+ All Categories
Home > Documents > An Exploratory Model of Solar Influence on Stratospheric...

An Exploratory Model of Solar Influence on Stratospheric...

Date post: 15-Sep-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
15
An Exploratory Model of Solar Influence on Stratospheric Dynamics Alexander Ruzmaikin John Lawrence & Cristina Cadavid
Transcript

An Exploratory Model of Solar Influence on Stratospheric

Dynamics

Alexander RuzmaikinJohn Lawrence & Cristina Cadavid

Approach

solar UV variability (4-6% per cycle) ⇒ tropo-stratospheric dynamics

low-dimensional North Annular Mode ⇒ low-dimensional modeling

Stratosphere Influences Troposphere

NAM < 0

NAM > 0

Baldwin & Dunkerton (99)

Waves

Coupled Wind and Planetary Waves

�Ψ �� = F(Ψ U,h,Λ) -potential vorticity eq.

�U�� = G(Ψ U,h,Λ) -mean zonal wind eq

Ψ = X + iY - wave, u - mean zonal windΨ0 = h - wave amplitude at source

Λ = �UR �z - equilibrium gradient (UR = UB+ Λz)

Holton&Mass (74), Yoden (90), Christiansen (00), Ruzmaikin, Lawrence & Cadavid (02)

Region of Integration and Boundary Conditions

Latitudinal channel ∆y at 60˚N of 60˚ extent

Three levels z = 0, zT/2, zT

Top z = zT (=50 km): Ψ = 0, �U�z = �U �z|R = Λ

Bottom z = 0 : Ψ = �/f0h, U = UR

Sides y = 0, L: Ψ = 0, U = 0

The Dynamical SystemdX/dt = - X/ τ1 + qX- pY + sUY,

dY/dt = - Y/ τ1 + qY + pX - qUX - ζhU,

dU/dt = - (U - UR (0) - ΛzT)/ τ2 + qU -ηhY.

τ1 = 122 days, τ2 = 30 days, X,Y = [L2/T]; L = a (Earth‘s radius).

p, s, ζ, η = 0.6, 2, 0.2, 87 [1/T, 1/L, L/T2, 1/T ,1/(L2T), L/T, L].

q = 4dy/dt/(∆y)3 QBO (Ruzmaikin, Lawrence & Cadavid, 02)

Three Equilibrium Solutions

0 20 40 60 80 100 120 140 160 180 20018

20

22

24

26

28

30

h (m)

Zo

nal

Win

d (

m/s

)

Λ = 0.8 m/s/km

* o stableX unstable

Annual and Solar Variability

Λ = Λ + δΛ� sin(2πt/1y) + δΛs sin(2πt/11y)

Λ�0.75, δΛ� �2.25 (m/s/km) --standard atmosphere δΛs � εΛ

����������������������� dU/dz = -(R/fH)dT/dy

δΛs ≈ 4x104 δT/δy ≈ 0.1 m/s/km --estimate

R = 3x106 cm2s-2, H = 7 km, f =10-4s-1, δy ≈ a, δT ≈ 2Κ ���� et al. ��

Zonal Wind Modulations

-50

0

50

100ε = 0

Zon

al W

ind

(m/s

)

-50

0

50

100

0

0.01

0.02

0.03ε = 0.03

0 5 10 15 20 25 30 35 40-50

0

50

100

time (years)

ε = 0.3

QBO Influence∆y = ∆y0 [1 + q sin(2π/28)]

W and C winters (low and high U)

q 0 0.1 0.2

West QBO 30 25 11 16 6 21

East QBOHolton&Tan

30 25 21 7 23 5

λο = 0.75, h = 62 m, t = 55 years

QBO and Solarq = 0.1, εsol = 0.03

Sol Min Sol Max

West QBO 31 38 23 60

East QBO 55 11 54 28

λο = 0.75, h = 62 m, t = 300 years

Observed States

0 200 400 600 800 1000

−20

0

20

40

60

Low Flux West QBO at 20 hPa

U (

m/s

)

A2 (m)0 200 400 600 800 1000

−20

0

20

40

60

High Flux West QBO at 20 hPa

U (

m/s

)

A2 (m)

0 200 400 600 800 1000

−20

0

20

40

60

Low Flux East QBO at 20 hPa

U (

m/s

)

A2 (m)0 200 400 600 800 1000

−20

0

20

40

60

High Flux East QBO at 20 hPa

U (

m/s

)

A2 (m)

−0.0007 0 0.0007

pdf(U,A2) -pdf(U)pdf(A2)

at 60º lat20 hPa

Model States

−200 −100 0 100

20

30

40

50

60

70

80

Solar Max East QBO

X2

U

−200 −100 0 100

20

30

40

50

60

70

80

Solar Min East QBO

X2

U

−200 −100 0 100

20

30

40

50

60

70

80

Solar Max West QBO

X2

U

−200 −100 0 100

20

30

40

50

60

70

80

Solar Min West QBO

X2

U

−0.0001 0 −0.0001

h = 62 mq = 0.1 eps = 0.3

Discussion/Conclusions

Solar variability influences stratosphere-troposphere dynamics -- apparently through UV changes

There are two stable major equilibrium states, possible corresponding to two states of NAM

Solar variability and QBO influence the occupation frequency of the two states


Recommended