+ All Categories
Home > Documents > An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du...

An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du...

Date post: 16-Dec-2015
Category:
Upload: marquise-amison
View: 218 times
Download: 0 times
Share this document with a friend
Popular Tags:
27
An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1 , Miao Li 1 , Zhonghai Lu 2 , Minglun Gao 1 , Chunhua Wang 1 1 Hefei University of Technology, Anhui Province, China 2 KTH Royal Institute of Technology, Sweden 2014.09.17
Transcript
Page 1: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

An Analytical Model for Worst-case Reorder BufferSize of Multi-path Minimal Routing NoCs

Gaoming Du1, Miao Li 1, Zhonghai Lu2, Minglun Gao1, Chunhua Wang1

1 Hefei University of Technology, Anhui Province, China

2 KTH Royal Institute of Technology, Sweden

2014.09.17

Page 2: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Outline

1Motivation2 Concepts 3Method 4Evaluation

2014-09-17

Page 3: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Multi-path Routing NoC

2014-09-17

1 2 3

4 5 6

7 8 9

R

R f 1

f2

• Prospects– Minimize network congestion

and packet delay– Improve the load balance– Reduce power consumption – Fault tolerant routing

• Problem– Out of order

P1P1P2P2P3P3P4P4

Page 4: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

disadvantage

The area overhead.Low hardware utilization.

With worst-case analysis, it can reduce the reorder buffer size with proper flow splitting configuration effectively.

Out of Order

2014-09-17

[1] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A method for routing packets across multiple paths in NoCs with In-Order delivery and Fault- Tolerance gaurantees,” VLSI Design, vol. 2007, pp. 1–11, 2007.

• Solution 1: flow control– Prospects

• Easy to control• Less hardware overhead

– Side effect• More congestion• Longer packet delay

Out of order packets

Packet in need

Page 5: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

P4 P3

NI

RB

(b)

...

R1

R4

B

LUTR2

R3

P1P2

...

...

Out of Order

2014-09-17

• Solution 2: reorder buffer– Prospects

• Less on chip congestion• Less re-arbitration time

– Side effect • Area overhead

[11] M. Daneshtalab, M. Ebrahimi, P. Liljeberg, J. Plosila, and H. Tenhunen, “Memory-efficient on-chip network with adaptive interfaces,” Computer-Aided Design of ntegrated Circuits and Systems, IEEE Transactions on, vol. 31, no. 1, pp. 146–159, 2012.

Out of order packets

Packet in need

Page 6: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Reorder Buffer Size

• Traditional approaches– By experience– No formal method– Too pessimistic

• Our target– A general analytical model for worst-case reorder

buffer size– A method to diminish the reorder buffer size

• Traffic splitting proportion

2014-09-17

Page 7: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Outline

1Motivation2 Concepts 3Method 4Evaluation

2014-09-17

Page 8: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

NoC Architecture

• Assumption– Non-intersecting sub-flows– Sub-flow number: 2– Delay bounds for sub-flows already known

2014-09-17

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

PEReorder Buffer

NI

Counter

Packet IDLook-up

Table

110

0Packet In

Packet Out

Page 9: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Network Calculus Basics Results

2014-09-17

Assume: Linear arrival curve

Latency-Rate (LR) server

)()( TtRt

)()( trbt

Rb

TD

V

t

)(t)(t

b

r

R

T

βF : α F*: α*

input outputB

D

The delay bound is

Page 10: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Outline

1Motivation2 Concepts 3Method 4Evaluation

2014-09-17

Page 11: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

General Analysis

• Srb Size of reorder buffer• D1 Packet delay in path f1

• D2 Packet delay in path f2

• △ t Packet injection interval

2014-09-17

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

• Ideal case– No contention

Page 12: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Worst-case Reorder Buffer Size

2014-09-17

Definition 1

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

Page 13: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

NC Model for Multi-path Routing

2014-09-17

tR*1 tR1

1S

tR*2 tR2

2S

t1 t*1

t1

t2 t*2

t2

Taffic Splitting Traffic

Convergence

Tag Flow

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

• Step 1– Non-intersecting sub-flow identification

– Traffic split proportion calculation

Page 14: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

NC Model for Multi-path Routing

2014-09-17

tR*1 tR1

1S

tR*2 tR2

2S

t1 t*1

t1

t2 t*2

t2

Taffic Splitting Traffic

Convergence

Tag Flow

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

• Step 2

– Equivalent Service Curve (ESC) Calculation

• R: equivalent minimum service rate

• T: equivalent maximum processing latency [2] G. Du, C. Zhang, Z. Lu, A. Saggio, and M. Gao, “Worst-case performance analysis of

2-d mesh nocs using multi-path minimal routing,” in ISSS+CODES 2012.

Page 15: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

NC Model for Multi-path Routing

2014-09-17

tR*1 tR1

1S

tR*2 tR2

2S

t1 t*1

t1

t2 t*2

t2

Taffic Splitting Traffic

Convergence

Tag Flow

1 2 3

5 6 7

9 10 11

4

8

12

13 14 15 16

f (1,16)

f2 f1

• Step 3

– Calculation of Worst-case Reorder Buffer Size.

Page 16: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Algorithm

Step 1

Path identification

2014-09-17

Step 2

ESC calculation

Step 3

Worst case reorder buffer size calculation

Page 17: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Outline

1Motivation2 Concepts 3Method 4Evaluation

2014-09-17

Page 18: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Evaluation

• Experiments targets– △ D ~ ?– ↓ ?

• Experiments methods– Synthetic pattern– Industry pattern

2014-09-17

Page 19: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Flow type arrival curve Service curve

Target flow

Contention flows

Experiments Setup

2014-09-17

1 2 3 4

65

14 15 16

1211109

87

13

f(1,16) f(2,12) f(3,8)

f(6,11)65

14 15 16

1211109

87

13

f1

f2 f4f3

1 2 3 4f1

f4f3 f2

1 2 1612843

f2

f1

1 5 161514139

f(1,16)

f(2,12) f(3,8) f(6,11)

Page 20: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Delta Delay VS. Buffer Size

• The bigger the delay difference, the larger the reorder buffer size

• To balance the traffic & proper path configuration

• Maximum reduction: 56.99%2014-09-17

Page 21: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Full Traffic Splitting

2014-09-17

• Target flow: full traffic splitting

• The more balanced traffic, the smaller the reorder buffer size

• Average improvement of 57.04%

Page 22: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Simulation

• Setup– Px =0.1

• Results– No packet loss

– Fully covered by analytical results

2014-09-17

Page 23: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Industry Case

2014-09-17

• Shorter long-path– Max hops: 3

• Less number of reorder buffers– Number of reorder buffers: 3

Page 24: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Node 4, 6, and 7

• Mapping 1– Less worst-case reorder buffer size– Shorter path delays

2014-09-17

Node 4 Node 6 Node 7

Page 25: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Total Size

• Mapping 2– Reduction of maximum 36.50% (76 packets)

– Average 29.20% (61packets)

– Minimum 22.12% (46 packets)2014-09-17

Page 26: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Summary

• Our analytical model– Reduce worst case reorder buffer size

• To choose proper sub-flows pairs• To alter traffic splitting proportion

– Explore mapping effects• Reorder buffer size

• Future work– To extend to more general cases

2014-09-17

Page 27: An Analytical Model for Worst-case Reorder Buffer Size of Multi-path Minimal Routing NoCs Gaoming Du 1, Miao Li 1, Zhonghai Lu 2, Minglun Gao 1, Chunhua.

Conclusion

2nd priority initiatives

1

2

3

4

5

Evaluate whether offer DT store more margin is possible

Together with other strong brands, communicate “Unilever” company brand more

Optimize our promotion pack allocation policy

Optimize island display in Northern area, pay more attention to season differences

Add more POSMs to more outlets. Using multiple ways to communicate with consumers

Thanks for your time

2014-09-17


Recommended