+ All Categories
Home > Documents > An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik...

An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik...

Date post: 21-Jan-2016
Category:
Upload: heather-melton
View: 212 times
Download: 0 times
Share this document with a friend
29
An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany
Transcript
Page 1: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

An introduction to the theory of Carbon nanotubes

A. De Martino

Institut für Theoretische Physik

Heinrich-Heine Universität

Düsseldorf, Germany

Page 2: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Overview

Introduction

Band structure and electronic properties

Low-energy effective theory for SWNTs

Luttinger liquid physics in SWNTs

Experimental evidence

Summary and conclusions

Page 3: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Allotropic forms of Carbon

Curl, Kroto, Smalley 1985

Iijima 1991graphene

(From R. Smalley´s web image gallery)

Page 4: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Classification of CNs:single layer

Single-wall Carbon nanotubes (SWNTs,1993)- one graphite sheet seamlessly wrapped-up to form a cylinder

- typical radius 1nm, length up to mm

(From R. Smalley´s web image gallery)

(From Dresselhaus et al., Physics World 1998)

(10,10) tube

Page 5: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Classification of CNs: ropes

Ropes: bundles of SWNTs- triangular array of individual SWNTs

- ten to several hundreds tubes

- typically, in a rope tubes of different diameters and chiralities

(From R. Smalley´s web image gallery)(From Delaney et al., Science 1998)

Page 6: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Classification of CNs: many layers

Multiwall nanotubes (Iijima 1991)

- russian doll structure, several inner shells

- typical radius of outermost shell > 10 nm

(From Iijima, Nature 1991) (Copyright: A. Rochefort, Nano-CERCA, Univ. Montreal)

Page 7: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Why Carbon nanotubes so interesting ?

Technological applications- conductive and high-strength composites

- energy storage and conversion devices

- sensors, field emission displays

- nanometer-sized molecular electronic devices

Basic research: most phenomena of mesoscopic physics observed in CNs- ballistic, diffusive and localized regimes in transport

- disorder-related effects in MWNTs

- strong interaction effects in SWNTs: Luttinger liquid

- Coulomb blockade and Kondo physics

- spin transport

- superconductivity

Page 8: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Band structure of graphene

Tight-binding model on hexagonal lattice

- two atoms in unit cell

- hexagonal Brillouin zone

(Wallace PR 1947)

iRRBRA

cHcctHi

,,,0 ..

nm 0.142d ; nm 246.0a

eV37.2

t1

23

K K

Page 9: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Band structure of graphene

Tight-binding model- valence and conduction bands touch at E=0

- at half-filling Fermi energy is zero (particle-hole symmetry): no Fermi surface, six isolated points, only two inequivalent

Near Fermi points

relativistic dispersion relation

Graphene: zero gap semiconductor

m/s108,

,5

FF

F

vKkq

qvqE

(Wallace PR 1947)

Page 10: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Structure of SWNTs: folding graphene

(n,m) nanotube specified by wrapping, i.e. superlattice vector:

Tube axis direction

21 amanC

2211 aatT

)2,2gcd(

/)2(

/)2(

2

1

nmmnd

dmnt

dnmt

R

R

R

Page 11: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Structure of SWNTs

(n,n)

armchair

(n,0)

zig-zag

chiral

(4,0)

Page 12: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Electronic structure of SWNTs

Periodic boundary conditions → quantization of

- nanotube metallic if Fermi points allowed wave vectors,

otherwise semiconducting !

- necessary condition: (2n+m)/3 = integer

k

armchair zigzag

metallic semiconducting

Page 13: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Electronic structure of SWNTs

Band structure predicts three types:

- semiconductor if (2n+m)/3 not integer; band gap:

- metal if n=m (armchair nanotubes)

- small-gap semiconductor otherwise (curvature-induced gap)

Experimentally observed: STM map plus conductance measurement on same SWNT

In practice intrinsic doping, Fermi energy typically 0.2 to 0.5 eV

eV13

2

R

vE F

Page 14: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Density of states

Metallic tube:

- constant DoS around E=0

- van Hove singularities at opening of new subbands

Semiconducting tube:

- gap around E=0

Energy scale ~1 eV

- effective field theories valid for all relevant temperatures

Page 15: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Metallic SWNTs: 1D dispersion relation

Only subband with relevant, all others more than 1 eV away

- two degenerate Bloch waves, one

for each Fermi point α=+/-

- two sublattices p =+/-, equivalent

to right/left movers r =+/-

- electron states

- typically doped:

0k

r

KkvEq FFFF

/

Page 16: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

SWNTs as ideal quantum wires

Only one subband contributes to transport

→ two spin-degenerate channels

Long mean free paths

→ ballistic transport in not too long tubes

No Peierls instability

SWNTs remain conducting at very low temperatures → model systems to study correlations in 1D metals

m1

Page 17: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Conductance of ballistic SWNTs

Landauer formula: for good contact to voltage reservoirs, conductance is

Experimentally (almost) reached- clear signature of ballistic transport

What about interactions?

h

e

h

eNG bands

22 42

Page 18: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Including electron-electron interactions in 1D

In 1D metals dramatic effect of electron-electron interactions: breakdown of Landau´s Fermi liquid theory

New universality class: Tomonaga-Luttinger liquid

- Landau quasiparticles unstable excitations

- stable excitations: bosonic collective charge and spin density fluctuations

- power-law behaviour of correlations with interaction dependent exponents → suppression of tunneling DoS

- spin-charge separation; fractional charge and statistics

- exactly solvable by bosonization

Experimental realizations: semiconductor quantum wires, FQHE edges states, long organic chain molecules, nanotubes, ...

(Tomonaga 1950, Luttinger 1963, Haldane 1981)

Page 19: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Luttinger liquid properties

1d electron system with dominant long-range interaction

- charge and spin plasmon densities; - spin-charge separation !

- depends on interaction :

Suppression of tunnelling density of states at Fermi surface :

- exponent depends on geometry (bulk or edge)

ExtxedtEx iEt

)0,(),(Re1

),(0

22222LL 22 sxs

Fcxcc

F dxv

Kdxv

H

sxcx ,

cK1

1

c

c

K

K no interaction

repulsive interaction

Page 20: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Field theory of SWNTs

Low-energy expansion of electron field operator:

- Two degenerate Bloch states

at each Fermi point

Keep only the two bands at Fermi energy,

Inserting expansion in free Hamiltonian gives

)()()( ''0 xxdxivH pppxxpF

1

0;

0

1

2,

BA

p

rKi

pR

eyx

p

pp yxFyxyx ),(,,

(Egger and Gogolin PRL1997, Kane et al. PRL 1997)

0k

)(),( xyxF pp

Page 21: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Coulomb interaction

Second-quantized interaction part:

Unscreened potential on tube surface

2222

2

2

´sin4´)(

/

zaR

yyRxx

eU

rrrrUrrrdrdH I

´´´´

2

1´´

´

Page 22: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

1D fermion interactions

Momentum conservation allows only two type of processes away from half-filling

- Forward scattering: electrons remain at same Fermi point, probes long-range part of interaction

- Backscattering: electrons scattered to opposite Fermi point, probes short-range properties of interaction

- Backscattering couplings scale as 1/R, sizeable only for ultrathin tubes

Page 23: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Backscattering couplings

Fk2

Momentum exchange

Fq2

Coupling constant

Reaf /05.0/ 2Reab /1.0/ 2

Page 24: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Bosonization:

four bosonic fields (linear combinations of )- charge (c) and spin (s)

- symmetric/antisymmetric K point combinations

Bosonized Hamiltonian

Effective low-energy Hamiltonian

termsnonlinear2

222 aaaa

F Kv

dxH

),,,( ssccaa

(Egger and Gogolin PRL1997, Kane et al. PRL 1997)

rFF ixirqxki

r e 4~

r

Page 25: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Luttinger parameters for SWNTs

Bosonization gives

Long-range part of interaction only affects total charge mode

- logarithmic divergence for unscreened interaction, cut off by tube length

very strong correlations !

3.02.02ln8

12/12

RL

v

eKg

Fc

1caK

Page 26: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Phase diagram (quasi long range order)

Effective field theory can be solved in practically exact way

Low temperature phases matter only for ultrathin tubes or in sub-mKelvin regime

bF RRbvbB

bf

eDeTk

TbfT//

)/(

Page 27: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Theoretical predictions

Suppression of tunneling DoS:

- geometry dependent exponent:

Linear conductance across an impurity:

Universal scaling of scaled non-linear conductance across an impurity as function of

EEx ),(

4/)1/1(

8/2/1

g

gg

end

bulk

endTTG 2)(

TkeV B/

Page 28: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Evidence for Luttinger liquid

(Yao et al., Nature 1999)

gives 22.0g

end2

bulk

Page 29: An introduction to the theory of Carbon nanotubes A. De Martino Institut für Theoretische Physik Heinrich-Heine Universität Düsseldorf, Germany.

Conclusions

Effective field theory + bosonization for low-energy properties of SWNTs

Very low-temperature : strong-coupling phases

High-temperature : Luttinger liquid physics

Clear experimental evidence from tunnelling conductance experiments


Recommended