+ All Categories
Home > Documents > Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia...

Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia...

Date post: 18-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
32
Nilpotent Lie algebras Curvatures of a nilpotent Lie algebras Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras On the curvatures of subalgebras of nilpotent Lie algebras Ana Hini´ c Gali´ c La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau (Universitat Aut` onoma de Barcelona, Spain) PADGE2012, KULeuven, Belgium August 29, 2012 Ana Hini´ c Gali´ c La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras
Transcript
Page 1: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

On the curvatures of subalgebras of nilpotent Lie algebras

Ana Hinic GalicLa Trobe University, Australia

coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia)Marcel Nicolau (Universitat Autonoma de Barcelona, Spain)

PADGE2012, KULeuven, Belgium

August 29, 2012

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 2: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Table of contents

1 Nilpotent Lie algebras

2 Curvatures of a nilpotent Lie algebrasMetric Lie algebrasSectional curvatureRicci curvatureScalar curvature

3 Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 3: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Nilpotent Lie algebras

Let g be an n-dimensional Lie algebra over R.

• Defined the following ideals:C0(g) = g ,C1(g) = [g, g],Ck+1(g) = [Ck(g), g], for all k ≥ 0.

Then we have the descending central series of g:

g = C0(g) ⊃ C1(g) ⊃ · · · ⊃ Ck(g) ⊃ . . . .

Definition

A Lie algebra g is called nilpotent if there is an integer k such that

Ck(g) = {0}.

The smallest integer k such that Ck(g) = {0} is called the nilindex of g.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 4: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Nilpotent Lie algebras

Let g be an n-dimensional Lie algebra over R.

• Defined the following ideals:C0(g) = g ,C1(g) = [g, g],Ck+1(g) = [Ck(g), g], for all k ≥ 0.

Then we have the descending central series of g:

g = C0(g) ⊃ C1(g) ⊃ · · · ⊃ Ck(g) ⊃ . . . .

Definition

A Lie algebra g is called nilpotent if there is an integer k such that

Ck(g) = {0}.

The smallest integer k such that Ck(g) = {0} is called the nilindex of g.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 5: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Nilpotent Lie algebras

Let g be an n-dimensional Lie algebra over R.

• Defined the following ideals:C0(g) = g ,C1(g) = [g, g],Ck+1(g) = [Ck(g), g], for all k ≥ 0.

Then we have the descending central series of g:

g = C0(g) ⊃ C1(g) ⊃ · · · ⊃ Ck(g) ⊃ . . . .

Definition

A Lie algebra g is called nilpotent if there is an integer k such that

Ck(g) = {0}.

The smallest integer k such that Ck(g) = {0} is called the nilindex of g.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 6: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Examples of nilpotent Lie algebras

1 Every abelian Lie algebra is nilpotent with the nilindex equal to 1.

2 The Heisenberg algebra h2k+1 defined in the basis {X1,X2, . . . ,X2k+1} by

[X2i−1,X2i ] = X2k+1 , i = 1, . . . , k.

The nilindex is equal to 2.

3 The n-dimensional algebra m0(n) defined in a basis {X1, . . . ,Xn} by thebrackets

[X1,Xi ] = Xi+1 for all 2 ≤ i ≤ n − 1.

The nilindex is equal to n − 1.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 7: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Metric Lie algebras

• Let (G , g) be a simply-connected Lie group with left-invariant Riemannianmetric g .

• Then (g, 〈·, ·〉) is the corresponding Lie algebra of G equipped with an innerproduct (a metric Lie algebra).

• If g is a metric Lie algebra, with inner product 〈·, ·〉, the Levi-Civitaconnection on g is given by:

2〈∇XY ,Z〉 = 〈[X ,Y ],Z〉+ 〈[Z ,X ],Y 〉+ 〈[Z ,Y ],X 〉, ∀X ,Y ,Z ∈ g. (1)

• Decomposition:

∇XY =1

2[X ,Y ] + U(X ,Y ), where

〈U(X ,Y ),Z〉 =1

2(〈[Z ,X ],Y 〉+ 〈[Z ,Y ],X 〉) .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 8: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Metric Lie algebras

• Let (G , g) be a simply-connected Lie group with left-invariant Riemannianmetric g .

• Then (g, 〈·, ·〉) is the corresponding Lie algebra of G equipped with an innerproduct (a metric Lie algebra).

• If g is a metric Lie algebra, with inner product 〈·, ·〉, the Levi-Civitaconnection on g is given by:

2〈∇XY ,Z〉 = 〈[X ,Y ],Z〉+ 〈[Z ,X ],Y 〉+ 〈[Z ,Y ],X 〉, ∀X ,Y ,Z ∈ g. (1)

• Decomposition:

∇XY =1

2[X ,Y ] + U(X ,Y ), where

〈U(X ,Y ),Z〉 =1

2(〈[Z ,X ],Y 〉+ 〈[Z ,Y ],X 〉) .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 9: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Sectional curvature

• For a metric Lie algebra g, the sectional curvature for X ,Y ∈ g:

K(X ,Y ) = − R(X ,Y ,X ,Y )

〈X ,X 〉〈Y ,Y 〉 − 〈X ,Y 〉2 . (2)

• The numerator k of the curvature function K for X ,Y ∈ g is equal to

k(X ,Y ) =− R(X ,Y ,X ,Y )

=‖U(X ,Y )‖2 − 〈U(X ,X ),U(Y ,Y )〉 − 3

4‖[X ,Y ]‖2

− 1

2〈[X , [X ,Y ]],Y 〉 − 1

2〈[Y , [Y ,X ]],X 〉.

(3)

Theorem (Wolf, 1964)

Let (G , g) be a connected nonabelian nilpotent Lie group and let g be thecorresponding Lie algebra.Then there exist two-dimensional subspaces π1, π2, π3 ⊂ g such that thesectional curvatures satisfy

K(π1) < 0 < K(π3) and K(π2) = 0.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 10: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Sectional curvature

• For a metric Lie algebra g, the sectional curvature for X ,Y ∈ g:

K(X ,Y ) = − R(X ,Y ,X ,Y )

〈X ,X 〉〈Y ,Y 〉 − 〈X ,Y 〉2 . (2)

• The numerator k of the curvature function K for X ,Y ∈ g is equal to

k(X ,Y ) =− R(X ,Y ,X ,Y )

=‖U(X ,Y )‖2 − 〈U(X ,X ),U(Y ,Y )〉 − 3

4‖[X ,Y ]‖2

− 1

2〈[X , [X ,Y ]],Y 〉 − 1

2〈[Y , [Y ,X ]],X 〉.

(3)

Theorem (Wolf, 1964)

Let (G , g) be a connected nonabelian nilpotent Lie group and let g be thecorresponding Lie algebra.Then there exist two-dimensional subspaces π1, π2, π3 ⊂ g such that thesectional curvatures satisfy

K(π1) < 0 < K(π3) and K(π2) = 0.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 11: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Ricci curvature

• Ricci curvature tensor: Ric(X ,Y ) =∑n

i=1 R(Ei ,X ,Y ,Ei ) where{E1,E2, . . . ,En} is an orthonormal basis for g.

• Ricci curvature in the direction of X ∈ g (X 6= 0) is

Ric(X ) =Ric(X ,X )

‖X‖2 . (4)

• I. Dotti, 1982: For a metric Lie algebra g, the Ricci curvature function in adirection X ∈ g is given by

ric(X ) = Ric(X ,X ) =n∑

i=1

R(Ei ,X ,X ,Ei )

= −1

2

n∑i=1

‖[X ,Ei ]‖2 −1

2B(X ,X ) +

1

4

n∑i,j=1

〈X , [Ei ,Ej ]〉2 −n∑

i=1

〈[U(Ei ,Ei ),X ],X 〉,

(5)

where B(X ,Y ) = tr(ad(X ) ◦ ad(Y )) is the Killing form.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 12: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Ricci curvature

• Ricci curvature tensor: Ric(X ,Y ) =∑n

i=1 R(Ei ,X ,Y ,Ei ) where{E1,E2, . . . ,En} is an orthonormal basis for g.

• Ricci curvature in the direction of X ∈ g (X 6= 0) is

Ric(X ) =Ric(X ,X )

‖X‖2 . (4)

• I. Dotti, 1982: For a metric Lie algebra g, the Ricci curvature function in adirection X ∈ g is given by

ric(X ) = Ric(X ,X ) =n∑

i=1

R(Ei ,X ,X ,Ei )

= −1

2

n∑i=1

‖[X ,Ei ]‖2 −1

2B(X ,X ) +

1

4

n∑i,j=1

〈X , [Ei ,Ej ]〉2 −n∑

i=1

〈[U(Ei ,Ei ),X ],X 〉,

(5)

where B(X ,Y ) = tr(ad(X ) ◦ ad(Y )) is the Killing form.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 13: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Lemma

Let g be a nilpotent metric Lie algebra and {E1,E2, . . . ,En} an orthonormalbasis. Then for all X ,Y ∈ g

(a) ric(X ) = 14

∑ni,j=1〈X , [Ei ,Ej ]〉2 − 1

2

∑ni=1 ‖[X ,Ei ]‖2,

(b) Ric(X ,Y ) = 14

∑ni,j=1〈[Ei ,Ej ],X 〉〈[Ei ,Ej ],Y 〉 − 1

2

∑ni=1〈[X ,Ei ], [Y ,Ei ]〉.

Theorem (Milnor, 1976)

For any left-invariant metric on a nonabelian nilpotent Lie group there exists adirection of strictly negative Ricci curvature and a direction of strictly positiveRicci curvature.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 14: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Lemma

Let g be a nilpotent metric Lie algebra and {E1,E2, . . . ,En} an orthonormalbasis. Then for all X ,Y ∈ g

(a) ric(X ) = 14

∑ni,j=1〈X , [Ei ,Ej ]〉2 − 1

2

∑ni=1 ‖[X ,Ei ]‖2,

(b) Ric(X ,Y ) = 14

∑ni,j=1〈[Ei ,Ej ],X 〉〈[Ei ,Ej ],Y 〉 − 1

2

∑ni=1〈[X ,Ei ], [Y ,Ei ]〉.

Theorem (Milnor, 1976)

For any left-invariant metric on a nonabelian nilpotent Lie group there exists adirection of strictly negative Ricci curvature and a direction of strictly positiveRicci curvature.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 15: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Scalar curvature

The scalar curvature of a metric Lie algebra g is given by

s =n∑

i=1

Ric(Ei )

= −1

4

n∑i,j=1

‖[Ei ,Ej ]‖2 −1

2

n∑i=1

B(Ei ,Ei )− ‖n∑

i=1

U(Ei ,Ei )‖2.(6)

Lemma

Suppose that g is an n-dimensional metric Lie algebra with an orthonormalbasis {E1, . . . ,En} with respect to which the commutator coefficients are c k

i,j ;

that is, [Ei ,Ej ] =∑n

k=1 c ki,j Ek .

If g is nilpotent, then its scalar curvature is

s = −1

4

n∑i,j,k=1

(c ki,j

)2

.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 16: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Metric Lie algebrasSectional curvatureRicci curvatureScalar curvature

Scalar curvature

The scalar curvature of a metric Lie algebra g is given by

s =n∑

i=1

Ric(Ei )

= −1

4

n∑i,j=1

‖[Ei ,Ej ]‖2 −1

2

n∑i=1

B(Ei ,Ei )− ‖n∑

i=1

U(Ei ,Ei )‖2.(6)

Lemma

Suppose that g is an n-dimensional metric Lie algebra with an orthonormalbasis {E1, . . . ,En} with respect to which the commutator coefficients are c k

i,j ;

that is, [Ei ,Ej ] =∑n

k=1 c ki,j Ek .

If g is nilpotent, then its scalar curvature is

s = −1

4

n∑i,j,k=1

(c ki,j

)2

.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 17: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Consider a Lie subgroup H of a simply-connected Lie group G and thecorresponding Lie algebras h and g respectively.

• ∇h: the Levi-Civita connection on H defined by the restriction of 〈·, ·〉g to h.

• The second fundamental form of g, defined by Gauss’ formula as

α(X ,Y ) = ∇X Y −∇hXY ,

has the explicit form

α(X ,Y ) =1

2

r∑j=1

(〈[fj ,X ],Y 〉+ 〈[fj ,Y ],X 〉) fj (7)

for an orthonormal basis {f1, . . . , fr} of the orthogonal complement h⊥ of h.

• Let {h1, . . . , hm} be an orthonormal basis for a subalgebra h of g.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 18: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Consider a Lie subgroup H of a simply-connected Lie group G and thecorresponding Lie algebras h and g respectively.

• ∇h: the Levi-Civita connection on H defined by the restriction of 〈·, ·〉g to h.

• The second fundamental form of g, defined by Gauss’ formula as

α(X ,Y ) = ∇X Y −∇hXY ,

has the explicit form

α(X ,Y ) =1

2

r∑j=1

(〈[fj ,X ],Y 〉+ 〈[fj ,Y ],X 〉) fj (7)

for an orthonormal basis {f1, . . . , fr} of the orthogonal complement h⊥ of h.

• Let {h1, . . . , hm} be an orthonormal basis for a subalgebra h of g.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 19: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Let h be an ideal of a nilpotent Lie algebra g and f ∈ h⊥.

• Then [f , h] ⊂ h and ad(f ) is nilpotent, so the restriction of ad(f ) to h isnilpotent and hence

tr(ad(f ) |h) = 0.

• Then (7) impliesm∑

i=1

α(hi , hi ) = 0

so the mean curvature ‖∑m

i=1 α(hi , hi )‖ of h is equal to zero.

Lemma

Let H be a connected Lie subgroup of a simply-connected nilpotent Lie groupG endowed with a left-invariant Riemannian metric and let the correspondingLie algebras be h and g, respectively.If h is an ideal of g, then H is a minimal submanifold of G .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 20: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Let h be an ideal of a nilpotent Lie algebra g and f ∈ h⊥.

• Then [f , h] ⊂ h and ad(f ) is nilpotent, so the restriction of ad(f ) to h isnilpotent and hence

tr(ad(f ) |h) = 0.

• Then (7) impliesm∑

i=1

α(hi , hi ) = 0

so the mean curvature ‖∑m

i=1 α(hi , hi )‖ of h is equal to zero.

Lemma

Let H be a connected Lie subgroup of a simply-connected nilpotent Lie groupG endowed with a left-invariant Riemannian metric and let the correspondingLie algebras be h and g, respectively.If h is an ideal of g, then H is a minimal submanifold of G .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 21: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

• The intrinsic curvatures of h:Rh,Kh,Rich, s(h) the curvature operator, sectional curvature, Ricci curvatureand scalar curvature, respectively, defined by ∇h.

• The extrinsic curvatures of h:Rh

e ,Khe ,Rich

e , se(h) the curvature operator, sectional curvature, Ricci curvatureand scalar curvature by using the Levi-Civita connection ∇ of G .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 22: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

• The intrinsic curvatures of h:Rh,Kh,Rich, s(h) the curvature operator, sectional curvature, Ricci curvatureand scalar curvature, respectively, defined by ∇h.

• The extrinsic curvatures of h:Rh

e ,Khe ,Rich

e , se(h) the curvature operator, sectional curvature, Ricci curvatureand scalar curvature by using the Levi-Civita connection ∇ of G .

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 23: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Intrinsic and extrinsic sectional curvatures

• For X ,Y ∈ h, the extrinsic sectional curvature is just K(X ,Y ) and thecorresponding formula is given by

K(X ,Y ) = Kh(X ,Y )− 〈α(X ,X ), α(Y ,Y )〉 − ‖α(X ,Y )‖2

‖X‖2‖Y ‖2 − 〈X ,Y 〉2 ,

for linearly independent (not necessary orthonormal) vector fields X ,Y ∈ h.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 24: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

• For X ,Y ∈ h, the extrinsic Ricci curvature tensor is

Riche (X ,Y ) =

m∑i=1

R(hi ,X ,Y , hi ).

• The extrinsic Ricci curvature in a direction of a unit vector field X ∈ h is

Riche (X ) = Rich

e (X ,X ). (8)

Theorem

Let h be an ideal of a nilpotent Lie algebra g and choose an orthonormal basis{h1, . . . , hm} for h. If X ∈ h, then the Ricci curvature function satisfies

riche (X ) = rich(X ) +

m∑i=1

‖α(X , hi )‖2,

while for X 6= 0, the extrinsic Ricci curvature satisfies

Riche (X ) = Rich(X ) +

m∑i=1

‖α(X , hi )‖2

‖X‖2 . (9)

In particular, Riche (X ) ≥ Rich(X ).

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 25: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Corollary

If a is an abelian ideal of a nilpotent Lie algebra g, thenthe extrinsic Ricci curvature Rica

e (X ) is nonnegative for all X ∈ a.

You cannot just replace the Ricci curvature by the sectional curvature.It is not true that for an abelian ideal a, one has K(X ,Y ) ≥ 0 for all X ,Y ∈ a.Indeed, consider the five-dimensional algebra generated by the orthonormalbasis {X1, . . . ,X5} with relations

[X1,X2] = X3, [X1,X4] = X5.

X2, . . . ,X5 generate a four-dimensional abelian ideal. However, forX = (X2 + X3)/2 and Y = (X4 + X5)/2 we have

K(X ,Y ) = −1/4.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 26: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Corollary

If a is an abelian ideal of a nilpotent Lie algebra g, thenthe extrinsic Ricci curvature Rica

e (X ) is nonnegative for all X ∈ a.

You cannot just replace the Ricci curvature by the sectional curvature.It is not true that for an abelian ideal a, one has K(X ,Y ) ≥ 0 for all X ,Y ∈ a.Indeed, consider the five-dimensional algebra generated by the orthonormalbasis {X1, . . . ,X5} with relations

[X1,X2] = X3, [X1,X4] = X5.

X2, . . . ,X5 generate a four-dimensional abelian ideal. However, forX = (X2 + X3)/2 and Y = (X4 + X5)/2 we have

K(X ,Y ) = −1/4.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 27: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Theorem

Let h be an ideal of a nilpotent Lie algebra g and choose an orthonormal basis{h1, . . . , hm} for h. Then

se(h) = s(h) +m∑

i,j=1

‖α(hi , hj)‖2. (10)

In particular, se(h) ≥ s(h).

Corollary

If a is an abelian ideal of a nilpotent Lie algebra g, thenthe extrinsic scalar curvature se(a) of a is nonnegative.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 28: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Theorem

Let h be an ideal of a nilpotent Lie algebra g and choose an orthonormal basis{h1, . . . , hm} for h. Then

se(h) = s(h) +m∑

i,j=1

‖α(hi , hj)‖2. (10)

In particular, se(h) ≥ s(h).

Corollary

If a is an abelian ideal of a nilpotent Lie algebra g, thenthe extrinsic scalar curvature se(a) of a is nonnegative.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 29: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Corollary

If a1, a2 are abelian ideals of a nilpotent Lie algebra g, with a1 ⊂ a2, then

se(a1) ≤ se(a2).

An ideal with the maximal extrinsic scalar curvature may not be abelian.Consider the five-dimensional Lie algebra g generated by the orthonormal basis{X1, . . . ,X5} with the relations

[X1,X2] = 2X3, [X1,X3] =1

2X4, [X1,X4] = X5, [X2,X3] =

1

2X5.

Let hk be the ideal generated by Xk , . . . ,X5. So one has the seriesg = h1 ⊃ · · · ⊃ h5.

k 1 2 3 4 5

se(hk) −114

52

34

12

0

The maximum occurs at h2, which is not abelian.The algebra g in this example has the property that it has a unique maximalabelian ideal, h3.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 30: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Corollary

If X ,Y generate a two-dimensional ideal a of a nilpotent Lie algebra g, then

K(X ,Y ) ≥ 0.

You cannot just replace ideal by subalgebraConsider the five-dimensional algebra generated by the orthonormal basis{X1, . . . ,X5} with relations

[X1,X2] = X3, [X1,X4] = X5.

Then X = (X2 + X3)/2 and Y = (X4 + X5)/2 generate a two-dimensionalabelian subalgebra, while K(X ,Y ) = −1/4.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 31: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

Corollary

If X ,Y generate a two-dimensional ideal a of a nilpotent Lie algebra g, then

K(X ,Y ) ≥ 0.

You cannot just replace ideal by subalgebraConsider the five-dimensional algebra generated by the orthonormal basis{X1, . . . ,X5} with relations

[X1,X2] = X3, [X1,X4] = X5.

Then X = (X2 + X3)/2 and Y = (X4 + X5)/2 generate a two-dimensionalabelian subalgebra, while K(X ,Y ) = −1/4.

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras

Page 32: Ana Hini c Gali c La Trobe University, Australia Marcel ... · La Trobe University, Australia coauthors: Grant Cairns, Yury Nikolayevsky (La Trobe University, Australia) Marcel Nicolau

Nilpotent Lie algebrasCurvatures of a nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebras

Intrinsic and extrinsic curvatures of subalgebras of nilpotent Lie algebrasIntrinsic and extrinsic sectional curvaturesIntrinsic and extrinsic Ricci curvaturesIntrinsic and extrinsic scalar curvatures

THANK YOU FOR YOUR ATTENTION

Ana Hinic Galic La Trobe University, Australia On the curvatures of subalgebras of nilpotent Lie algebras


Recommended