+ All Categories
Home > Documents > Analog to Digital Converters (ADC)

Analog to Digital Converters (ADC)

Date post: 23-Feb-2016
Category:
Upload: colby
View: 79 times
Download: 1 times
Share this document with a friend
Description:
Analog to Digital Converters (ADC). Ben Lester, Mike Steele, Quinn Morrison. Topics. Introduction Why? Types and Comparisons Successive Approximation ADC example Applications ADC System in the CML-12C32 Microcontroller. - PowerPoint PPT Presentation
Popular Tags:
44
Analog to Digital Converters (ADC) Ben Lester, Mike Steele, Quinn Morrison
Transcript
Page 1: Analog to Digital Converters (ADC)

Analog to Digital Converters (ADC)

Ben Lester, Mike Steele, Quinn Morrison

Page 2: Analog to Digital Converters (ADC)

Topics

Introduction Why? Types and Comparisons

Successive Approximation ADC example Applications ADC System in the CML-12C32

Microcontroller

Page 3: Analog to Digital Converters (ADC)

Analog systems are typically what engineers need to analyze. ADCs are used to turn analog information into digital data.

Page 4: Analog to Digital Converters (ADC)

Process Sampling, Quantification, Encoding

Output States

Discrete Voltage Ranges (V)

0 0.00-1.251 1.25-2.502 2.50-3.753 3.75-5.004 5.00-6.255 6.25-7.506 7.50-8.757 8.75-10.0

Out-put

Binary Equivalent

0 0001 0012 0103 0114 1005 1016 1107 111

Page 5: Analog to Digital Converters (ADC)

Resolution, Accuracy, and Conversion time Resolution – Number of discrete

values it can produce over the range of analog values; Q=R/N

Accuracy – Improved by increasing sampling rate and resolution.

Time – Based on number of steps required in the conversion process.

Page 6: Analog to Digital Converters (ADC)

Comparing types of ADCs

Flash ADC Sigma-delta ADC Wilkinson ADC Integrating ADC Successive Approximation

Converter

Page 7: Analog to Digital Converters (ADC)

Flash ADC

Speed: High Cost: High Accuracy: Low

Page 8: Analog to Digital Converters (ADC)

Sigma-delta ADC

Speed: Low Cost: Low Accuracy: High

Page 9: Analog to Digital Converters (ADC)

Wilkinson ADC

Speed: High Cost: High Accuracy: High

Wilkinson Analog Digital Converter

(ADC) circuit schematic diagram

Page 10: Analog to Digital Converters (ADC)

Integrating ADC

Speed: Low Cost: Low Accuracy: High

Page 11: Analog to Digital Converters (ADC)

Successive Approximation Converter

Speed: High Cost: High Accuracy: High but limited

Page 12: Analog to Digital Converters (ADC)

Topics

Introduction Why? Types and Comparisions

Successive Approximation ADC example Applications ADC System in the CML-12C32

Microcontroller

Page 13: Analog to Digital Converters (ADC)

Successive Approximation ADC ExampleMike Steele

Goal: Find digital value Vin

• 8-bit ADC• Vin = 7.65

• Vfull scale = 10

Page 14: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 7• (Vfull scale +0)/2 = 5• 7.65 > 5 Bit 7 = 1

Vfull scale = 10, Vin = 7.65

1             

Page 15: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 6• (Vfull scale +5)/2 = 7.5• 7.65 > 7.5 Bit 6 = 1

Vfull scale = 10, Vin = 7.65

1  1           

Page 16: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 5• (Vfull scale +7.5)/2 = 8.75• 7.65 < 8.75 Bit 5 = 0

Vfull scale = 10, Vin = 7.65

1  1  0         

Page 17: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 4• (8.75+7.5)/2 8.125• 7.65 < 8.125 Bit 4 = 0

Vin = 7.65

1  1  0  0       

Page 18: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 3• (8.125+7.5)/2 = 7.8125• 7.65 < 7.8125 Bit 3 = 0

Vin = 7.65

1  1  0  0 0      

Page 19: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 2• (7.8125+7.5)/2 = 7.65625• 7.65 < 7.65625 Bit 2 = 0

Vin = 7.65

1  1  0  0 0   0   

Page 20: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 1• (7.65625+7.5)/2 = 7.578125• 7.65 > 7.578125 Bit 1 = 1

Vin = 7.65

1  1  0  0 0   0 1  

Page 21: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• MSB LSB• Average high/low limits• Compare to Vin

• Vin > Average MSB = 1

• Vin < Average MSB = 0

• Bit 0• (7.65625+7.578125)/2 =

7.6171875• 7.65 > 7.6171875 Bit 0 = 1

Vin = 7.65

1  1  0  0 0   0 1  1 

Page 22: Analog to Digital Converters (ADC)

Successive Approximation ADC Example

• 110000112 = 19510

• 8-bits, 28 = 256• Digital Output

• 195/256 = 0.76171875• Analog Input

• 7.65/10 = 0.765

• Resolution• (Vmax – Vmin)/2n 10/256 = 0.039

1  1  0  0 0   0 1  1 

7 6 5 4 3 2 1 00

0.2

0.4

0.6

0.8

1

Volta

ge

Bit

Vin = 7.65

Page 23: Analog to Digital Converters (ADC)

ADC Applications• Measurements / Data Acquisition• Control Systems• PLCs (Programmable Logic Controllers)• Sensor integration (Robotics)• Cell Phones• Video Devices • Audio Devices

t t

e e*Controller00

1001

0100

1110

11

∆t

e*(∆t)

1001

0010

1010

0101

∆t

u*(∆t)

Page 24: Analog to Digital Converters (ADC)

ATD10B8C on MC9S12C32

Presented by

Quinn Morrison

Page 25: Analog to Digital Converters (ADC)

MC9S12C32 Block Diagram

ATD 10B8C

Page 26: Analog to Digital Converters (ADC)

ATD10B8C Block Diagram

Page 27: Analog to Digital Converters (ADC)

ATD10B8C Key Features Resolution

8/10 bit (manually chosen) Conversion Time

7 usec, 10 bit Successive Approximation ADC

architecture 8-channel multiplexed inputs External trigger control Conversion modes

Single or continuous sampling Single or multiple channels

Page 28: Analog to Digital Converters (ADC)

ATD10B8C Modes and OperationsModes Stop Mode

All clocks halt; conversion aborts; minimum recovery delay Wait Mode

Reduced MCU power; can resume Freeze Mode

Breakpoint for debugging an application

Operations Setting up and Starting the A/D Conversion Aborting the A/D Conversion Resets Interrupts

Page 29: Analog to Digital Converters (ADC)

ATD10B8C External Pins There Are 12 External Pins

AN7 / ETRIG / PAD7 Analog input channel 7 External trigger for ADC General purpose digital I/O

AN6/PAD6 – AN0/PAD0 Analog input General purpose digital I/O

VRH, VRL High and low reference voltages for

ADC

VDDA, VSSA Power supplies for analog circuitry

Page 30: Analog to Digital Converters (ADC)

ATD10B8C Registers

6 Control Registers ($0080 - $0085) Configure general ADC operation

2 Status Registers ($0086, $008B) General status information regarding ADC

2 Test Registers ($0088 - $0089) Allows for analog conversion of internal states

16 Conversion Result Registers ($0090 - $009F) Formatted results (2 bytes)

1 Digital Input Enable Register ($008D) Convert channels to digital inputs

1 Digital Port Data Register ($008F) Contains logic levels of digital input pins

Page 31: Analog to Digital Converters (ADC)

ATD10B8C Control Register 2

Page 32: Analog to Digital Converters (ADC)

ATD10B8C Control Register 3

Page 33: Analog to Digital Converters (ADC)

ATD10B8C Control Register 4

Page 34: Analog to Digital Converters (ADC)

ATD10B8C Control Register 5

Page 35: Analog to Digital Converters (ADC)

ATD10B8C Single Channel Conversions

Page 36: Analog to Digital Converters (ADC)

ATD10B8C Multi-channel Conversions

Page 37: Analog to Digital Converters (ADC)

ATD10B8C Status Register 0

Page 38: Analog to Digital Converters (ADC)

ATD10B8C Status Register 1

Page 39: Analog to Digital Converters (ADC)

ATD10B8C Results Registers

Page 40: Analog to Digital Converters (ADC)

ATD10B8C Results Registers

Page 41: Analog to Digital Converters (ADC)

ATD10B8C ATD Input Enable Register

Page 42: Analog to Digital Converters (ADC)

ATD10B8C Port Data Register

Page 43: Analog to Digital Converters (ADC)

ATD10B8C Setting up the ADC

Page 44: Analog to Digital Converters (ADC)

References• Dr. Ume, http://www.me.gatech.edu/mechatronics_course/• Maxim Integrated Products, AN1870, AN 1870, APP1870, Appnote1870,

Appnote 1870

• "An Introduction to Sigma Delta Converters." Die Homepage Der Familie Beis. 10 June 2008. Web. 27 Sept. 2010. <http://www.beis.de/Elektronik/DeltaSigma/SigmaDelta.html>.


Recommended