+ All Categories
Home > Documents > An introduction to arithmetic groups (via group schemes)

An introduction to arithmetic groups (via group schemes)

Date post: 24-Oct-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
29
An introduction to arithmetic groups (via group schemes) Steen Kionke 25.06.2020
Transcript

An introduction to arithmetic groups

(via group schemes)

Ste↵en Kionke

25.06.2020

Content

First definition of arithmetic groups

Group schemes

Definition of arithmetic groups via group schemes

Examples of arithmetic groups

a SLn(Z)

✓ SLn(R)

b SLn(Z[p�5])

✓ SLn(C)

c H3(Z) = {

0

@1 x z

0 1 y

0 0 1

1

A | x, y, z 2 Z}

✓ H3(R)

d U(p, q)(Z) = {g 2 GLn(Z[i]) | gT Ip,qg = Ip,q}

✓ U(p, q)

e The unit group ⇤⇥

✓ GL2(R)

where ⇤ is the ring

⇤ = Z� iZ� jZ� ijZ with i2= 2, j

2= 5, ij = �ji.

Examples of arithmetic groups

a SLn(Z) ✓ SLn(R)

b SLn(Z[p�5]) ✓ SLn(C)

c H3(Z) = {

0

@1 x z

0 1 y

0 0 1

1

A | x, y, z 2 Z} ✓ H3(R)

d U(p, q)(Z) = {g 2 GLn(Z[i]) | gT Ip,qg = Ip,q} ✓ U(p, q)

e The unit group ⇤⇥

✓ GL2(R)

where ⇤ is the ring

⇤ = Z� iZ� jZ� ijZ with i2= 2, j

2= 5, ij = �ji.

A first definition

Definition:

Let G ✓ GLn(C) be a Zariski closed subgroup defined over Q.

An arithmetic subgroup of G is a subgroup

� ✓ G

which is commensurable to G \GLn(Z).

commensurable:

vawüshing Set

of polynom:al

with aIcoeff-

n Gln PQ )#=P

D=GAGEN

AB E H comnenswabk

if An B has finite index in A. FB

Group schemes

R: commutative unital ring

AlgR: Category of commutative R-algebras

Definition: An a�ne group scheme (of finite type over R) is a

covariant functor

G : AlgR! Grp

which is representable by a finitely generated R-algebra OG,

i.e., there is a natural equivalence G ! HomAlgR(OG, ·).

At> GIA)

Group schemes

R: commutative unital ring

AlgR: Category of commutative R-algebras

Definition: An a�ne group scheme (of finite type over R) is a

covariant functor

G : AlgR! Grp

which is representable by a finitely generated R-algebra OG,

i.e., there is a natural equivalence G ! HomAlgR(OG, ·).

* asfmetossets

GAN E- Hohn#getan ,

A) ×

f:*>B GA) ! Ct IF IGCB)¥ Hom

#g(& , B) fod

Examples

(1) The additive group Ga (over R):

Ga : A 7! (A,+)

Representable?

QGA = RET]

Hom#g.(RETJ , A) Es A× IN LIT )

Examples

(2) The multiplicative group Gm (over R):

Gm : A 7! (A⇥, ·)

Representable?

0am = RET ,T"

]

Hom IRETT"

],A) - Ä

AGRL Ins LCT)

Examples

(3) The special linear group SLn (over R):

SLn : A 7! SLn(A)

Representable?

Ogg,

=

R [Tijlicj EH MY( ldetkij ) ) - 1)

Hohn,Sla , A) - SKA)d t) (LC))

ij

Homomorphisms of group schemes

G,H a�ne group schemes over R.

Definition: A homomorphism ' : G ! H is a natural

transformation of functors.

GLA )¥ HCH )

f : A-' B {Gift 0 f. HH )

GCB) - HCB)B

East:[Yonedäslemna] Ü :O# → OG

% : GCAIEHonl9.tt/-sHonlQtAEHH)LhXoCf

Example

' : Gm ! SL2

'A : A⇥! SL2(A) with a 7!

✓a 0

0 a�1

On coordinate rings?

R [Trutz ,Fritze]#Terme -1 )→ RITT

'

]

Tu l- T

Tzz 1-T- t

Tietze Im ⑨

Coordinates

G an a�ne group scheme.

Definition:

A set of coordinates is an ordered tuple c = (t1, . . . , tn) of

elements of OG such that t1, . . . , tn generate OG.

R[T1, . . . , Tn]/Ic⇠=

�! OG

Coordinate map:

c,A : G(A)⇠=

�! HomAlgR(OG, A) �! VA(Ic) ✓ A

n

Ti ht,

a. (Ltte) . . . -Hlt))

# (Ic) = { las . . . . an IEÄ I fan . .ae/--ofoaHfEIe }

OG is a Hopf algebra

Comultiplication:

� : OG ! OG ⌦R OG

Coinversion:

I : OG ! OG

Counit:

" : O ! R

Satisfy axioms dual to the group axioms, e.g.,

G(A) G(A)⇥G(A) OG OG ⌦R OG

{1} G(A) R OG

mult

"

Link id ) II. id )

leftinverse

The counit of a group scheme

The counit of G is the homomorphism " : OG ! R corresponding

to the unit 1 2 G(R) via

G(R)⇠=

�! HomAlgR(OG, R).

Every R-algebra A is equipped with the structure morphism

◆ : R ! A

Usually ◆ � " is also called counit and denoted by ".

1- IN E

^ GCR) Ü GIA) #

EI TEHom R) → Haha , Al

{ co E = E

Extension of scalars

G a group scheme over R.

R ✓ S a ring extension.

Observation:

The functor

ES/R(G) : AlgS! Grp

ES/R(G)(A) = G(A|R)

is an a�ne group scheme over S.

atme

K E G

cousiderA

←as R- algebra

CG )= 5¥!

Linear algebraic groups

K a field.

Definition:

A linear algebraic group over K is an a�ne group scheme over K

such that OG has no nilpotent elements.

Remark: char(K) = 0 =) the ring OG is reduced.

§ is veduced"

Integral forms & arithmetic groups

Let G be a linear algebraic group over Q.

Definition:

An integral form of G is a group scheme G0 over Z with an

isomorphism

EQ/Z(G0)⇠= G.

Definition:

A subgroup � ✓ G(Q) is arithmetic if it is commensurable to

G0(Z) for some integral form G0 of G.

An example

Quaternion algebra:

D = (2, 5| Q) = Q�Qi�Qj �Qij

with i2= 2, j

2= 5, ij = �ji.

Linear algebraic group over Q:

G(A) = (A⌦Q D)⇥

Integral form:

⇤ = Z� iZ� jZ� ijZ

G0(A) = (A⌦Z ⇤)⇥

Exercise:-Check that

this D a groupScheine.

An example

Quaternion algebra:

D = (2, 5| Q) = Q�Qi�Qj �Qij

with i2= 2, j

2= 5, ij = �ji.

Linear algebraic group over Q:

G(A) = (A⌦Q D)⇥

Integral form:

⇤ = Z� iZ� jZ� ijZ

G0(A) = (A⌦Z ⇤)⇥

Q ED

Golz) = Ä is au ar: theke subgroup of DX

Relation to first definition?

Fact:

Let G be a linear algebraic group over K. There is a “closed

embedding” G ,! GLn.

Proposition:

Let G be a linear algebraic group over Q and ' : G ,! GLn a

closed embedding. Then there is an integral form G0 of G such

that

'�1

(GLn(Z)) = G0(Z).

9 : G - Gla <owto

closed ewbeddiws if :↳→ OG

Gnade )

Two results

Let G be a linear algebraic group over Q.

Theorem 1:

If G0, G1 are integral forms of G, then G0(Z) and G1(Z) arecommensurable as subgroups of G(Q).

Lemma 2:

Arithmetic groups are residually finite.

Two results

Let G be a linear algebraic group over Q.

Theorem 1:

If G0, G1 are integral forms of G, then G0(Z) and G1(Z) arecommensurable as subgroups of G(Q).

Lemma 2:

Arithmetic groups are residually finite.

" "Ij¥Äj p :p → F Hinte)

ßC g) EFAF

Oberere: Sufticiat to provethat GER ) is esideal} finite

Principal congruence subgroups

G a group scheme over Z, m 2 N

⇡m : Z ! Z/mZG(⇡m) : G(Z) ! G(Z/mZ)

Observation: G(Z/mZ) is finite.

Principal congruence subgroup:

G(Z,m) = ker(G(⇡m)) f.i. G(Z).

finite1

%:*, GC%) Es 4,4) EY, )"

Proof of Lemma 2

Lemma 2: Arithmetic groups are residually finite.

JE Gfk ) zt 1

Cousin : g : Oa - Z , JFEgtx ) # ECX) fasane

XEOG⇒ JG ) # Ecx) modm (fern>>1)

Gltm) G) = Im 0J # Tao{ = 1 C-Gtz)

Proof of Theorem 1

Theorem 1: If G0, G1 are integral forms of G, then G0(Z) andG1(Z) are commensurable as subgroups of G(Q).

Aim:

G0(Z) \G1(Z) ◆ G0(Z, b) for some b 2 N

We know Q⌦Z OG0⇠= OG

⇠= Q⌦Z OG1 .

For simplicity we assume OG0 ,OG1 ✓ OG.

GdzlEG.ca) EGCG )

UI

Gfk)

Simikrlg„ZGCZ.br

')

Proof of Theorem 1

Theorem 1: If G0, G1 are integral forms of G, then G0(Z) andG1(Z) are commensurable as subgroups of G(Q).

Aim:

G0(Z) \G1(Z) ◆ G0(Z, b) for some b 2 N

We know Q⌦Z OG0⇠= OG

⇠= Q⌦Z OG1 .

For simplicity we assume OG0 ,OG1 ✓ OG.They genialeOG ar Q-algebra

Observation 1 EGOCZ ),GfK ) EGCG )

E : OG → Q

ECOG.) EZ

E. (Oau ) EZ

Proof of Theorem 1

Choose coordinates

f1, . . . , fk 2 OG0 with "(fi) = 0

g1, . . . , g` 2 OG1 with "(gj) = 0

Since f1, . . . , fk generate OG as Q-algebra, there are polynomials

p1, . . . , p` 2 Q[X1, . . . , Xk] s.t.

pj(f1, . . . , fk) = gj for all j 2 {1, . . . , `}

if nee neplace f; byL ¥ - Elf ;)

Obst pj her anstaut fern 0

0 = Ecgj ) = Elpjffe . . . . . fa) ) = pjfdfel . . . _ Eda ) )=p; 90. . . .

Proof of Theorem 1

b 2 N : a common denominator of all coe�cients of p1, . . . , p`.

Claim:

G0(Z, b) ✓ G0(Z) \G1(Z)

f- Gothia ) g : → 6 ggf EZ

ycxIEECxlmodbbfarakxefotoshovi.gga) EZ ( GEEK)ie

.

glgjk-kfa.at/jJGiI=Jlpilfa--fnI)=pjttfd....JfzIIEZ'Eöödb-

EI


Recommended