+ All Categories
Home > Documents > An introduction to chronobiology

An introduction to chronobiology

Date post: 31-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
43
6/27/2019 1 An introduction to chronobiology Franck Delaunay Institut de Biologie Valrose Université Côte d’Azur/CNRS/INSERM Ecole thématique ‘‘Modélisation formelle de réseaux de régulation biologique’’ Porquerolles 24 juin 2019 Circadian rhythms Circadian clocks (localisation, properties, mechanisms) Circadian clocks in health and diseases Outline 2
Transcript
Page 1: An introduction to chronobiology

6/27/2019

1

An introduction to chronobiology

Franck Delaunay Institut de Biologie Valrose

Université Côte d’Azur/CNRS/INSERM

Ecole thématique ‘‘Modélisation formelle de réseaux de régulation biologique’’

Porquerolles 24 juin 2019

• Circadian rhythms

• Circadian clocks (localisation, properties,

mechanisms)

• Circadian clocks in health and diseases

Outline

2

Page 2: An introduction to chronobiology

6/27/2019

2

A fast expanding field

0

100

200

300

400

500

600

700

800

900

SCN

Gène Per

Horloges périphériques

FASPS

Génomique

Cycle cellulaire

Métabolisme, immunité

Globules rouges

Epigénetique

Gène Clock

Mutants Per

3

Nobel 2017 Physiology and Medicine

JC Hall M Rosbash MW Young

4

Page 3: An introduction to chronobiology

6/27/2019

3

Activité neuronale

Rythme cardiaque

Vagues calciques

Ecologie

Cycle cellulaire

Reproduction

Sécrétions hormonales

5

Biological oscillations

Epidémiologie

Gamme de fréquences > 10 logs

msec sec min jour mois 1 an années heure

Cycle ovarien

Rythmes circadiens

Anticipative adaptation

6

Page 4: An introduction to chronobiology

6/27/2019

4

7

Examples of daily rhythmes in Human

TAG

Exécution des tâches

Vigilance

Température

Mélatonine

Rajaratnam & Arendt, Lancet 2001

Fu & Lee, Nature 2003

Melatonin

Body temp

Vigilance

Execution des tâches

Triglycerides

8

Page 5: An introduction to chronobiology

6/27/2019

5

t< 20 h

20 h <t< 28 h

t > 28 h

ultradian

circadian

infradian Period (t)

Φ = 7 h

19 h 19 h 7 h Φ = 1 h

Amplitude (b)

Circadian rhythm Y = a + b cos (2𝜋 (t - Φ))

Parameters that define a circadian rhythm

9

Φ = 13 h

Phase

Mimosa pudica (sensitive) Jour Nuit

The father

10

Jean d’Ortous de Mairan (1678-1771)

1729

1729

Page 6: An introduction to chronobiology

6/27/2019

6

1972 : Moore & Eichler and Stephan & Zucker locate the circadian

Clock in the suprachiasmatic nuclei of mammals

Localisation of the clock in mammals

11

12

Page 7: An introduction to chronobiology

6/27/2019

7

SCN neurons are the only clock neurons

Co: chiasma optique 3V: 3ème ventricule SCN: noyaux suprachiasmatiques PVN: noyaux paraventriculaires

13

Intercellular coupling between SCN neurons

14

Page 8: An introduction to chronobiology

6/27/2019

8

The entrainement range depends on the coupling

15

Zeit

geib

er s

tren

gth

p:q 1:1

Rigid oscillator :SCN (strong coupling)

Flexible oscillator: periphery (little or no coupling)

P: clock oscillator period q: zeitgeber period

HP Herzel et al, Berlin

How too reset the brain clock?

Lumière en début de nuit : retard de phase (voyage vers l’ouest)

Lumière en fin de nuit : avance de phase (voyage vers l’est)

Rajaratnam & Arendt, Lancet 2001

Gronfier, Biologie d’Aujourd’ hui 2014

16

Page 9: An introduction to chronobiology

6/27/2019

9

Circadian clock are synchrononized by zeitgebers

Phase response curve in Arabidopsis thaliana

17

If no hypothalamus?

Copyright F Rouyer, CNRS 18

Page 10: An introduction to chronobiology

6/27/2019

10

The genetic origin of circadian rhythms

WT

ec

los

ion

Per0 Perl Pers

S Benzer (1921-2007)

24 h 19 h 26 h arythmique

Mutatagenèse

Kanopka & Benzer, PNAS 1971 19

Per0 flies are arrythmic

20

Page 11: An introduction to chronobiology

6/27/2019

11

The Period gene is rhythmically expressed

transcription ARN

protéine

(Zeitgeber)

ADN

ARN

Protéine

traduction

transcription

So & Rosbash EMBO J 1997 21

Simplified model of the Drosophila circadian

oscillator

E-box

gènes Per, Tim CLOCK BMAL1

PER

TIM

PER

TIM

22

Page 12: An introduction to chronobiology

6/27/2019

12

The Clock mouse

King et al., Cell 1997, Antoch et al., Cell 1997 23

Per1/Per2

Cry1/Cry2 E-box

E-box

cytoplasm

Rora/b/g E-box

Rev-erba/b E-box

CLOCK

BMAL1

Bmal1 R-box

CRYs

PERs

CLOCK BMAL1

REV-ERBs

RORs

REV-ERBs RORs

CK1e/d

P P

CCGs E-box circadian physiology

The mammalian circadian oscillator

bTcRP

26S P

FBLX3

P P

P

ub ub

ub

26S

ub ub

ub

nucleus 24

Page 13: An introduction to chronobiology

6/27/2019

13

oscillateur

entrée

sortie

Lib

re-c

ou

rs

syn

chro

nis

atio

n

Conceptualisation of the circadin clock

25

The same design principle governs all circadian clocks

ARN Per

Pro

téin

e P

ER

Cycle limite

Activation

repression

Boucle de rétrocontrôle

négative + délai Modélisation

26

Page 14: An introduction to chronobiology

6/27/2019

14

Limit cycle oscillator

27

Requirements : Feedback motif + Time delay + Non linearity

Goldbeter Nature 2002

X

Y

Z

Y X

Delayed feedback loop

Amplified delayed feedback loop

Sources of non linearity

28

• Cooperativity and allostery

• Oligomer binding

• Stochiometric inhibition

• Multisites phosphorylation

Page 15: An introduction to chronobiology

6/27/2019

15

The Goodwin oscillator

29

X

Y

Z

Inhibition (Hill)

Biochemical/genetic oscillators

30

Function Components Period Class

Metabolism Gluoose, ATP, PFKase 2 min Amplified delayed

feedback loop

Signaling NF-kB, IKK ~ 2 h Delayed negative

feedback loop

Signaling P53, MDM2 5 h Delayed negative

feedback loop

Development Her1, Her7, Notch 30-90 min Delayed negative

feedback loop

Embryonic cell cycle CDK1, CCNB, Wee1,

Cdc25, Cdc20

30 min Amplified negative

feedback loop

Circadian rhythms PER, CRY, CLOCK,

BMAL1, CSNK1D…

24 h Delayed negative

feedback loop

Novak & Tyson Nat Rev Mol Cell Biol, 2008

Page 16: An introduction to chronobiology

6/27/2019

16

Impact of the intron length on the feedback delay

31

Harima Y et al. Semin

Cell Dev Biol 2014

Clocks everywhere !

Plautz et al. Science 1997 32

Page 17: An introduction to chronobiology

6/27/2019

17

Rapporteur d’horloge : REVERBa::VENUS

(Nagoshi et al, Cell 2004)

Virtually every cell has a clock

33

Circadian clocks are temperature compensated

34

Q10 =

R 2

R 1

10 (t2-t1)

1859-1927

• Le coefficient thermique Q10 représente l’augmentation du

taux d’une réaction pour un écart de température de 10°C.

• La vitesse de réaction peut être assimilée à n’importe quel

processus (vitesse de production d’un composé chimique,

vitesse de propagation d’un potentiel d’action, courant

conduit à travers un canal ionique, rythme cardiaque,

consommation d’oxygène).

Horloge circadienne: Q10 ~ 1

Page 18: An introduction to chronobiology

6/27/2019

18

The adaptive value of circadian clocks

Synechoccocus elongatus

35

2 groups of spermophiles squirrels

Intacts: diurnal

SCNx: increased nocturnal activity

The adaptive value of circadian clocks

36

Page 19: An introduction to chronobiology

6/27/2019

19

CicadianOmics

37

• Methylome • Acetylome • Transcriptome • Proteome • Phosphoproteome • Metabolome

> 400 datasets > 50 tissues > 10 species > 10 condition types (KO, disease, diet, drugs)

• Circadian regulation operates at all levels • Highly tissue specific • Feeding behaviour which is controlled by the central clock has a prominent

impact on rhythms in the periphery • Many CCGs are involved in pathways targeted by drugs • Emerging human circadian omics

http://circadiomics.ics.uci.edu/ http://circadb.hogeneschlab.org/ http://cgdb.biocuckoo.org/index.php

38

Zhang et al PNAS 2014

Circadian gene expression is extensive

Page 20: An introduction to chronobiology

6/27/2019

20

The human circadian timing system

Central clock

Perturbations Circadian

misalignment

or disruption Pathology

39

Physiology

&

Behaviour

Local clocks

Internal

synchronisers

•Chronic jet lag •Shiftwork •Aging •HFHC Diet

•Cancer •Cardiovascular ? •Metabolic •Sleep /depression

Chronotypes

40

MCTQ, Till Roennenberg

Page 21: An introduction to chronobiology

6/27/2019

21

Locomotor activity in humans

41

The nocturnal serum melatonin peak

Seru

m

Mela

ton

in (

pg

/ml)

0

20

40

60

80

100

15:00 17:00 19:00 21:00 23:00 01:00 03:00 05:00 07:00 09:00 11:00 13:00

Clock Hour

n=14

42

Page 22: An introduction to chronobiology

6/27/2019

22

23:00 7:00

Syndrome familial d’avance de phase du sommeil (13.5%)

Sommeil normal

20:00 4:00

Le gène Per2 et le syndrome d’avance de phase

Mutation

S662G Gène PER2 humain

Sites de phosphorylation domaine PAS

Patcek et al Science 2000 43

Circadian rhythms and cardiovascular pathologies

44

Page 23: An introduction to chronobiology

6/27/2019

23

Daytime variation of perioperative myocardial injury in cardiac

surgery and its prevention by Rev-Erbα antagonism: a single-

centre propensity-matched cohort study and a randomised study

Prof David Montaigne, MD, Xavier Marechal, PhD, Thomas Modine, MD, Augustin Coisne, MD, Stéphanie Mouton, MD, Georges Fayad, MD,

Sandro Ninni, MD, Cédric Klein, MD, Staniel Ortmans, MD, Claire Seunes, MD, Charlotte Potelle, MD, Alexandre Berthier, MD, Celine

Gheeraert, Eng, Catherine Piveteau, Eng, Rebecca Deprez, PhD, Jérome Eeckhoute, PhD, Hélène Duez, PhD, Prof Dominique Lacroix, MD,

Prof Benoit Deprez, PhD, Bruno Jegou, MD, Mohamed Koussa, MD, Jean-Louis Edme, PhD, Philippe Lefebvre, PhD, Prof Bart Staels, PhD

The Lancet Volume 391, Issue 10115, Pages 59-69 (January 2018)

45

Figure 1

The Lancet 2018 391, 59-69DOI: (10.1016/S0140-6736(17)32132-3)

Cohort study : n = 596 Randomised study : n=88

46

Page 24: An introduction to chronobiology

6/27/2019

24

47

Per2 knockout mice are more prone to cancer

WT WT Per2mut Per2mut

18 months

16 months after IR %

lym

ph

om

as

Fu et al., Cell 2002

Circadian disruption accelerates tumour growth

48 Filipski, JNCI , 2000

Page 25: An introduction to chronobiology

6/27/2019

25

Circadian disruption in cancer patients

Innominato et al. EBRS 2009

Circadian rhythm

Circadian disruption

N= 67 patients

N= 68 patients

Rich, Innominato et al. Clin Cancer Res 2005

135 patients with metastatic colorectal cancer

49

Chronobiology

Chronotherapy

Chronopharmacology

50 Only 0.016 % of clinical trials mention the time of treatment !

Page 26: An introduction to chronobiology

6/27/2019

26

51

Chronopharmacology

Dallman et al Trends Mol Med 2016

52

The circadian timing systems controls the

chronopharmacology of anticancer drugs

Lévi et al, Ann Rev Pharm Toxicol 2010

Page 27: An introduction to chronobiology

6/27/2019

27

Tolerability of anticancer drugs

53 Lévi et al, Ann Rev Pharm Toxicol 2010

3 year-survival rates according to

circadian disruption in cancer patients

Mormont et al. Clin Cancer Res 2000; Innominato et al. Cancer Res 2009.; Sephton et al. JNCI 2000; Proust Conference, Torino 2008

192 pts Single

Institution

130 pts Multicenter

Study

Colon Colon Breast

104 pts Single

Institution

0

10

20

30

40

50

60

70

80

Rhythmdamped

Rhythmmarked

Lung

61 pts Single

Institution

% S

urv

ival

p (Log Rank) : p<0.001 p=0.008 p=0.004 p= 0.009

Metastatic Metastatic Metastatic Early stage

54

Page 28: An introduction to chronobiology

6/27/2019

28

Chronotherapy: technological implementation

Time-scheduled delivery regimen

Infusion over 4 d every other week

AF 300 mg/m2/d

Time (local h) 04:00 16:00.

5-FU 600 - 1100 mg/m2/d L-OHP

25 mg/m2/d

55

F Lévi

The paradigm shift of anticancer chronochemotherapy

Anticancer chronotherapy:

• Efficacy can be increased by 2

• Toxicity can be decreased by 2-10

• Improved therapeutic index

56

Current paradigm : the dose makes the poison

Chronotherapy paradigm : dosing time makes the poison

Page 29: An introduction to chronobiology

6/27/2019

1

Interactions entre les gènes horloges et le cycle cellulaire: implications en cancérologie

1

Franck Delaunay

Institut de Biologie Valrose Université Côte d’Azur -CNRS-INSERM

Per1/Per2

Cry1/Cry2 E-box

E-box

cytoplasm

Rora/b/g E-box

Rev-erba/b E-box

CLOCK

BMAL1

Bmal1 R-box

CRYs

PERs

CLOCK BMAL1

REV-ERBs

RORs

REV-ERBs RORs

CK1e/d

P P

CCGs E-box circadian physiology

The mammalian circadian oscillator

bTcRP

26S P

FBLX3

P P

P

ub ub

ub

26S

ub ub

ub

nucleus

Page 30: An introduction to chronobiology

6/27/2019

2

The CDK oscillator driving the cell cycle

G2

M

G1

S

Prophase

Prometaphase

Metaphase

Anaphase

Telophase

G0

Mitogenic signals

NEBD

Cytokinesis

Restriction point

CDK2

Cyclin A

CDK4-6

Cyclin D

CDK2

Cyclin E

CDK1

Cyclin A

CDK1

Cyclin B

3

The circadian rhythm of cell division has been

conserved during evolution

E gracilis S elongatus M musculus D melanogaster D rerio

Laranjeiro et al, PNAS 2012

DNA synthesis in zebrafish tissues

4

• Kellicott, W. The daily periodicity

of cell division and of elongation

in the root of Allium. Bull. Torrey

Bot. Club, 31: 1904

• Fortuyn-Van Leyden,

Droogleever. Some observations

on periodic nuclear division in the

cat. Proc. Soc. of Sciences,

Amsterdam, 19: 38, 1916.

• Thuringer, J. M. Studies on cell

division in the human epidermis.

Anat. Record, 40: 1, 1928

Page 31: An introduction to chronobiology

6/27/2019

3

Cell cycle transcripts are enriched in the colon

mucosa circadian transcriptome

GO term Count % p-value

GO:0022402~cell cycle process 36 22 1.91E-24

GO:0000279~M phase 32 20 2.38E-24

GO:0007049~cell cycle 42 26 5.55E-24

5

0 10 20 30 40 % of total transcripts

0 10 20 30 40

0

4

8

12

1

6

20

Z

eitg

eb

er tim

e (

h)

colon ileum

Siffroi-Fernandez et al, Cell Cycle 2014

0 4 8 12 16 20 0

Zeitgeber time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Norm

aliz

ed e

xp

ressio

n

Wee1

WT

Bmal1-/-

Mitotic genes

Cell cycle, microtubules, spindle assembly, apoptosis

Colon mucosa

Circadian transcriptomics

0 20 16 12 8 4

Zeitgeber time (h)

mR

NA

level

Wild type

Rev-erb

p21

ROR

Bmal1 Bmal1 -/- (clock deficient)

0 20 16 12 8 4

Zeitgeber time (h)

mR

NA

level

Rev-erb

ROR

p21

Gréchez-Cassiau et al, JBC 2008 6

G1

CDK4-6

Cyclin D p21

The cell cycle gene p21 oscillates in the liver

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20

p21

/36B

4

Circadian time

Constant darkness

Page 32: An introduction to chronobiology

6/27/2019

4

intRORE proRORE E1

p21 gene

E2

RORg RORa4

REV-ERBb REV-ERBa

CRY PER CLOCK BMAL1

Gréchez-Cassiau et al, JBC 2008 7

The REV-ERB/ROR loop drives the p21 oscillation

Impaired proliferation of Bmal1-/- hepatocytes

Th

ym

idin

e in

corp

ora

tio

n

(cpm

/µg p

rot)

Bmal1-/- WT

200

40

80

120

160

-

siRNA 0

control p21 - -

*

*

Time (h)

0

50

100

150

0 64 40 16

WT

Bmal1-/- *

*

Th

ym

idin

e in

corp

ora

tio

n

(cpm

/µg p

rote

in)

Gréchez-Cassiau et al, JBC 2008 8

Page 33: An introduction to chronobiology

6/27/2019

5

http://biogps.org/circadian/

lung liver brown adipose kidney aorta white adipose heart adrenals muscle pituitary

The G2/M kinase Wee1 is clock-controlled

2/3 ressection ~ 1 week

The partial hepatectomy model

Matsuo et al., Science 2003

CDK1 active

CDC25

Mitotic entry Mitotic delay

CDK1 inactive

P

P

Wee1

9

Text Cell Cycle

Molecular links between the clock and the cell cycle

Cyclin B

Wee1

G1

G2

M

S

ATM

TIM

CHK2

PER

ATR

TIM

CHK1

CRY2

NONO p16

PER

p21

p20 CDK1

G0

Coupled oscillators 10

Page 34: An introduction to chronobiology

6/27/2019

6

11

• Consequences of the coupling on the

dynamics of the system ?

• How does the temporal organisation of the cell

cycle at the single cell level produce daily

rhythms at the tissue level ?

• Additional molecular links ?

• Relevance of the coupling in cancer cells ?

QUESTIONS

(Nagoshi et al, 2004)

Monitoring the circadian clock in single cells

12

Venus

Rev-erba

Page 35: An introduction to chronobiology

6/27/2019

7

Monitoring of the entire cell cycle progression in

single cells using FUCCI

13

FACS: Hoechst + FUCCI

S/G2 S/G2 S/G2

Early S

Early S

Late G2 Early G1

Early G1 G1

G1 G1

G1

Late G2

Early S

Sakaue-Sawano et al, Cell 2008

Visualizing the clock and the cell cycle in single cells

• Live cells • Single cells • Real time • High temporal resolution (min) • Spatial Information • Variability

Céline Feillet

NIH3T3 cells + Fucci + Reverb::Venus

Page 36: An introduction to chronobiology

6/27/2019

8

A lot of data

• 344 lineages

• 1709 cells

• 3551 cell cycles

• > 106 datapoints

• > 2 To

0

50

100

150

200

hours 6 12 18 24 30 36 42 48 54 60 66 72

Clock (REVERBa::VENUS) G1 (mKO2::CDT1) S/G2/M (E2Crimson::GEMININ)

From images to global phase dynamics of lineages

•Spectrum resampling (clock) •Piecewise linear model (ta, tb, tc) (cell cycle)

Lineage tracker 2.0 (Fiji)

Page 37: An introduction to chronobiology

6/27/2019

9

The clock and the cell cycle oscillate

at similar periods in unsynchronised cells

Clock: 21.9 ± 1.1 h

Cell cycle: 21.3 ± 1.3 h

Clock: 19.4 ± 0.5 h

Cell cycle: 19.6 ± 0.6 h

The clock and the cell cycle oscillate

at similar periods in unsynchronised cells

Clock: 21.9 ± 1.1 h

Cell cycle: 21.3 ± 1.3 h

Clock: 19.4 ± 0.5 h

Cell cycle: 19.6 ± 0.6 h

Page 38: An introduction to chronobiology

6/27/2019

10

A fixed phase relationship between

the clock and the cell cycle

Mean clock phase at division: 3.97 ± 0.14 radians

1:1 phase locking

Joint trajectory for a 1:1 phase-locked system

David Rand Peter Krusche

Page 39: An introduction to chronobiology

6/27/2019

11

One single coupling region can explain different regimen

1:1 5:4 3:2

Nagoshi et al Cell 2004

Simulation of a 3:2 coupling ratio

• Dex pulsed cells • 20 % FBS

Page 40: An introduction to chronobiology

6/27/2019

12

NIH3T3/20% FBS/Dex

Two coexisting coupling regimes in synchronized

cells cultured in 20 % FBS

Population A (1:1 ratio) Clock phase at division vs Experiment time

Clustering analysis in 20 % FBS

Page 41: An introduction to chronobiology

6/27/2019

13

Population B (3:2 ratio) Clock phase at division vs Experiment time

=> 3 clock phases at division

0 π/2 π 3π/2 2π

Clustering analysis in 20 % FBS

Clustering analysis in 20 % FBS

Page 42: An introduction to chronobiology

6/27/2019

14

The clock and the cell cycle display a fixed phase relationship across generations

Cell cycle phase dependent Rev-erba mRNA expression

No

rma

lize

d e

xp

ressio

n

Rev-erba

EG1 G1 ES S/G2/M NS

Ccne2

Ccna2

EG1 G1 ES S/G2/M NS

Page 43: An introduction to chronobiology

6/27/2019

15

Conclusion

• Multiple molecular links

• A robust phase-locking mechanism

• Cell cycle progression has a significant influence on

the clock in unperturbed cells

• Bidirectional coupling (in vivo)

• Results do not support the classical circadian gating

model

29


Recommended