1/) E 0= C '" .- ro~ C ,- u. >- = O U

Q) -,.,'C J?ci>.- lO '" Q) ,-c: -oE OLL.!! -o .S'"c c.>'" E., rog ffi -g Fossiliferous decimetric "-

.¡: ID N limestones and centimetrlc 2E ~ U marls altematlons ro ¡gQ) ,CE E OC.- .- .oCñ 8 Dolomltic limestones ~ "-

Coimbra Fm U and dolomites a: ~o

Figure 2.- Diagrarnrnatic section of the Lower Jurassic in thePeniche Peninsu1a: 1ithostratigraphic units (1 and 3 for a11 theLusitanian Basin; 2 - sector of Peniche in Carta Geo16gica de Portugal,. 1992), facies and depositional environrnents.

Taphofacies 1: Lumpy limestones and marly intervals. with reelaborated ammonites 2

Deposits of this taphofacies are composed by 1mudstone to wackestone beds ranging in thickness from 5to 40 cm, and marly intervals from lOto 50 cm. Dominant O W ~colours are yellowish or greyish. Lump size ranges from 2 LEVELS 2 W !1;

. .' LS LL TF2 TF3 ID Z tCto 40 mm (Flg. 4). Structures of bloturbatlon of LITHOLOGY TAPHOFACIES ~ 2 ~centimetric size are abundant.' Tubular and narrow (1-3mm diameter), pyrite-filled burrows with various Figure 3.- Lower P1iensbachian section at Peniche.orientations are common. The boundaries of lumpy Biostratigraphica1 data are based on arnrnonites (Mouterde, 1955;limestones are commonly gradational but the base in Dornmergues et al., 1981; Phe1ps, 1985; Dornrnergues, 1987; E1rni et

. ' . al., 1988). BS = Bituminous sha1es; HL = Hornogeneous 1irnestones;some beds lS sharper than the topo Lumpy hmestones may LL = Lurnpy 1irnestones; LM = Lurnpy, rnar1y interva1s; LS =grade laterally into marly intervals containing concretions. Laminated rnar1s; TF1 = Taphofacies of type 1; TF2 = Taphofacies ofThe concretions are scattered fairly uniformly through type 2; TF3 = Taphofacies of type 3.

Rev.Soc.Geol.España, 13(1), 2000

Page 4: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

6 S. R. Fernández-López, L. V. Duarte and M. H. P. Henriques

Figure 4.- Close-up view of Lower Pliensbachian deposits, Peniche(Portugal), showing some details of the taphofacies 1 (lumpylimestones and marly intervals with reelaborated arnmonites). Numbersof calcareous levels are indicated as in fue lag represented in text-figure3. Harnmer for scale is 33 cm long.

internal moulds can present microbiallaminae, developedduring removal processes. Reelaborated, internal mouldscommonly show calcareous microbial or stromatoliticlaminae, that mainly developed on fue exposed sirle duringexhumation and displacement processes (Figs. 6.IB ,6.3Band 8). However, skeletal remains of encrustingorganisms(such as serpulids, bryozoans or oysters) and biogenicborings are very scarce. Remains of intrathalamous orextrathalamous serpulids were only developed on someresedimented shells.

Complete concretionary internal moulds of fue bodychamber and phragmocone, indicative of low rate~ ofsedimentation and accumulation, are abundant. Incontrast, compressed, partial internal moulds of bodychambers (i.e., hollow ammonites), indicative of veryrapid sedimentary infill and high Tale of sedimentation,are scarce. Body chambers and phragmocones arenormally filled by homogeneous sediment, although thelower portions are more calcareous and fue upper portionsare more argillaceous than fue sedimentary matrix (Fig. ~).

Processes of early mineralization are intense.Concretionary internal moulds are calcareous. In the mostlumpy intervals, pyritic internal moulds may be locallycommon, as reelaborated elements (Figs. 6.5 and 6.6).

Signs of abrasion and bioerosion on shells and internalmoulds are very scarce. Reelaborated internal moulds canshow disarticulation surfaces and fractures (Figs. 6.6-6.9);more seldom and associated with erosional sedimentarysurfaces, they may show truncational abrasion facets.

limestone intervals. However, they can be sorted in marlyintervals. Concretions of marly intervals show distributiongrading, also (i.e., gradual variation, in a progressivelyupw'i!.fd direction within a marly interval, of the upperconcretion-size limit; Fig. 5). Gradual size-reduction ornormal grading of concretions is more common thangradual size-increase or inverse grading, in these marlyintervals.

Recorded associations of ammonites in this taphofaciesare dominated by reworked elements (i.e., reelaboratedand resedimented elements sensu Fernández-López,1991). Accumulated elements, showing no evidence ofremoval after laying on the sea-bottom, are very scarce orabsent. Reelaborated internal moulds (i.e., exhumed anddisplacedbefore their final burlal) mar be dominant (Fig.6). Resedimented shells, displaced on the sea-bottombefore their initial burlal, are locally common. The degreeof removal (i. e., the ratio of reelaborated and resedimentedelements to the whole of recorded elements) and thedegree of taphonomic heritage (i. e., the ratio ofreelaborated elements to the whole of recorded elements)can reach 100%. However, the degree of taphonomiccondensation (i.e., mixture of fossils of different age ordifferent chronostratigraphic units) reaches very 10w tozero values in all cases. Ammonite mixed assemblagescomposed of specimens representing seyeral biozones orbiohorlzons in a single bed have not been identified andthe biostratigraphical completeness can reach 100%.

Taphonic populations of type 1 and 2 are dominant.Taphonic populations of type 1 are composed ofmonospecific shells showing unimodal and asymmetricdistribution of size-frequencies, with positive skew(Femández-López, 1991, 1995, 1997). These populationshave a high proportion of microconchs and the shells ofjuvenile individuals are predominant, whilst adults arescarce. Taphonic populations of type 2 are composed ofmono- or polyspecific shells showing unimodal andnormal distribution of size-frequencies, with highkurtosis. Populations of this second type have a lowproportion of ínicroconchs and the shells of juvenileindividuals are scarce, whilst the shells of adultindividuals are common. Taphonic populations of type 3are composed of polyspecific shells showing uni- orpolymodal and asymmetric distribution of size-frequencies, with negative skew. Shells of juvenileindividuals are absent, microconchs are very scarce andshells of adult individuals are predominant in taphonicpopulations of this last type. Taphonic populations of type1 are indicative of autochthonous biogenic production ofshells, showing no signs of sorting by necroplanktic drlft

(Fernández-López, 1991, 1995, 1997).Biostratinomic processes of biodegradation-

decomposition are generally intense in this taphofacies(Fig. 7). Before burlal, ammonite shells commonly losethe soft-parts and the aptychi, as well as perlostracum and

connecting rlngs.Reworked concretions, shell fragments and concretionary

internal moulds can be encrusted, developing oncoliticcryptalgal structures (cf. Elmi et al., 1988). Shells and

Rev.Soc.Geol.España, 13(1), 2000

Page 5: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONITES. LOWER PLIENSBACHIAN. PORTUGAL 7

reelaborated internal moulds suggests that anaerobicconditions did not developnear fue sedimentary surface.However, reelaborated ammonites and reworkedconcretions included in some beds, showing the basesharper than the top, could be mobilised by massive

sliding.

Taphofacies 2: Laminated marls and bituminousshales with accumulated ammonites

A second taphofacies is composed by dark, organicrich, marly mudstones and bituminous shales, commonlyshowing millimetric scale, bedding-parallel lamination(Fig. 9). Larninated intervals are normally 20-30 cm thick,although they mar range from few centimetres to 1 mthick. Large structures of bioturbation of centimetric sizeare sparse but some marly intervals contain abundant,small Chondrites. Tubular and narrow (1-3 mm diameter),pyrite-filled burrows with various orientations areabundant. Finely disseminated pyrite occurs locally. Theboundaries of the laminated intervals are commonlygradational (e.g., 21 base, 25 base, 31 base, 33 top, 45base, 45 top, 49 base, 49 top, 51 base, 51 top and 65 base).However, some erosional surfaces have been identified (inlevels 21 top, 23 top, 25 top, 27 base, 27 top, joint 31/33,

Concretionary internal moulds showing fue septa ofthe phragmocone are the dominant fossils. Hollowphragmocones (i.e., shells without septa) are scarce, andthey are usually compres sed by increasing sedimentaryloading during diagenesis. The septa can disappear byearly dissolution, whilst the wall of fue shell mar stillstand, giving rige to compressed elements showingdiscontinuous deformation by gravitational diageneticcompaction.

Fragmentary shells are common. Shells usually showclosed and opened fractures on the wall. Reelaboratedinternal moulds commonly show disarticulation surfaceswith sharp margins (Fig. 6.8}. Fragmentary internalmoulds algo occur, bearing no signs of rounding byabrasion or bioerosion, due to low turbulence at fue water!sediment surface, and they usually display no traces ofgravitational deformation by diagenetic compaction.

Shells and concretionary internal moulds are usuallyreorientated. Ammonites with their long axes parallel tobedding surface are dorninant.

Siphuncular tubes are usually disarticulated due tointense and lasting biostratinomic processes ofbiodegradation-decomposition and dissolution.

Sediments of this facies are interpreted as having beendeposited in an open sea, below wave base, taking intoaccount fue absence of sedimentary structures indicatingeither shallow water (such as wave reworking) or stormdeposition (such as hummocky bedding). However, thepresence of reelaborated ammonites implies that someform of current flow or winnowing affected fue burial ofconcretionary internal moulds. Currents We;re slight, butconcretionary internal moulds of ammonites weredisarticulated and azimuthally reorientated on softgroundsthrough reelaboration (i.e.,exhumation and displacementon the sea-bottom, before their final burial). Theformation of such calcareous concretions must have takenplace either on fue sea-floor contemporaneously with fuesedimentary process or else within the sediment duringthe early diagenesis. In this hemipelagic environment,episodes oflower rates of sedimentation and accumulationfavoured a higher degree of bioturbation and reworking ofammonite shells. Reelaboration processes and fue activityof burrowing organisms are fue main factors that inducedthe development of ammonite associations showing a highdegree of taphonomic heritage, but the degree ofstratigraphic and taphonornic condensation is negligibleover geochronological time-scale. Selectively increasedporosity was induced by draught filling in ammoniteshells (intra-cameral draught stream created by externalturbulence through constricted siphuncular openings;Seilacher, 1971) and bioturbation of the sedimentarymatrix, both of fuese processes favouring a relatively fastlithification. Concretionary internal moulds of ammonitesand lumpy structures were developed on the sea-bottom,under oxic to suboxic conditions. Although the calcareousbenthos is very scarce, the presence of abundantburrowing structures suggests aerobic to dysaerobicbiofacies. The absence of pyritic ammonites other than

Figure 5.- Close-up view of fue level 78 (taphofacies 1, lumpylimestones and marly intervals with reelaborated arnrnonites), showinggradational boundaries. Bar for scale is 17 cm long.

Rev.Soc.Geol.España, 13(1), 2000

Page 6: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

Figure 6.- Reelaborated ammonites showing petrographic differences and structural discontinuity (Sd) between the sedimentary infilling andthe enclosing sedimentary rock, or disarticulation surfaces (Ds), and maintaining their original volume and form as a result of rapid earlycementation. All the specimens are calcareous concretionary internal mould, except figures 5 and 6 which correspond to pyritic moulds. Specimensrepresented in figures 1B and 3B are preferentially encrusted by calcareous microbial or stromatolitic laminae on the upper side. The asteriskindicates the end of the phragmocone. Lower Pliensbachian. 1.- Dayiceras sp., specimen BR2, x2, Brenha. 2.- Dayiceras sp., specimen BR6, x2,Brenha. 3.- Dayiceras sp., specimen BR1, xl, Brenha. 4.- Dayiceras sp., specimen PE55/1, x2, Peniche. 5.- Dayiceras sp., specimen BR5, xl,Brenha. 6.- Dayiceras sp., specimen PE67/1, xl , Peniche. 7.- Dayiceras sp., specimen BR3, x2, Brenha. 9.- Dayiceras sp., specimen PE78/1, x2,Peniche. 8.- Metaderoceras sp., specimen PE63/1, x2, Peniche.

Page 7: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

Figure 7.- Taphonomic gradients observed on ammonites from the three taphofacies recognized in the Lower Pliensbachian deposits of theLusitanian Basin (TF1 = Taphofacies of type 1; TF2 = Taphofacies of type 2; TF3 = Taphofacies of type 3).

Rev.Soc.Geol.Espana, 13(1), 2000

Page 8: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

10 S. R. Fernandez-Lopez, L. V. Duarte and M. H. P. Henriques

Figure 8.- Processes leading to the development of "ammonite half-lumps" (a particular case of reelaborated ammonites) in condensed depositsfrom Early Pliensbachian of Portugal (in Fernandez-Lopez et al., 1999).

joint 49/51, 65 top, 67 base, 67 top, 69 base, 69 top and79). Some shallow erosional surfaces occur within thisfacies, being onlapped by limestones of taphofacies 1 or3. Laminated intervals show low values of organic carbon(TOC, total organic carbon, commonly between 2,5 and4,5%). A black shale interval (TOC up to 15%) has beenidentified in the Renzi Subzone (Ibex Zone), within theorganic-rich intervals of the Lower Pliensbachian atPeniche (level 65 in Fig. 3). This black shale intervalshows a well laminated texture, yet traces of bioturbationof Chondrites are present.

Rev.Soc.Geol.Espafia, 13(1), 2000

Ammonite associations in taphofacies-2 are dominatedby non-reelaborated elements (i.e., resedimented oraccumulated elements). Reelaborated internal moulds arevirtually absent. Accumulated shells, showing no signs ofremoval, may be locally common. Resedimented shellsare dominant (Figs. 10-11). The degree of removal (i.e.,the ratio of reelaborated and resedimented elements to thewhole of recorded elements) is variable, but the degree oftaphonomic heritage (i.e., the ratio of reelaboratedelements to the whole of recorded elements) is very low to0%. There is no biostratigraphic evidence of taphonomic

Page 9: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONITES. LOWER PLIENSBACHIAN. PORTUGAL 11

the sediment-water interface, allowing unrestricteddiffusion of seawater sulphate to occur. The finelylaminated bituminous shales were deposited duringperiods when anoxic conditions actually extended up lo,and above the sediment surface, thereby preventingburrowing and oxidation of organic matter. Thepreservation of organic matter at such horizons marreflect relatively high organic sedimentation Tales,preventing fue destruction of organic matter by sulphate-reducing bacteria (cf. Morris, 1980; Wright & Wilson,1984; Sethi & Leithold, 1997).

Taphofacies 3: Homogeneous limestones withresedimented ammonites

Homogeneous limestones of this taphofaciesrepresent less than 41 % of the whole of beds inPeniche. They are normally under 20 cm thick,yellowish or greyish. There are two lenticular bedsamong thení (in levels 25 and 79), showing sharpboundaries. The bases are erosional. The tops aresharp or burrowed, and they grade into the overlying

condensation in the ammonite recorded associations.Taphonic populations of types 2 or 3 are dominant amongfuese associations, those of type 1 being very scarce.

Biostratinomic processes of biodegradation-decomposition are less intense than in the taphofacies l.Arnmonite shells usually lack soft-parts and aptychus inthe body chamber, but they can maintain the periostracumand fue connecting rings during fue burial (Figs. 7, 10-11). Skeletal remains of intrathalamous or extrathalamousserpulids are only developed on some resedimented shells.

Buried shells usually lacked sedimentary infill in fuephragmocone and were preserved as hollow arnmonites,indicative of very rapid sedimentary infill and high rate ofsedimentation. Body chambers and phragmocones ofsome resedimented shells are filled by homogeneoussediments.

Pyritic internal moulds with septa, resulting from earlymineralization, mar be locally common. However,calcareous, concretionary internal moulds formed by earlycementation processes are absent. Signs of abrasion andbioerosion on shells are virtually absent.

Hollow arnmonites (i.e., showing no sedimentary infillin the phragmocone) and hollow phragmocones (i.e.,without septa) are the dominant fossils, but they areusually compres sed by gravitational diageneticcompaction. Septa and walls of fue shells can disappearby early dissolution, whilst fue periostracum mar stillremain, giving rise to compres sed elements showingcontinuou§ deformation by gravitational diageneticcompaction. Hollow arnmonites maintaining their originalvolume and form are scarce, as a result of the high rate ofsedimentation and slow early cementation.

In this taphofacies, where accumulated elements andpyritic ammonites mar be found, complete shells arecornmon. Fragmentary shells can occur, but bearing nosigns of rounding, encrustation or bioerosion duringresedimentation processes on fue sea-bottom, due to thelow turbulence near the water/sediment surfacec. Shells arenot azimuthally reorientated, but they tend to be horizontalon the bed surface. Siphuncular tubes are usuallyarticulated. Disarticulated aptychi mar be common.

The fine-grained nature of fue mudstones suggestsdeposition in a low-energy setting. Larninated marls andbituminous shales were developed on a sea-bottom undersuboxic to anoxic conditions. The general scarcity ofcalcareous benthic body fossils in these mudstones wasnoted by Hallam (1971), who considered .that it mighthave been caused by a soupy consistence of the substrate.However, the abundant reorientated shells, aligned withtheir long axes parallel to fue bedding surfaces, impliessedimentary surfaces of softground stage. Currents werevery slight or absent, but arnmonite shells were horizontallyreorientated and fragmented by resedimentation after theiraccumulation on softgrounds. Consequently, subst!"ateswereof type softground, rather than soupy-grounds. Thesea bottom was poorly oxygenated, although calcareousbenthos is absent and active-burrowing, soft-bodiedinfauna was presento The abundant pyrite at some horizonssuggests that reducing conditions extended to very near

Figure 9.- Outcrop view ofLower Pliensbachian deposits, Peniche(Portugal). Numbers of calcareous levels are indicated as in fue logrepresented in text-figure 3. Limestone beds 68 and 70 correspond tothe taphofacies 3 (homogeneous limestones with resedimentedammonites). The stratigraphic interval between them corresponds to fuetaphofacies2 (laminated marls and bituminous shales with accumulatedammonites). Hammer for scale is 33 cm long.

Rev.Soc.Geol.España, 13(1), 2000

Page 10: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

S. R. Femández-López, L. V. Duarte and M. H. P. Henriques12

~

Phragmocones are normally fiPed with sedimentoPartial, concretionary internal móulds of the bodychamber and phragmocone, indicative of low rate ofsedimentation, are common. Hollow ammonitesmaintaining their original volume and form are alsocommon, indicating low rate of sedimentation and rapidearly cementation.

Calcareous concretionary internal moulds can beformed during the early diagenesis. Pyritic internalmoulds are found only locally.

Shells can acquire truncational abrasion facets, aswell as fractures, but signs of abrasion and bioerosionon shells are very scarce. Septa and walls of the shellsare usually preserved during the burial.

Complete shells are scarce. Incomplete phragmoconesare dominant. Ammonite fossils can maintain theiroriginal volume and form due to early cementation,showing no evidence of gravitational deformation bydiagenetic compaction. Moulds with discontinuouscompaction represent crushed shells during earlydiagenesis, before dissolution of the wall.

marly intervals or laminated shales. However, thislenticular limestones show no typical turbiditefeatures such as normal grading or current ripples.Taphofacies of type 3 mar be intercalated with those oftype 1 and type 2 (Figs. 3 and 9).

Accumulated shells are virtually absent.Reelaborated elements are scarce, resedimentedshells being dominant. The degree of removal isvariable, but the degree of taphonomic heritageranges from very low values to zero. There is nobiostratigraphic evidence of taphonomic condensationin the ammonite recorded associations. Taphonicpopulations are usually of type 1 or 2.

Biostratinomic processes of biodegradation-decomposition are generally intense. Soft-parts andaptychus in the body chamber, as well asperiostracum and connecting rings, are normally lostbefore burial.

Resedimented shells mar be overgrown byintrathalamous and extrathalamous, encrustingorganisms (most particularly, serpulids and bryozoans).

í"'

Figure 11.- Resedimented ammonite. Hollow ammonite (i.e.,showing no sedimentary infill in the phragmocone) and hollowphragmocone (i.e., without septa) compressed by gravitationalcompaction. Sedimentary infill is restricted to fue last portion of fuebody chamber. Siphuncular tube is articulated. Septa have beendissolved and the width of the internal mould is reduced to somemillimetres as a result of sedimentary compaction duringsyndiagenesis. The asterisk indicates the end of the phragmocone.Dayiceras sp., Lower Pliensbachian, specimen PE67/l, Peniche. Scalein centimetres.

Figure 10.- Resedimented arnmonite, with complete peristome.The sedimentary infill is restricted to fue body chamber and fue lastportion of the phragmocone, showing structural continuity with fuesedimentary matrix across fue peristome. The septa have been dissolvedduring syndiagenesis, but fue wall of fue shell still remained and fuebody chamber shows discontinuous deformation by gravitationalcompaction. The asterisk indicates the end of the phragmocone..Acanthopleuroceras sp., Lower Pliensbachian, specimen PE51/3,Peniche. Scale in centimetres.

Rev.Soc.Geol.España. 13(1). 2000

Page 11: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONITES. LOWER PLIENSBACHIAN. PORTUGAL

Shells are commonly reoriented and regrouped.Recorded associations mar show normal grading. Shellswithout aptychus, showing disarticulated siphunculartubes, are common.

These homogeneous limestone b~ds of taphofacies3 show several features indicative of rapid deposition,in contrast to the slow rates of sedimentation andaccumulation inferred for the lumpy limestones oftaphofacies l. Burrowing is not evenly distributedthroughout the beds, as in taphofacies 1, but it isconcentrated in the last few centimetres of each bed.The lower surface of the beds is erosional,nongradational. The decrease in grain-size and bedthickness, observed from taphofacies 1 to taphofacies3, also suggests a more distal and deep deposition. Thehomogeneity of the limestones of ~he taphofacies 3 isinterpreted as a result of sediment gravity flows (distalturbidites or tempestites) from aerobic environments(Fig. 7). Distal deposition by gravity flows (taphofacies3), carrying homogeneous hemipelagic muds from oxicconditions, interrupted a background sedimentationfrom suboxic to anoxic conditions characteristic oftaphofacies 1 and 2. This background sedimentationshowed a lateral change from dysaerobic, bioturbatedlumpy muds' (taphofacies 1) to anaerobic, laminatedmuds (taphofacies 2).

Palaeoenvironmental implications

decreasing values of removal and taphonomicheritage. The degree of removal (i.e., the ratio ofreelaborated plus resedimented elements to the wholeof recorded elements) and the degree of taphonomicheritage (i.e., the ratio ofreelaborated elements to thewhole of recorded elements) of ammonite associationsare both inversely proportional to the rates ofsedimentation and accumulation. A decrease in any orboth sedimentary rates will produce an increase in thedegree of taphonomic removal and taphonomicheritage, leading to the development of condensedassociations.

Ammonite shells of these three taphofacies wereaccumulated in a low energy, oxygen-depleted(dysaerobic) environment, where anoxic-bottomconditions locally developed, within a setting bypassedby fine-grained gravity flows. In the lumpy facies (TF1),the common bioturbation structures and the presence ofreelaborated, concretionary internal moulds ofammonites, including azimuthally reorientated elements,evidence availability of oxygen and episodic agitation ofbottom waters. However, bituminous and laminatedfacies (TF2), which include horizontally reorientatedelements and resedimented shells, must have been laiddown in totally or nearly anaerobic conditions. The lateof sedimentation was usually very low, but the late ofaccumulation of sediment was very variable. Lowoxygenation and low substrate consistence of the bottomcould be a consequence of relatively high rates ofsedimentation and accumulation. In contrast, lumpylimestones with reelaborated ammonites, showinggradational boundaries and inverse grading, representenvironments of starving and the lowest rates ofsedimentation and accumulation in deep afeas.

Taphofacies of type 1 altemate with taphofacies oftype 2 composing stratigraphic cycles of metric order.Relationships between the different cyclical processesthat have conditioned the cyclicity of the stratigraphical-record and the fossil-record can be tested on the basis offue relative duration of such processes. Biostratigraphicand geochronometric analysis indicate that the studiedstratigraphic interval, from level 48 to level 80, has beendeposited continuously for about 1 million years, from193 to 192 Ma before present, according to thegeochronological and geochronometric data publishedby Dommergues et al. (1997) and Odio et al. (1995).Consequently, fue stratigraphic cycles identified in thelumpy limestones of the Lusitanian Basin resulted fromcyclical environmental changes of hundreds ofthousands of years. Recurrent depletion of benthicoxygen associated with high-frequency sea level changeshas been studied by several authors (cf. Morris, 1980;Barron et al., 1985; Hallam, 1987; Borrego et al. 1996;Quesada et al., 1997; Sethi & Leithold, 1997; Gale,1998). According to this hypothesis, 4th-orderdeepening episodes led to the development of dysaerobicto anaerobic environments, whilst subsequent shallowingepisodes led to a relative increased of the levels ofbottom oxygenation.

On the western margin of the Iberian Plate, acarbonate ramp system developed since the EarlyJurassic until the end of the Middle Jurassic.Deposition of carbonate and terrigenous mudsoccurred in an apeo sea, on a margin in process ofdifferentiation, in quiet waters below effective wavebase. The abundance of cephalopods is an indicationof normal marine salinity. The nodular structures of theLower Pliensbachian deposits were developed on a sea-bottom undergoing rhythmic oscillations betweensuboxic conditions (energy-devoid) and oxic ones (slightand episodical agitation, essentially bound to biologicalactivity; Hallam, 1971, 1986; Dommergues etal., 1981;Dromart & Elmi, 1986; Elmi et al., 1988; Watkinson,1989; Soares et al., 1993).

In aerobic to dysaerobic environments, where adecrease in the Tale of sedimentation is associatedwith an increase in turbulence, the preservedassociations of ammonites show a gradual increase inremoval and taphonomic heritage. This results from theintensification of such taphonomic processes asbiodegrada tion -decomposi tion, encrustation,sedimentary infill, concretion, abrasion, bioerosion,fragmentation, reorientation, disarticulation,regrouping and removal of ammonite remairn;. Indysaerobic to anaerobic environments, in contra$t,where an increase in the Tales of sedimentation andaccumulation is associated with a decrease inturbulence, the same taphonol;Ilic processes lead to theformation .of ammonite associations showing

Rev.Soc.Geol.España. 13(1), 2000

Page 12: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

S. R. Fernández-López, L. V. Duarte and M. H. P. Henriques14

Conclusions

Lower Pliensbachian lumpy limestones of the Lusi-tanian Basin can be subdivided into three main facieswhich are distinguished by the preservational featuresof the ammonites. Lumpy intervals containing reelabo-rated ammonites, and showing gradational boundariesand inverse grading, were developed in deep environ-ments, induced by sedimentary starving.

The authors wish to thank Prof. Lemos de Sousa from theUniversity of Porto, for valuable help in the acquisition of theorganic carbon data. The authors are grateful to Dr. G. Meléndez(Univ. Zaragoza) for the critical reading of the manuscript and su-ggestions made. This work was financed by the projects PB96-0838 (DGESICT-CSIC) and PRAXIS/P/CTE/11 128/1998, andby the Luso Hispanic Integrated Action (HP1997-0019).

References

Barron, E.J. , Arthur, M.A. & Kauffman, E.G. (1985):Cretaceous rhythmic bedding sequences: A plausible linkbetween orbital variations and climate. Earth Planet. Sci.Letters, 72: 327-340.

Borrego, A.G., Hagemann, H. W., Blanco, C.G., Valenzuela, M.& Suárez de Centi, C. (1996): The Pliensbachian (EarlyJurassic) "anoxic" event in Asturias, northem Spain: SantaMera Member, Rodiles Formation. Org. Geochem., 25: 295-309.

Carta Geológica de Portugal (1992): Servi~os Geológicos dePortugal 1/500.000, Lisboa.

Dornmergues, J.L. (1987): L'évolution chez les Arnmonitinadu Lias Moyen (Carixien, Domerien basal) en Europeoccidentale. Docum. Lab. Géol. Lyon, 98: 1-297.

Dommergues, J.L. , Elmi, S. , Mouterde, R. & Rocha, R.B.(1981): Calcaire grumeleux du Carixien portugais. In: RossoAmmonitico Symposium Proceedings (A. Farinacci & S.Elmi, Eds.). Edizioni Tecnoscienza, Roma: 199-206.

Dornmergues, J.L. , Meister, Ch. & Mouterde, R. (1997):P1iensbachien. Bult. Centre Rech. Elf Explo7: Prod., Mém.17: 15-23.

Dromart, G. & Elmi, S. (1986): Développement de structurescryptalgaires en domaine pélagique au cours de l'ouverturedes bassins jurassiques (Atlantique Central, Téthysoccidentale). C.R.Acad.Sc.Paris, 303: 311-316.

Duarte, L.V. (1997): Facies analysis and sequentialevolution of the Toarcian-Lower Aalenian series in theLusitanian Basin (Portugal). Comun. Inst. Geol. Mineiro,1997,83: 65-94.

Elmi, S., Rocha, R.B. & Mouterde, R. (1988): Sédimentationpelagique et encroutements cryptalgaires: les cal.cairesgrumeleux du Carixien portugais. Ciencias da Terra (UNL),9: 69-90.

Femández-López, S. (1991): Taphonomic concepts for atheoretical biochrono1ogy. Rev. Esp. Paleontol., 6: 37-49.

Femández-López, S. (1995): Taphonomie et interprétation despaléoenvironnements. In: First European PalaeontologicalCongress, Lyon, 1993 (M. Gayet & B. Courtinat, Edsj.Geobios, M.S. 18: 137-154.

Fernández-López, S. (1997): Ammonites, clinostafonómicos y ambientes sedimentarios. Rev. Esp.Paleontol., 12: 102-128.

Fernández-López, S., Duarte, L. V. & Henriques, M.H.P.

(1999): Reelaborated ammolÍites as indicator of condenseddeposits from deep marine environments. Case study fromLower Pliensbachian lumpy limestones of Portugal. In:European Palaeontological Association Workshop: Linksbetween fossil assemblages and sedimentary cycles andsequences (R.B. Rocha, C.M. Silva, P.S. Caetano & J.C.Kullberg, Eds.). Gráfica Europam, Lisboa: 42-46.

Gale, A.S. (1998): Cyclostratigraphy. In: Unlocking theStratigraphical Record (P. Doyle & M.R. Bennet, Eds.). JohnWiley & Sons, NewYork: 195-220.

Hallam, A. (1971): Facies analysis ofthe Lias in West CentralPortugal. N. Jb. Geol. Paliiont. Abh, 139: 226-265.

Hallam, A. (1986): Origin of minor limestone-shale cycles:climatically induced or diagenetic? Geology, 14: 609-612.

Hallam, A. (1987): Radiations and extinctions in relation toenvironmental change in the marine Lower Jurassic ofnorthwest Europe. Palaeobiology, 13: 152-168.

Morris, K.A. (1980): Comparison of major sequences oforganic-rich mud deposition in the British Jurassic. Jl. Geol.Soco London, 137: 157-170.

Mouterde, R. (1955). Le Lias de Peniche. Comun. Serv. Geol.Portugal, 36: 87-115.

Mouterde, R. (1967): Le Lias du Portugal: vue d'ensemble etdivision en zones. Comun. Serv. Geol. Portugal, 52: 209-226.

Mouterde, R., Dommergues, J.L. & Rocha, R.B. (1983): Atlasdes fossiles caractéristiques du Lias portugais. 11.- Carixien.Ciencias da Terra (UNL), 7: 187-254.

Odin, G.S. , Galbrun, B. & Renard, M. (1995): Physico-chemical tools in Jurassic stratigraphy. In: 3rd InternationalSymposium on Jurassic stratigraphy, Poitiers, 1991, (E.Cariou & P. Hantzpergue, Eds.). Geobios, M.S. 17 (1994):507-518.

Parkinson, D.N. (1996): Garnrna-ray spectrometry as a tool forstratigraphical interpretation: examples from the westemEuropean Lower Jurassic. In: Sequence Stratigraphy inBritish Geology (S.P. Hesselbo & D.N. Parkinson, Eds.).Geological Soco Spec. Publ. 103: 231-255.

Phelps, R. (1985): A refined ammonite biostratigraphy for fueMiddle and Upper Carixian (Ibex and Davoei zones, LowerJ urassic) in N orth- West Europe and stratigraphical details offue Carixian-Domerian boundary. Geobios, 18: 321-362.

Quesada, S., Dorronsoro, C., Robles, S., Chaler, R. & Grimalt,J.O. (1997): Geochemical correlation of oil from theAyoluengo field to Liassic black shale units in thesouthwestem ~asque-Cantabrian Basin (northem Spain).Org. Geochem., 27: 25-40.

Seilacher, A. (1971): Preservational history of ceratite shells.Palaeontology, 14: 16-21.

Sethi, P.S. & Leithold, E.L. (1997): Recurrent depletiolÍ ofbenthic oxygen with 4th-order transgressive maxima in theCretaceous Western Interior Seaway. Palaeogeogr.,Palaeoclimatol., Palaeoecol., 128: 39-61.

Soares, A.F. & Duarte, L.V. (1997): Tectonic and eustaticsignatures in the Lower and Middle Jurassic of theLusitanian Basin. Abstracts IV Congreso Jurásico de Espa-ña, Alcañiz: 111-114.

Soares, A.F. , Rocha, R.B. , Elmi, S. , Henriques, M.H.P. ,Mouterde, R. , Almeras, Y. , Ruget, C. , Marques, J .F. ,Duarte, L.\!. , Carapito, M.C. & Kullberg, J.C. (1993): Lesous-bassin nord lusitanien: histoire d'un rift avorté (Trias-Jurassique moyen, Portugal). C.R.Acad. Sci. Paris, 317:1659-1666.

Watkinson, M. Ph. (1989): Triassic to Middle Jurassic

Rev.Soc.Geol.España, 13(1),2000

Page 13: AMMONITES FROM LUMPY LIMESTONES IN THE … · PLIENSBACHIAN OF PORTUGAL: TAPHONOMIC ÁNALYSIS AND PALAEOENVIRONMENTAL IMPLICATIONS ... Palabras clave: tafonomía aplicada, estratigrafía

AMMONlTES, LOWER PLIENSBACHIAN, PORTUGAL 15

sequences from the Lusitanian Basin Portugal, and their Wright, V.P. & Wilson, R.C.L. (1984): A carbonate submarineequivalents in other North Atlantic margin basins. Thesis, fan sequence from the Jurassic of Portugal. JOU1: SedimentoThe Open University, Milton Keynes, 390 p. Petrol., 54: 394-412.

Wilson, R.C.L. , Hiscott, R.N. , Willis, M.G. & Gradstein, F.M.(1989): The Lusitanian basin of west central Portugal:Mesozoic and Tertiary tectonic, stratigraphic and subsidencehistory. In: extensional tectonics and stratigraphy of theNorthAtlantic margins, (A.J. Tankard & H. Balkwill, Eds.), Manuscript received 30 August 1999Ame1: Assoc. Petrol. Geol., Memoir, 46: 341-361. Accepted 1 December 1999

.

t

~

.

Rev.Soc.Geol.España, 13(1), 2000


Recommended