+ All Categories
Home > Documents > An Approach to the Design of Analog Fuzzy Logic Controllers in CMOS Technologies:

An Approach to the Design of Analog Fuzzy Logic Controllers in CMOS Technologies:

Date post: 19-Jan-2016
Category:
Upload: eve
View: 21 times
Download: 0 times
Share this document with a friend
Description:
LABORATOIRE DE MICROELECTRONIQUE BATIMENT MAXWELL B-1348 LOUVAIN-LA-NEUVE BELGIQUE. An Approach to the Design of Analog Fuzzy Logic Controllers in CMOS Technologies: Implementation, Test and Application Carlos Dualibe. - PowerPoint PPT Presentation
Popular Tags:
52
UCL- June 2001 1 LABORATOIRE DE MICROELECTRONIQUE BATIMENT MAXWELL B-1348 LOUVAIN-LA-NEUVE BELGIQUE An Approach to the Design of Analog Fuzzy Logic Controllers in CMOS Technologies: Implementation, Test and Application Carlos Dualibe
Transcript
Page 1: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 1

LABORATOIRE DE MICROELECTRONIQUEBATIMENT MAXWELL B-1348 LOUVAIN-LA-NEUVE BELGIQUE

An Approach to the Design of

Analog Fuzzy Logic Controllers in CMOS Technologies:

Implementation, Test and Application

 Carlos Dualibe

Page 2: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 2

FUZZY LOGIC: Formalism for codifying Human Reasoning within a Numerical Framework.

FUZZY SYSTEM: Model-Free Universal Approximator. Structured Knowledge Base (“if-then” rules)

Usefulness: To solve problems that are either difficult to tackle mathematically or where its use provides improved performances and/or simpler implementations.

Engineering Applications : -Process and Environmental Control(examples) -Robotics and Automation -Automotive Industrial Applications -Signal and Image Processing

-Power Electronics-…………

Page 3: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 3

10 100 1000

ns

s

ms

s

ElectronicSystems

Micro-mechanicalSystems

MechanicalSystems

ExpertSystems

Complexity (fuzzy rules)

Syst

em r

espo

nse

tim

e

10 100 1000

ns

s

ms

s

Complexity (fuzzy rules)

Syst

em r

espo

nse

tim

eDedicated ASICs

Fuzzy Coprocessors

General Purpose Processorswith fuzzy support

32-bit microcontrollers

16-bit microcontrollers

8-bit microcontrollers

a) b)

Hardware Implementation Choices for Fuzzy Controllers

Allocation of the applications in the space [Complexity ; Time Response]

Allocation of hardware solutions in the space [Complexity ; Time Response]

Intended Target Applications: Signal and Image Processing, Power Electronics

Page 4: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 4

Why Analog?

Main Goals of this Work•Comprehensive study of the Analogue Fuzzy Operators

•Design and Test of Programmable Architectures for Analogue Fuzzy Controllers

Secondary Goal: •To undertake preliminary studies of an embedded Fuzzy Logic application

in the field of Signal Processing.

•Fuzzy Processing is analog in ‘nature’.•Usual applications demand reduced accuracy.•Low Power and/or High Speed•Reduced Complexity: Small area – No need of A/D and D/A

to interface Sensors and Actuators•Ideal for Embedded Subsystems.

Page 5: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 5

FuzzificationInterface

DecisionMaking Unit

DefuzzificationInterface

Inputs Outputs

Fuzzy Controller Architecture and Fuzzy Algorithms

Suits optimal for Hardware Implementation !

R1:Building Blocks:

•Membership Functions

•T-Norms ; T-CoNorms

•Consequents

•Defuzzifiers

R2:

Fuzzy Controller

x* y*

x y

w2

x y

w1

(x*)A2μ

(y*)B2μ

(y*)B1μ

(x*)A1μ

IN PU T S

z

z

C

C

C 2

C 2

*C2 *C1

z

Z dz μ(z) Z dz μ(z) z

*z

z*

z1= a1 x* + b1 y* + c1

z2= a2 x* + b2 y* + c2

w2 w1z2 w2 z1 w1 *z

A ntecedent part of the rules Consequent part of the rules

T-N orm = M in M A M D A NI TA K A G I-SU G EN O

(z)zμ

Page 6: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 6

I1 I2

DA1 DA2

Mc1 Mc2

V

M1 M2

IoVin Vk

Md1 Md2

Md4Md3

Md5

Md6

Ip Vin- Vin+

Vdd

Vout

Vs

Vds

V k V in [V ]

I [A ]

Io

Io2

I2 I1

2

gmαtg

VsVTp - Vdd(W/L) 2

(W/L)

(W/L) 2

(W/L)VinVinVds

Md1

Md5

Md2

Md5-

Vds2-M1L

WμCox gm

Vds

Circuit : M1, M2Triode Non-Symmetric Diff. Amp. DA1,DA2

(W/L)Md1 > (W/L)Md2

Transfer Curve: Slopegm CrossoverVk

Membership Functions Circuits: -Trapezoidal Shapes Based on Triode Transconductors

TYPE –I: Differential Regulated Cascode Triode Transconductor

Page 7: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 7

Transfer Curve: Slopegm KneeV2=Vk + n Vds/2

Vds

Circuit : M1TriodeM2 Saturated

Membership Functions Circuits (2):

TYPE –II: Single Regulated Cascode Triode Transconductor

Vin [V]

I1 [A]

Io

I1

V1 V2 V3 V4IogmM1

I1

I2

DA

Mc1

VM1 M2

Vk

Vdd

Vin Io

a) b)

gmM1 << gmM2

tg = gmM1

n = Subthreshold slope factorM2: Large size transistor aimed for setting a conduction threshold

Page 8: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 8

Iout1

Io

Io2

Vk1 Vk2 Vin Vk1 Vk2 Vin

Iout2

Io

3Io2

2Io

gm22

gm12

gm22

gm12

a) b)

gm1 gm2

Vk1 Vk2Io IoVin

Iout1 Iout2

Complementary FMF (CFMF) Direct FMF

Membership Functions (3) : Four Independent Parameters 2 slopes (gm1, gm2); 2 Crossover (Vk1 , Vk2)

Page 9: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 9

Analogue Programming: Electrically Tunable Slopes by setting Vds

Discrete Programming: large slope range is optimally allowed by a set of (W/L)s:

Small Slopes can be set by using small Vds rather than very long channel Transistors

Increased Current Consumption (Differential Amplifiers at the Regulation loop)

More sensible to Mismatch (Triode transistors Vds)

min

maxminmax

gmgm

W/LW/L

2

mingm

maxgm

minW/LmaxW/L

Triode Saturated

Membership Functions Circuits (4): Comparison against saturated transconductor

i+ i-

Iovi+ vi-

Page 10: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 10

Vin

Vk1Vk2Vk3Vk4

Io

I1I2I3I4I5

Vs1Vs2Vs3Vs4

VddVddVdd

Membership Functions Circuits (6): Full Programmable Compact Fuzzy Partition

(Based on [1])

[1] Willamosky B. et al, ANNIE’96

SlopesVs1,…Vs4 - Crossover points Vk1<Vk2…<Vk4

SPICE simulation for a 7-label

Circuit: Io= 10A, Vdd=5V

Reduced number of transconductors

Reduced Current Consumption

Cumulative mirroring errors and delay due to cascading

Page 11: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 11

T-Norm

or

T-CoNorm

T-Norm and T-CoNorm circuits: General Requirements

In1

InN

Out

• Multiple inputs (N)

• O(N) Complexity: Size and consumption proportional to N

• Parallel Processing: No cascade tree of binary operators

• Inputs Transparency: Same load at each input - Same input/output delay

Circuits: - Improved Lazzaro’s WTA-MAXIMUM

- Mixed-Mode O(N) MAXIMUM

- O(N2) LTA-MINIMUM

- O(N) LTA-MINIMUM

Page 12: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 12

T-Norm and T-CoNorm (1): Lazzaro’s WTA-MAXIMUM

M1

Imax

Mc

Mo

Vdd

Vbias

I1IN

M1

Imax

Vdd

I1IN

Mo

a) b)

M2

M1

M2 M2M2

M1

Mc Mc

•N current-controlled voltage-sources ( M1, M2 ) ‘fighting’ in parallel

• Propagation error Early effect in M2 ( Mo)

• Discrimination error: Early effect in M2 - inversion degree of M1

• Mismatch error: VT and of M2, Mo

Concept Improved Version

Systematic Errors: ~1.6%

Page 13: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 13

Ids

Vgs

M1 MOST

Vt

0 Emax

M1

Imax

EE

I1=5A I2=pulse 3A to 7A - 100ns

T-Norm and T-CoNorm (2): Lazzaro’s WTA-MAXIMUM

Delay & Undershot Improvement!

E

Page 14: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 14

T-Norm and T-CoNorm (3): Mixed-Mode MAXIMUM

I1

M1A

C

M2

Mpc

IN

M1A M2

Mnc

Iout=MAX(I1....IN)

Id Id

MnMn

MpMp

Ms

V-V+ Vout

IQ Ip

Vdd

MAX_1

12

N

Mpc_1

MAX_k

12

N

Mpc_k

CFMF

M1 RULE_1

RULE_k

WIRE

Ii

Imax_1

Imax_k

Distribution of Input Signals

achievable in voltage-mode !!

•Set of N Source Followers ‘fighting’ in parallel

•Propagation error: Voff = offset of A

•Discrimination error: Ao = DC gain of A

•Mismatch errors: due to Voff mainly

Systematic Errors: ~2.3%

Page 15: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 15

T-Norm and T-CoNorm (4): New O(N2) LTA-MINIMUM [2]

[2] Dualibe, Jespers, Verleysen,

IEEE ISCAS’2001

I1 I2

Imin

Mp1

Mp4

Vdd

Mn1 Mc

1:1

1:1 1:1

1:1

I1 I2

Imin

Mp4

Vdd

Mn1 Mc

1:1

1:1

1:1

Vo1 Vo2

V1 V2 V3

a) b)

V4

Vout

Mn2 Mn2

Mp5Mp6

Mp3Mp2

Mp5

Mp2

Mp6

Mp3

2-Input LTA & MINIMUM 2-Input MINIMUM

• Parallel comparison between input currents -Vdd limits the number of inputs

•Propagation error: Due to the Early Effect in transistors Mp

•Discrimination error : with the impedance of internal nodes (i.e.: V2)

•Mismatch errors: Associated with mirrors Mn and Mp

Systematic Errors: ~3%

Page 16: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 16

T-Norm and T-CoNorm (5): New O(N) LTA-MINIMUM [3]

[3] Donckers, Dualibe, Verleysen,

IEEE ISCAS’2000

Ii Iop

Ion

Imin

VoiIoi

Cell-i Common Cell

Nc

M1

M2

M3

M4

Mn

Mp

Vdd Ii Iop

Ion

Imin

Ioi

Cell-i Common Cell

Nc

M1

M2M3

M4

Mn

Mpc

Vdd

NbM5

M6

V5V4

V1V2

a) b) c)

Ii

Mpi

Concept Improved Version with current feedback Ii Mirror

• N current-controlled voltage sources (Cells-i) ‘fighting’ in parallel

• Current feedback improves accuracy of the MINIMUM (~ enhanced Wilson mirror)

•Systematic error (~0.4%)

•Mismatch error: due to VT and of M5, M6

Page 17: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 17

Defuzzifiers : Closed Loop Defuzzifiers

G1

I1

mGm

Im

Gi = f (Ii); for i = 1....m

Gi

Gi αiVo

m

FMF T-Norm

Io = Ii = constant

I1

Im

Iout= i Ii

Feedback control node

a) b)

Ii

Ii αi IoIi αiIout

singleton

I1

mIm

singleton

Voltage mode Current mode• Complexity increases with the

number of rules

• May need frequency compensation

due to feedback: speed

• FMF or T-Norms’ gain must be controlled

•May need frequency compensation

due to feedback: speed

Page 18: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 18

Defuzzifiers(2): Open Loop Defuzzifiers

m

I1

Im

D I V

i I i

I i

V o

Io u t = i I iN

I1 N Im N

R 1 R mI1 Im

Io = I iN = C o n stan t

m Im N I1 N

m

cu rre n t m irro r (s ing le to n )

s in g le to n

IiN = I i H (I1 ,I2 ..I i. .Im )

a ) b )

Ii

Ii αi Vo

Pseudo-Normalizer Divider

•Complexity may increase with the number of rules (i.e.:R1….Rm)

•Only one extra mirror per rule to compute denominator

Page 19: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 19

Defuzzifiers(3): Open Loop Defuzzifier with Divider

‘Common Weighting’ strategy for digitally programmable singletons.

T-Norms

D/A

DIV.

Defuzzifier

C1n-1 C1o

I1

(n+1) Curr. Mirrors Im

Ii

Vo

Ii αi

(n+1) Curr. Mirrors

Cmn-1 Cmo

: 1 : 1 : 1 : 11

Ii

to DIV (i) to D/A

i

2 : 1 4 : 1 2n : 1

Vddm

D/Ato DIV (ii)

n-mirrors

• ‘n’ mirrors per singleton

•Silicon surface and input capacitance of each singleton result much smaller than in the ‘local weighting’ approach (i.e.: (2n/n) times reduced)

•Only one D/A- Can be optimized to get desired accuracy

•Simplicity

Page 20: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 20

NnNd

Defuzzifiers(4): Novel Two-Quadrant Analog Divider [4]

M1 M2 M3

M4

M5

M6

M7M8

M9

INID

Vdd

Vb1 Vbo Vout

I1 I2 I3

1 : 1 : k

• M1= M2=M3triode

Input Nodes Nd and Nn become resistive!

Thus: Vout-Vbo= (Vb1-Vbo) (IN/ k ID)

•Current/input voltage/output IDEAL!

•Systematic errors: - Mainly due to mobility reduction in triode transistors M1, M2, M3. - Gain error and offset can be neglected if cascoded PMOS mirrors are used (M7, M8, M9).

•Mismatch errors: -For small current ID, strongly influence of mismatch of VT between transistors M4,M5,M6.

[4] Dualibe, Verleysen, Jespers, IEE Electronics Letters, 1998.

Page 21: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 21

a) b)

(Vou

t-V

bo)

[V

]

IN [A] ID [A]

rela

tive

erro

r

ID=10A

IN=8A

Defuzzifiers(5): Two-Quadrant Analog Divider-Measurement

(Vout-Vbo) vs. IN:

0< IN <10A; 10A< ID <30A

Relative errors vs. ID:

2 A < IN < 8A; 10A< ID <30A

Non-Linearity: 1% ~ 100% swingoutput maximum

deviation maximumNL

(+) Measured

(-) Calculated

Page 22: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 22

Defuzzifiers(6): Comparison Against other DividersWiegerink R., Kluwer A. P., 1993

Huertas et al, Trans. Fuzzy Systems, 1996

Current-to-voltage converter Divider

Id-Ic

Ib-Ia v2)(v1

β

β'V2V1Vo

• Need extra I-to-V converter•Differential currents inputs•NL = ~1% (only divider)

2IB

IxIyIout2Iout1Iout

• Inputs must be supplied at different nodes at least twiceAdditional mirroring errors•NL = ~1%

Page 23: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 23

Defuzzifiers(7): Electrically Programmable Singletons

M1 M2 M3

M4M5

M7M8

M9

Iout

Iin

Vdd

Vb1 Vbo

1 : 1 : 1

1:B

M10

M11

M6

Vb2

a) b)

Iin Vbo)-(Vb1

Vbo)-(Vb2 B Iout

New Electrically Tunable Linear Current-Mirror

Spice Simulation: 1V<Vb2<1.5V

M 1 M 2

Iin Iout

V c1 V c2 V ref2V c2

Iin VTn)(Vref1

VTn)(Vref2

β

β Iout

M1

M2

V ref1 V c1

Other Approach:

Sasaki et al, 3th Int. Conf. On Industrial Fuzzy Control and Intelligent Systems

1993

Page 24: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 24

Estimation of the global accuracy of the Controller

VinCFMF T-Norm

Iout Iout1

Consequent + D/A

Mirror 1:1

DividerVout

fo f1

f2

f3

f4

IN

ID

σ a σ a σ a σ a σ a σ a σ 2FMFFMF

2IoIo

2Norm-TNorm-T

2mirrormirror

2D/AconsD/Acons

2divdiv

2Vout

a) b)

Unrealistic! Divider

Singletons +D/A

Mirror

Only One Fired Rule: 2% < Vout/Vout <3%

Vout %

Page 25: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 25

Estimation of the global accuracy of the Controller(2)

a) b)

Vout for: 0.1< 1 < 0.9

2=0.9

%: (+) Divider

(o) CFMF+T-Norm+Io

Two Fired Rules in a complementary way: 2.5% < Vout/Vout <3.5%w

u

S M B

S

Z

F

25

Page 26: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 26

• Standard CMOS Technologies Mixed Signal : Analogue Processing + Digital Programming

• Current-Mode vs. Voltage-Mode: Current Mode Voltage Mode

Analog Computation:…………. + -

Signal Routing…….:…………..- +

Chip external Interface:……….. - +

MIXED MODE

• Building Blocks Interface: Avoid the use of extra V-to-I or I-to-V convertersImproves Delays and Accuracy.

• Modularity: Share operators (i.e: Membership Functions Circuits, Common weighting)

•Transistors Sizing: Large size Good MatchingPoor Integration Density (dedicated controllers)

Small size Poor MatchingGood Integration Density (programm. controllers)

Programmability can help to relax sizing requirements for a given accuracy!

Programmable Fuzzy Architectures: General Guidelines

Page 27: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 27

A 9-Rule 2-Input 1-Output Programmable Fuzzy Controller [6]

CFMF21 CFMF22 CFMF23

CFMF11 CFMF12 CFMF13

Digital bus for CFMFsprogramming

Vin1

Vin2

MAX

MAX (n+1) Curr. mirrors (1:1)

(n+1) Curr. mirrors (1:1)

Cn-1 Co

D/A

DIVVo

1

9

Digital bus for singletonsprogramming

Rules-Evaluation

Ii i * Ii

+_

+_

2

Fuzzifiers & Rules Set Defuzzifier

2

singleton

I1

I9

Io

Io

•Zero-Order Controller-Fixed Number of Rules (Grid Partition)•Complementary MF Labels (Type II – Three per input)• T-Norm: Complemented Lazzaro’s MAXIMUM•Defuzzifier: ‘Common weighting’•Discrete Programming of Antecedents and Consequents •Intended for embedded applications

[6] Dualibe, Jespers, Verleysen, IEEE ISCAS’2000

Page 28: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 28

Iout

DA1

Mc1

VM1 M2

IoVin Vk

Is Is 2Is

s2 s3

Vs1Ms1

Vdd

Vdd

Vdd

Vs1

Vdd

MR1

p4

16Ip

Vk

R

MR2

MR3

p3p2p1p0

Ip 2Ip 4IpIp 8Ip

s1s0

Is

M1_0 M1_1 M1_2

S2 S3

Vin

Mp1

Mp2

9-Rule Fuzzy Controller (1): Membership Function Programming

Linear Resistor

•Local setting of analog parameters

•s0…..s3Slopes (2x4-bit)

•p0….p4Knees (2x5-bit)

•Measured CFMF Type-II:

•Io=10A ; Vdd=5V

•Input Range: 1.5V<Vin<4.5V

Half CFMF Type-II

Page 29: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 29

9-Rule Fuzzy Controller (2):Test Result

RMSE _max Mean()

27mV (2.7%)

62mV (6.2 %)

35mV (3.5%)

TARGET MEASURED

Relative Error Surface Relative Error Distribution

Settling time (90%):

S.Signal: ~190ns

L.Signal: ~450ns

Page 30: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 30

9-Rule Fuzzy Controller (3):Comparison

[KeSc93] [MaFr96] [GuPe96] [BaHu98] [VaVi99] [DuVe00]

Complexity 9rules@2input

@1output

9rules@2input

@2output

13rules@3input

@1output

9rules@2input

@1output

16rules@2input

@1output

9rules@2input

@1output

Technology 3 Bi-CMOS 0.7 CMOS 2.4 CMOS 2.4 CMOS 1 CMOS 2.4 CMOS

Power

Consumption no data 44mW@5V 550mW@10V 20mW@5V 8.6mW@5V 13.4mW@5V

Input to Output

Delay no data 550ns 160ns 2000ns 471ns 450ns

Precision no data RMSE: 3.33% no data no data MAX: 4% MAX: 6.2%

Interface

(inputs@outputs)

currents@

currents

voltages@

voltages

voltages@

voltages

voltages@

voltages

voltages@

currents

voltages@

voltages

Area 13.75mm2 1.9mm2 16.2mm2 1mm2 1.6mm2 4.5mm2

Programmability

MF Knees:

MF Slopes:

Consequents:

fixed

fixed

fixed

on chip (6b)

fixed

on chip (6b)

off chip

on chip (4b)

off chip

on chip (6b)

on chip (2b)

on chip (4b)

off chip

fixed

on chip (4b)

on chip (5b)

on chip (4b)

on chip (5b)

Page 31: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 31

Application Example: Fuzzy Control of a DC/DC “Buck” Converter[9]

Vin

QL

IL

CVout

PW M

D

Dp

Di

E

IL

Vout

Vreft

0

RL

dt E(t)DiE(t))Dp(IL(t),D(t) PWM “duty cycle”:

Dp, Di: Highly Nonlinear functions Small Steady-State Error and Fast Settling Time for RL Changes

([9] Franchi E. et al., IEEE JSSC, June 1998)

Page 32: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 32

Application Example(2): Fuzzy Control of a DC/DC “Buck” Converter[10]

DP: 2 Inputs-1 Output 4 Rules

DI: 1 Input-1 Output 4 Rules

Optimal Control Surfaces

([10] Rashid M., Power Electronics-Circuits, Devices and Applications, Prentice Hall, 1993)

Page 33: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 33

AntecedentParameters RAM

ConsequentParameters RAM

Configuration RAM

CFMFs Banks Switch Matrix

CFMF-1 CFMF-2

CFMF-3

T-Norms Singletons Columns

MAX-1

MAX-2

MAX-M

Vin1 Vin2 VinN

INPUTS

D/A1 D/A2 D/AQ

Div1 Div2 DivQ

V01 Vo2 VoQ

Zero-Order OUTPUTS

First-Order OUTPUT

QQ

QCFMF-F

N Q

A General-Purpose Programmable and Reconfigurable Fuzzy Controller

N 5; Q 3; M 27; F 16

•CFMF type-II

•Programmable MAXIMUM mixed mode O(N)

•SWITCH MATRIX: ‘smartly’ wired

Page 34: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 34

D/A_0 D/A_1 D/A_2

Div_0 Div_1 Div_2

Vbo

Vb1

Vin1 Vin2

a0i a1i a2i M-Rules

Vout0 Vout1 Vout2 Vout

Rule-i

Singletons Column - 0 Singletons Column - 1 Singletons Column - 2

sw1 sw2

General-Purpose Controller (2): First-Order Output Configuration

Mi1

INID

V1Vbo

Vout

Vdd

V2VQMi2MiQ

1:1

1:1

1:1Q:1

Q:1

Q:1

INID

Vdd

Vb1 Vbo Vout

Divider

Novel High-Input Impedance Voltage Mode Adder:

1...Mifor Vin2; a2i Vin1 a1i a0i Ci

Vin2Ii

Ii a2iVin1

Ii

Ii a1i

Ii

Ii a0i

Ii

Ii CiVout M

1

M

1M

1

M

1M

1

M

1M

1

M

1

Consequent Rule-i

DefuzzifiedValue

Q

1iVbo)(Vi

IDIN Vbo)(Vout

Page 35: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 35

General-Purpose Controller (3): Zero-Order Test Result

Surface RMSE _max Mean()

a) 80mV (4%) 180mV (9 %) 64mV (3.2%)

b) 94mV (4.7%) 240mV (12 %) 75mV (3.75%)

Settling time (90%):

S.Signal: 570ns

L.Signal: 1100ns

Rules Map Measured Surface Relative Errors

a)

b)

Page 36: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 36

General-Purpose Controller (4): 4-rules First-Order Controller Test Result

a) b)Measured CFMF Measured Surface

a) b) c)

ANFIS Fitting: A comparison

•1st-Order; 4-rules

•28 parameters

•RMSE: 0.8%

•Zero-Order; 4-rules

•20 parameters

•RMSE: 2%

•Zero-Order; 9-rules

•33 parameters

•RMSE: 1.4%

Page 37: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 37

3 4 5 6

7

8 9

10 11 12 13

13 1

2

COMPARISON

[FaMa94] [FrMa98] Our Approach

Technology 0.8 CMOS 0.7 CMOS 2.4 CMOS

Processing Mode Sampled Time Continuous Time Continuous Time

Complexity

Mamdani:

32rules@8input

@4output (max)

Zero-Order Sugeno:

15rules@3input

@1output (max)

Zero and First-Order Sugeno:

27rules@5input

@3output (max)

Power supply Vdd=5V Vdd=5V Vdd=5V

Power

Consumption no data 44mW (2.93mW/rule) 63mW (2.33mW/rule)

Input to Output

Delay ~2S ~600ns ~1.1s

Accuracy no data RMSE < 3% RMSE < 4.7%

Interface

(inputs@outputs)

digital@

digital

voltages@

voltages

voltages@

voltages

Input Range 8-bits 2V 3V

Output Range 6-bits 2V 2V

Area 70mm2 33mm2 (2.2mm2/rule) 39.5mm2 (1.4mm2/rule)

Programmability

MF Crossover:

MF Slopes:

Consequents:

on chip(8b)

on chip(5b)

on chip (6b)

on chip (6b)

fixed

on chip (6b)

on chip (5b)

on chip (4b)

on chip (5b)

Total storing capacity needed

~3200 bits 16000 bits 909 bits

Page 38: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 38

-Same L (keep same Early)

-W W/2 ===>50% Area Reduction

!t!Improvemen Mismatch 50%LW

2VToA

21

2LW

1 4

2VToA

L*W

2*VToA

2VToσ

General Purpose Controller (6):Further Improvements

•Scaling to Modern Technologies: Cox Early AVTo

CMOS 2.4 50 A/V 10V/ 24mV

CMOS 0.8 100 A/V 10V/ 12mV A) Analog Circuits:

2VTo - Vgs LW Cox)(u

2n1Id

Same Vdd, VToSame Current

2 2

Silicon Area

Mismatch

B) Digital Circuits: theoretical scaling factor: (1/9). Let us assume (1/4.5).

Total Area Reduction: 39.5mm2 == 13.6mm2

Page 39: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 39

Time-Domain Signal Analysis Using Fuzzy Logic and its Application to Self-Adaptive Channel Equalization

t

S(t) y~S(t)

x~t

Signal 2D-Figure

Features Extraction

Reference Pattern

Fuzzy Decision Making

Assertions

Fuzzy Inference System

General Setup

Built-in ‘Oscilloscope’: inferred Assertions could be used for adaptation, detection, testing, etc.

Page 40: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 40

Continuous-Time Self-Adaptive Equalization based on the Eye-Pattern [8]: System Architecture

Adaptive Equalizing System Control Surface related to the Eye Pattern

• On-Chip Real-Time Scope: SIGNAL 2D-FIGURE (EYE PATTERN)

•Controller’s Decision Making : “Keep ACTUAL EYE within AREA TOLERANCE”

•Controller’s Output: EQUALIZER’S ZEROS PLACEMENT

A) B)E(s) = (s-z) (s+z)

[8] Dualibe, Jespers, Verleysen, IEEE ISCAS’2001

Page 41: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 41

Fuzzy Logic Controller : Rule Base and Input Partition

Vt

NB N Z P PB

NB

N Z

PPB

Vs

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

R20

R21

R22

R23

R24

R25

Area ToleranceBoosting must Increase Boosting must Decrease

•RULE BASE: 25-Rules controlling Equalizer Amplitude Boosting (5-labels per input)

•Area Tolerance: immunity to NOISE, RINGING, PULSE SHAPE, ETC

Page 42: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 42

Architecture of the Fuzzy Controller

•Zero-Order Sugeno :25 rules•Fuzzifiers: 5-Labels per input.•T-Norms: 2-input MINIMUM (O(N2) )•Defuzzifier: Averaged Weighted Sum•Discrete Programming of singletons (5-bits)

MIN MIN MIN MIN

Vs

Vt D/A

Div.

NB N Z P PB

NB N Z P PB

Fuzzy Partition Circuits

T-Norms Defuzzifier

(n+1) Curr. Mirrors (1:1)

Cn-1 Co

I1

(n+1) Curr. Mirrors (1:1)

Cn-1 Co

25 I25

Ii Ii αi

Vo

Page 43: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 43

5-Labels Fuzzy Partition Circuit

INB

Io

Vk1

IN

Vk2

IZ

Vk3

IP

Vk4

IPB

Vin

Ma

Mb

Mc

Vdd

•Chained differential pairs: low consuming, small area and compactness

•Vk1<Vk2<…..<Vk4 fix the crossover points

•Fixed slopes at mask level by transistors Ma size

SPICE simulation for Io=10A

Vin

Page 44: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 44

Fuzzy Controller Test Results

Measured

Target

Fuzzy Logic Controller

Technology: CMOS-2.4

Complexity: 25-Rules; 2-inputs; 1-output

Power Supply: 5V

Power Consumption:

4.4mW

Area: Analog: 2.9 mm2

Digital: 1.1 mm2

RMSE: 4.5%

Input/Output Delay (90% Steady State):

S. Signal: 380ns

L. Signal: 900ns

Page 45: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 45

•Use Tree Partition for the input space to minimize rules set ONLY 11 Rules

•Input Vs Compact 5-Label Fuzzy partition circuit

•Input Vt Six individual Membership Functions

R1 R2 R3

R4

R5 R6 R7

R8

R9 R10 R11

Vs

Vt

Fuzzy Controller: Improvement

Page 46: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 46

Amplitude-Boosting Gm-C Filter

Vin

Vout

C1C2gm1

gm2

gm5

gm4gm3

•gm1=gm3=gm5=gmmaxfix

•gm2=gm4tunable up to gmmax

Symmetric Zeros at:

gmmax

gm4Kz with ;

C1C2

gmmax Kz z2z1,

Bi-Quad Filter: A)

Phase

Amplitude

Theoretical Frequency Response

Page 47: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 47

New Full Electrically Tunable Triode Transconductor [9]

Transconductance:

Vbo)-(Vb1

Iz Bk

2

1gm

•Linear tuningIz

•Phase error < 2°M1 M2 M3

M5

M8M9

Iz

Vb1 Vbo

Vin+

M11

Iout+M6

M10

M12

M14

M16

Iout-M13

M15

Vin-

M4

M7

M1 M2M3

M4

M5

M6

M7M8

M9

INID

Vb1 VboVout

Vdd Vdd

I+I-

1:BB:1

a) b)

k : 1 : 1 : k 1 : 1 : k

Transconductor: Divider:

Vin+

Iout+

Io

Vin-

Iout-

Io

IL

Io

Io

Iogm

Vout+Vout-

Vout- Vout+VCM

Vdd Vdd

VCMcnt

Vbiasal

+

+

Mal1

Mal2

Mal3

Mal4

Me1 Me2 Me3 Me4

Me5

Me6

Me7

Me8

a) b)

-

-

CMFB with adaptive Bias Io [10] Improved common-mode voltage stability upon tuning.

CMFB

[9] Dualibe, Jespers Verleysen

IEEE ISCAS’2001 [10] DeLima, Dualibe, IEEE ISCAS’2000

Page 48: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 48

Equalizing Filter Test Results

BiQuad Gm-C filterTechnology: CMOS-2.4

Power Supply: 5.5V

Power Consumption:

22.6mW (nominal)

(Iz=25 A )

Area: 5.3mm2

Max. Boost : 30dB (@7Mhz.)

Tuning range: 15A< Iz < 35A

Measured AC Response

Page 49: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 49

Cable Equalization (simulations)

a) b)

Signals for L=360mFs = 5Mb/s

Kz evolution forL=120, 240, 360m

Eye Pattern: before and after the equalizer

Cable: CAT5 UTP

A1) A2) B1) B2)

Page 50: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 50

Adaptation Performance for Noisy Channels

a) b)

Noise: Mean=0 -Variance=0.03

Our Approach Widrow [85]

Kz Evolution during adaptation

Page 51: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 51

Self-Adaptive Equalization: Conclusions

Fuzzy Logic Controller

Equalizing Filter

•Robust Adaptive Equalization: Area Tolerance filters out noise, ringing, etc.

•Fuzzy Logic Allows easily the Analog Implementation of highly non-linear control functions.

•Time-Domain Signal Analysis using Fuzzy Reasoning = On-Chip ‘Oscilloscope’ Applications beyond Channel Equalization topic: ………detection, on-chip analog testing, etc

Page 52: An Approach to the Design of  Analog Fuzzy Logic Controllers in CMOS Technologies:

UCL- June 2001 52

•Systematic Approach for Analogue Non-Linear Synthesis.

•Very Easy to Understand!

•Available Optimization and Design Tools (i.e.: ANFIS).

•Invariant Network Structure independent on the function to synthesize (i.e: “if-then rules”).

•Possibility of programmable devices built by standard blocks (Fuzzifiers, Inference Operators and Defuzzifiers).

Fuzzy Logic must take a place in the Toolbox of Analogue Designers for the synthesis of non-linear circuits!!

CONCLUSIONS: Fuzzy Logic & Non-Linear Analogue Design


Recommended