+ All Categories
Home > Documents > An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic...

An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic...

Date post: 26-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
51
Outline Introduction Basic existence theory Regularity End of first part An introduction to Hamilton-Jacobi equations Stefano Bianchini February 2, 2011 Stefano Bianchini An introduction to Hamilton-Jacobi equations
Transcript
Page 1: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

An introduction to Hamilton-Jacobi equations

Stefano Bianchini

February 2, 2011

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 2: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

IntroductionHamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Basic existence theoryExistence in the Lipschitz classViscosity solutionsLagrangian formulation

RegularitySome simple computationsA regularity resultRegularity for hyperbolic conservation laws

End of first partOutline of the second partBibliography

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 3: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Outline

IntroductionHamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Basic existence theory

Regularity

End of first part

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 4: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

The Hamilton-Jacobi equation (HJ equation) is a special fullynonlinear scalar first order PDE.It arises in many different context:

1. Hamiltonian dynamics

2. Classical limits of Schrodinger equation

3. Calculus of variation

4. Control theory

5. Optimal mass transportation problems

6. Conservation laws in one space dimension

7. etc...

Even if it is fully nonlinear, there is a satisfactory theory ofexistence and regularity of solutions.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 5: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

The Hamilton-Jacobi equation (HJ equation) is a special fullynonlinear scalar first order PDE.It arises in many different context:

1. Hamiltonian dynamics

2. Classical limits of Schrodinger equation

3. Calculus of variation

4. Control theory

5. Optimal mass transportation problems

6. Conservation laws in one space dimension

7. etc...

Even if it is fully nonlinear, there is a satisfactory theory ofexistence and regularity of solutions.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 6: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Hamilton’s principal function

The function S = S(q,P, t) defining a canonical transformation ofcoordinates (p, q) 7→ (Q,P)

p = ∇qS , Q = ∇PS ,

yields a canonical transformation with the new Hamiltonian H ′ = 0if

∂tS + H(t, q,∇qS) = 0.

The above equation is the Hamilton-Jacobi equation: thefunction H is called the Hamiltonian, and depending on thecontext the solution can be called minimizer, value function,potential, or in this case Hamilton principal function.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 7: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Hamilton’s principal function

The function S = S(q,P, t) defining a canonical transformation ofcoordinates (p, q) 7→ (Q,P)

p = ∇qS , Q = ∇PS ,

yields a canonical transformation with the new Hamiltonian H ′ = 0if

∂tS + H(t, q,∇qS) = 0.

The above equation is the Hamilton-Jacobi equation: thefunction H is called the Hamiltonian, and depending on thecontext the solution can be called minimizer, value function,potential, or in this case Hamilton principal function.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 8: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Schrodinger equation

The Schrodinger equation for a single particle in a potential U canbe written as

i~∂tψ = − ~2

2m∇ψ2 + Uψ.

If we look for a solution of the form ψ = ψ0eiS/~, where S is the

phase and we let ~→ 0 (classical limit), then (formally) we obtain

−∂tS =1

2m|∇S |2 + U,

which is the Hamilton-Jacobi equation for the Hamiltonian

H =p2

2m+ U.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 9: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Schrodinger equation

The Schrodinger equation for a single particle in a potential U canbe written as

i~∂tψ = − ~2

2m∇ψ2 + Uψ.

If we look for a solution of the form ψ = ψ0eiS/~, where S is the

phase and we let ~→ 0 (classical limit), then (formally) we obtain

−∂tS =1

2m|∇S |2 + U,

which is the Hamilton-Jacobi equation for the Hamiltonian

H =p2

2m+ U.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 10: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Schrodinger equation

The Schrodinger equation for a single particle in a potential U canbe written as

i~∂tψ = − ~2

2m∇ψ2 + Uψ.

If we look for a solution of the form ψ = ψ0eiS/~, where S is the

phase and we let ~→ 0 (classical limit), then (formally) we obtain

−∂tS =1

2m|∇S |2 + U,

which is the Hamilton-Jacobi equation for the Hamiltonian

H =p2

2m+ U.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 11: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Calculus of variation

Consider the minimization problem in Ω ⊂ Rd

min

∫ (1I|p|≤1(∇u(x)) + u(x)

)dx : u|∂Ω = u0

.

The solution satisfies the time independent Hamilton-Jacobiequation

1− |∇u| = 0,

with the Hamiltonian |p| and boundary data u0.The Euler-Lagrange equation reads as

div(ρd) = 1,

with d the direction of the optimal ray (see later).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 12: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Calculus of variation

Consider the minimization problem in Ω ⊂ Rd

min

∫ (1I|p|≤1(∇u(x)) + u(x)

)dx : u|∂Ω = u0

.

The solution satisfies the time independent Hamilton-Jacobiequation

1− |∇u| = 0,

with the Hamiltonian |p| and boundary data u0.

The Euler-Lagrange equation reads as

div(ρd) = 1,

with d the direction of the optimal ray (see later).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 13: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Calculus of variation

Consider the minimization problem in Ω ⊂ Rd

min

∫ (1I|p|≤1(∇u(x)) + u(x)

)dx : u|∂Ω = u0

.

The solution satisfies the time independent Hamilton-Jacobiequation

1− |∇u| = 0,

with the Hamiltonian |p| and boundary data u0.The Euler-Lagrange equation reads as

div(ρd) = 1,

with d the direction of the optimal ray (see later).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 14: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Control theory

Consider the ODE

x = f (x , u), u control,

and the problem is to minimize the functional

A(t) = minu

∫ T

tL(x , u)dt + F (x(T ))

.

DefiningH(t, x , p) := min

u

p · f (x , u) + L(x , u)

,

the function A(t) satisfies the Hamilton-Jacobi-Bellman equation

∂tA + H(t, x ,∇A) = 0, A(T ) = F (x).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 15: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Control theory

Consider the ODE

x = f (x , u), u control,

and the problem is to minimize the functional

A(t) = minu

∫ T

tL(x , u)dt + F (x(T ))

.

DefiningH(t, x , p) := min

u

p · f (x , u) + L(x , u)

,

the function A(t) satisfies the Hamilton-Jacobi-Bellman equation

∂tA + H(t, x ,∇A) = 0, A(T ) = F (x).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 16: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Optimal mass transportation

Let ‖ · ‖ : Rd × Rd → R be a norm, µ, ν ∈ P([0, 1]) and

Π(µ, ν) :=π ∈ P([0, 1]2) : (P1)]π = µ, (P2)]π = ν

.

The problem is to minimize∫‖x − y‖π(dxdy), π ∈ Π(µ, ν).

By duality, this is equivalent to maximize∫φ(x)(µ− ν)(dx),

∣∣φ(x)− φ(y)∣∣ ≤ ‖x − y‖,

and one can show that φ is the solution to the Hamilton-Jacobyequation

1− ‖∇φ‖ = 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 17: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Optimal mass transportation

Let ‖ · ‖ : Rd × Rd → R be a norm, µ, ν ∈ P([0, 1]) and

Π(µ, ν) :=π ∈ P([0, 1]2) : (P1)]π = µ, (P2)]π = ν

.

The problem is to minimize∫‖x − y‖π(dxdy), π ∈ Π(µ, ν).

By duality, this is equivalent to maximize∫φ(x)(µ− ν)(dx),

∣∣φ(x)− φ(y)∣∣ ≤ ‖x − y‖,

and one can show that φ is the solution to the Hamilton-Jacobyequation

1− ‖∇φ‖ = 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 18: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Conservation laws

Consider the scalar conservation laws

ut + f (u)x = 0, u : R× R+ → R.

By the change of variable

U(x) =

∫ x

u(y)dy ,

we can transform the PDE into

Ut + f (Ux) = 0,

which is a Hamilton-Jacobi equation with HamiltonianH(p) = f (p).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 19: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Hamilton’s principal functionClassical limit of SchrodingerA study case in calculus of variationsControl theoryOptimal mass transportation

Conservation laws

Consider the scalar conservation laws

ut + f (u)x = 0, u : R× R+ → R.

By the change of variable

U(x) =

∫ x

u(y)dy ,

we can transform the PDE into

Ut + f (Ux) = 0,

which is a Hamilton-Jacobi equation with HamiltonianH(p) = f (p).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 20: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

Outline

Introduction

Basic existence theoryExistence in the Lipschitz classViscosity solutionsLagrangian formulation

Regularity

End of first part

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 21: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

What we can expect

The natural space of functions where the solutions lives isLipschitz.

Example. The model Hamiltonian is p2

2 , and the function

u(t, x) = −∫ x

0min

1,−y

t

dy

is a regular solution for t < 1 to

ut +|ux |2

2= 0.

At t = 1 the solution becomes only 1-Lipschitz.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 22: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

What we can expect

The natural space of functions where the solutions lives isLipschitz.

Example. The model Hamiltonian is p2

2 , and the function

u(t, x) = −∫ x

0min

1,−y

t

dy

is a regular solution for t < 1 to

ut +|ux |2

2= 0.

At t = 1 the solution becomes only 1-Lipschitz.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 23: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitzfunction u : R+ × Rd → R such that

ut + H(t, x ,∇u) = 0

is satisfied at every differentiable point of u, i.e. Ld+1-a.e..

A solution in the above “a.e.-sense” is not unique.Example. The function

u(t, x) = min

|x | − t

2, 0

,

satisfies

ut +|ux |2

2= 0, u(0, x) = 0.

Clearly the expected solution is u(t, x) = 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 24: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitzfunction u : R+ × Rd → R such that

ut + H(t, x ,∇u) = 0

is satisfied at every differentiable point of u, i.e. Ld+1-a.e..A solution in the above “a.e.-sense” is not unique.

Example. The function

u(t, x) = min

|x | − t

2, 0

,

satisfies

ut +|ux |2

2= 0, u(0, x) = 0.

Clearly the expected solution is u(t, x) = 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 25: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

A solution to Hamilton-Jacobi can be defined as a Lipschitzfunction u : R+ × Rd → R such that

ut + H(t, x ,∇u) = 0

is satisfied at every differentiable point of u, i.e. Ld+1-a.e..A solution in the above “a.e.-sense” is not unique.Example. The function

u(t, x) = min

|x | − t

2, 0

,

satisfies

ut +|ux |2

2= 0, u(0, x) = 0.

Clearly the expected solution is u(t, x) = 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 26: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

Maximum principle

For scalar equation, a natural requirement is

u(0, x) ≤ v(0, x) ⇒ u(t, x) ≤ v(t, x).

We can restrict the possible solutions to the ones generating asemigroup satisfying the maximum principle.

If φ is a regular function such that uε − φ has a local minimum in(t, x), then it follows

∆(uε − φ) ≥ 0,

Since ∇uε = ∇φ, uεt = φt , we recover

φt + H(t, x ,∇φ)− ε∆φ ≥ 0,

and in the limitφt + H(t, x ,∇φ) ≥ 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 27: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

Maximum principle

For scalar equation, a natural requirement is

u(0, x) ≤ v(0, x) ⇒ u(t, x) ≤ v(t, x).

We can restrict the possible solutions to the ones generating asemigroup satisfying the maximum principle.If φ is a regular function such that uε − φ has a local minimum in(t, x), then it follows

∆(uε − φ) ≥ 0,

Since ∇uε = ∇φ, uεt = φt , we recover

φt + H(t, x ,∇φ)− ε∆φ ≥ 0,

and in the limitφt + H(t, x ,∇φ) ≥ 0.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 28: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

DefinitionA function u is a viscosity solution to the HJ equation if for all φsmooth such that

1. u − φ has a local maximum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≤ 0,

2. u − φ has a local minimum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≥ 0,

Under mild assumptions on H and u0,

Theorem (Crandall-Lions)

The viscosity solution exists and is unique.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 29: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

DefinitionA function u is a viscosity solution to the HJ equation if for all φsmooth such that

1. u − φ has a local maximum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≤ 0,

2. u − φ has a local minimum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≥ 0,

Under mild assumptions on H and u0,

Theorem (Crandall-Lions)

The viscosity solution exists and is unique.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 30: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

DefinitionA function u is a viscosity solution to the HJ equation if for all φsmooth such that

1. u − φ has a local maximum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≤ 0,

2. u − φ has a local minimum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≥ 0,

Under mild assumptions on H and u0,

Theorem (Crandall-Lions)

The viscosity solution exists and is unique.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 31: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

DefinitionA function u is a viscosity solution to the HJ equation if for all φsmooth such that

1. u − φ has a local maximum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≤ 0,

2. u − φ has a local minimum in (t, x), then

∂tφ(t, x) + H(t, x ,∇φ(t, x)

)≥ 0,

Under mild assumptions on H and u0,

Theorem (Crandall-Lions)

The viscosity solution exists and is unique.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 32: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

Lax formula

If u is a viscosity solution and H convex in p, then it can beobtained by the formula

u(t, x) = min

u(0, y) +

∫ t

0L(s, γ(s), γ(s)

)ds,

γ : [0, t]→ Rd , γ(0) = y , γ(t) = x

,

where the Lagrangian L is given by the Legendre transform of H

L(t, x , a) = supp

a · p − H(t, x , p)

.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 33: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

Lax formula

If u is a viscosity solution and H convex in p, then it can beobtained by the formula

u(t, x) = min

u(0, y) +

∫ t

0L(s, γ(s), γ(s)

)ds,

γ : [0, t]→ Rd , γ(0) = y , γ(t) = x

,

where the Lagrangian L is given by the Legendre transform of H

L(t, x , a) = supp

a · p − H(t, x , p)

.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 34: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

The curve γ for which the minimum

u(t, x) = u(0, y) +

∫ t

0L(s, γ(s), γ(s)

)ds

is called characteristic or optimal ray.

By Euler-Lagrange equation, it is a solution to the ODE systemx = ∇pH(t, x , p)p = −∇xH(t, x , p)

In the special case where H = H(p), this curve is a straight line,and the min-formula reads as

u(t, x) = infy

u(0, y) + tL

(x − y

t

).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 35: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

The curve γ for which the minimum

u(t, x) = u(0, y) +

∫ t

0L(s, γ(s), γ(s)

)ds

is called characteristic or optimal ray.By Euler-Lagrange equation, it is a solution to the ODE system

x = ∇pH(t, x , p)p = −∇xH(t, x , p)

In the special case where H = H(p), this curve is a straight line,and the min-formula reads as

u(t, x) = infy

u(0, y) + tL

(x − y

t

).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 36: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Existence in the Lipschitz classViscosity solutionsLagrangian formulation

The curve γ for which the minimum

u(t, x) = u(0, y) +

∫ t

0L(s, γ(s), γ(s)

)ds

is called characteristic or optimal ray.By Euler-Lagrange equation, it is a solution to the ODE system

x = ∇pH(t, x , p)p = −∇xH(t, x , p)

In the special case where H = H(p), this curve is a straight line,and the min-formula reads as

u(t, x) = infy

u(0, y) + tL

(x − y

t

).

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 37: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

Outline

Introduction

Basic existence theory

RegularitySome simple computationsA regularity resultRegularity for hyperbolic conservation laws

End of first part

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 38: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

If H is convex in p, then the solution u is not only Lipschitz, butenjoys more regularity.

Example. Let H = p2/2, so that L = a2/2 and the function

x 7→ tL

(x − y

t

)=|x − y |2

2t

is semiconcave of parameter 1/t.Since the minimum of semiconcave functions is semiconcave, itfollows that the solution u to the HJ equation

∂tu +|∇xu|2

2= 0

is semiconcave.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 39: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

If H is convex in p, then the solution u is not only Lipschitz, butenjoys more regularity.Example. Let H = p2/2, so that L = a2/2 and the function

x 7→ tL

(x − y

t

)=|x − y |2

2t

is semiconcave of parameter 1/t.

Since the minimum of semiconcave functions is semiconcave, itfollows that the solution u to the HJ equation

∂tu +|∇xu|2

2= 0

is semiconcave.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 40: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

If H is convex in p, then the solution u is not only Lipschitz, butenjoys more regularity.Example. Let H = p2/2, so that L = a2/2 and the function

x 7→ tL

(x − y

t

)=|x − y |2

2t

is semiconcave of parameter 1/t.Since the minimum of semiconcave functions is semiconcave, itfollows that the solution u to the HJ equation

∂tu +|∇xu|2

2= 0

is semiconcave.

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 41: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

A regularity result

The following result can be proved: if the Hamiltonian is uniformlyconvex in p and the initial data is sufficiently regular then thereexists piecewise smooth hypersurfaces Skk of codimension 1such that ∇u is regular outside ∪kSk (Cannarsa-Sinestrari).

t

x

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 42: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

A regularity result

The following result can be proved: if the Hamiltonian is uniformlyconvex in p and the initial data is sufficiently regular then thereexists piecewise smooth hypersurfaces Skk of codimension 1such that ∇u is regular outside ∪kSk (Cannarsa-Sinestrari).

t

x

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 43: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

Due to the regularity outside the jumps of ∇xu, it is clear that thechange of variable

t = τ,x = γ(t, y),

y initial point of the characteristic γ,

is regular.

t

y

t

x

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 44: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one spacedimension

ut + f (u)x = 0, (t, x) ∈ R+ × R, u ∈ Rm,

one expects a similar structure: countably many shock curves andregularity of the solution in the remaining set.

x

t

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 45: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one spacedimension

ut + f (u)x = 0, (t, x) ∈ R+ × R, u ∈ Rm,

one expects a similar structure: countably many shock curves andregularity of the solution in the remaining set.

x

t

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 46: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Some simple computationsA regularity resultRegularity for hyperbolic conservation laws

Solutions to hyperbolic conservation laws

For strictly hyperbolic system of conservation laws in one spacedimension

ut + f (u)x = 0, (t, x) ∈ R+ × R, u ∈ Rm,

one expects a similar structure. However the presence of the othercharacteritic families generates a complicated structure.

x

t

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 47: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Outline of the second partBibliography

Outline

Introduction

Basic existence theory

Regularity

End of first partOutline of the second partBibliography

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 48: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Outline of the second partBibliography

In the second part of the talk we will be concerned with:

1. the structure of solutions if the initial data is only Lipschitzand H convex

2. the regularity of the decomposition of R+ × Rd given by thecharacteristics

3. the applications/extension of these results to conservationlaws and optimal transport on manifolds

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 49: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Outline of the second partBibliography

In the second part of the talk we will be concerned with:

1. the structure of solutions if the initial data is only Lipschitzand H convex

2. the regularity of the decomposition of R+ × Rd given by thecharacteristics

3. the applications/extension of these results to conservationlaws and optimal transport on manifolds

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 50: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Outline of the second partBibliography

In the second part of the talk we will be concerned with:

1. the structure of solutions if the initial data is only Lipschitzand H convex

2. the regularity of the decomposition of R+ × Rd given by thecharacteristics

3. the applications/extension of these results to conservationlaws and optimal transport on manifolds

Stefano Bianchini An introduction to Hamilton-Jacobi equations

Page 51: An introduction to Hamilton-Jacobi equations · 2011. 2. 2. · Outline Introduction Basic existence theory Regularity End of rst part Hamilton’s principal function Classical limit

OutlineIntroduction

Basic existence theoryRegularity

End of first part

Outline of the second partBibliography

In the second part of the talk we will be concerned with:

1. the structure of solutions if the initial data is only Lipschitzand H convex

2. the regularity of the decomposition of R+ × Rd given by thecharacteristics

3. the applications/extension of these results to conservationlaws and optimal transport on manifolds

Stefano Bianchini An introduction to Hamilton-Jacobi equations


Recommended