+ All Categories
Home > Documents > Analyses of representative DEC events of the ETDR

Analyses of representative DEC events of the ETDR

Date post: 16-Feb-2016
Category:
Upload: lenka
View: 39 times
Download: 0 times
Share this document with a friend
Description:
LEADER 4 th WP5 MEETING, Karlsruhe – 22 nd of November 2012. Analyses of representative DEC events of the ETDR. Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden. ETDR – ALFRED description. Pool-type 300 MWth - PowerPoint PPT Presentation
Popular Tags:
16
1 Kaspar Kööp, Marti Jeltsov Division of Nuclear Power Safety Royal Institute of Technology (KTH) Stockholm, Sweden LEADER 4 th WP5 MEETING, Karlsruhe – 22 nd of November 2012 Analyses of representative DEC events of the ETDR
Transcript
Page 1: Analyses of representative DEC events of the ETDR

1

Kaspar Kööp, Marti JeltsovDivision of Nuclear Power Safety

Royal Institute of Technology (KTH) Stockholm, Sweden

LEADER 4th WP5 MEETING, Karlsruhe – 22nd of November 2012

Analyses of representative DEC eventsof the ETDR

Page 2: Analyses of representative DEC events of the ETDR

2

ETDR – ALFRED description• Pool-type• 300 MWth• Core pressure drop 1 bar• Temperature

– Core inlet 400 C– Core outlet 480 C

• Coolant velocity– Average 2 m/s– Maximum 3 m/s

• Lead void effect at EOC (only the fuel zones)– +2 $

Page 3: Analyses of representative DEC events of the ETDR

3

KTH contributionTransients to be analyzed for Pb-cooled ALFRED Design (LEADER project)

Case Number Transient Description Burnup

State  

Transients analyzed for Lb-cooled ALFRED Design BOC EOC

ENEA KIT-G NRG JRC/IET KTH

RELAP5 SIM-LFR SPECTRA SIMMER / TRACE

RELAP5 / CFD code

DEC Transients

TR-4

Reactivity insertion

(enveloping SGTR, flow blockage,

core compaction)

Reactivity insertion (voiding of part of

active region enveloping voids

introduction due SGTR, core compaction, fuel blockage) = 250 pcm

Reactor at hot full power (HFP)

X X X X X X (*) X (**)

TO-3

Reduction of FW

temperature + all pumps

stop

Loss of one preheater (feedwater temperature reduction from 335oC

down to 300oC) All primary pumps are

stoppedReactor is tripped

X X X X X    

TO-6

Increase of FW flowrate+

all pumps stop

20 % increase in feedwater flowrate

All primary pumps are stopped

Reactor is tripped

X X X X X    

T-DEC1

Complete loss of forced

flow + Reactor trip fails (total

ULOF)

All primary pumps are stopped

Feedwater system available

Reactor trip fails

X X X X X X (*) X

T-DEC3Loss of SCS+ Reactor trip

fails (ULOHS)

All primary pumps are operating

DHR system is operating

Reactor trip fails

X X X X X X (*)  

T-DEC4

Loss of off-site power (LOOP) +

Reactor trip fails (ULOHS

+ ULOF)

All primary pumps are stopped

SCS is lostDHR system is

operatingReactor trip fails

X X X X X   X

T-DEC5

Partial blockage in the hottest

fuel assembly

Reactor trip failsThe maximum acceptable flow

reduction factor has to be determined

X X X X X X  

T-DEC6 SCS failure

All primary pumps are operating

DHR system totally fails

Reactor is tripped

X X X X X    

• TR-4 – a transient event due to reactivity insertion (enveloping SGTR, flow blockage, core compaction)

• T-DEC1 – complete loss of forced flow + SCRAM fail

• T-DEC4 – complete loss of forced flow, complete loss of SCS, DHR system operating + SCRAM fail

Page 4: Analyses of representative DEC events of the ETDR

4

TR-4 – Description

• TR-4 – a transient event due to reactivity insertion (enveloping SGTR, flow blockage, core compaction)

• We have shown in our previous works that using system TH codes it is not possible "...to investigate whether the steam bubble or bubbles can be dragged downwards towards the core inlet region.“

• Steam Generator Tube Leakage (SGTL) is assumed to be the cause for reactivity insertion (voiding of part of active region

• We address the task on the transport of bubbles that have leaked in the SG to the primary coolant flow

• Reactor is at hot full power (HFP)• Actions:

– First thermal-hydraulic part (CFD analysis of bubble transport)– Neutronic part (SERPENT code to look at the consequences of different

local core voiding that are typical for SG leakage)

Page 5: Analyses of representative DEC events of the ETDR

5

TR-4 – Thermal-hydraulics approach• Approach:

– Develop (or ask from partners) 3D CAD model of primary system of ALFRED according to the latest design provided to LEADER partners.

– Create 3D mesh of the primary system for CFD analysis.– Simulate primary coolant flow at normal (HFP) operation conditions

with a 3D CFD code (Star-CCM+)– Simulate bubble transport from the SG to the core– Assumptions in modeling of bubble transport:

• Lagrangian framework• Turbulent dispersion• Uncertainty in:

– bubble size distribution– different correlations for bubble drag in lead– locations of possible leakage from steam generator– leak rate– voiding scenarios– etc.

– Assess void accumulation rate in the core accounting for the uncertainties given

Page 6: Analyses of representative DEC events of the ETDR

6

TR-4 – Neutronics approach

• Neutronics part of the analysis is foreseen to be done using Serpent Monte Carlo code

• Input for neutronic calculation– void characteristics:

• accumulation rates• voiding scenarios are input for neutronics calculation

– geometry• ALFRED model exists in the house

Page 7: Analyses of representative DEC events of the ETDR

7

T-DEC1&4 ENEA’s RELAP5 model

Feedwater

Steam521-8

531-8

551-8 561-8

151-

8

Feedwater

Steam521-8

531-8

551-8 561-8

151-

8

841- 4

851- 8441-8

801- 4

811-4831-4

815

401-8

841- 4

-

801- 4

811-4831-4

815

841- 4

-

801- 4

811-4831-4

815

611- 8

841- 4

-

801- 4

811-4831-4

815

611-

711-

731-

741- 4

751- 8

761- 4

621- 4

641- 4

771

781- 8

601- 4

661- 4

611-

711- 8

731- 8

741- 4

751-

761- 4

621- 4

641- 4

771 - 8

781-

601- 4

661- 4

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781

601- 4

661- 4

841- 8

-

801- 4

811-4831-4

815

841-

-

801- 8

811-8831-8

815

611-

841-

-

801-

811-831-

411-8

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771

781

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

601- 8

661- 8

611-

711-

731-

741- 8

751-

761- 8

621- 8

641- 8

841- 4

851- 8441-8

801- 4

811-4831-4

815

401-8

841- 4

-

801- 4

811-4831-4

815

841- 4

-

801- 4

811-4831-4

815

611- 8

841- 4

-

801- 4

811-4831-4

815

611-

711-

731-

741- 4

751- 8

761- 4

621- 4

641- 4

771

781- 8

601- 4

661- 4

611-

711- 8

731- 8

741- 4

751-

761- 4

621- 4

641- 4

771 - 8

781-

601- 4

661- 4

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781

601- 4

661- 4

841- 8

-

801- 4

811-4831-4

815

841-

-

801- 8

811-8831-8

815

611-

841-

-

801-

811-831-

411-8

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771

781

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

601- 8

661- 8

611-

711-

731-

741- 8

751-

761- 8

621- 8

641- 8

ALFRED Nodalization scheme with RELAP5

8 SGs

8 Secondary loops Primary circuit

8 IC loops

Steam line

Feedwater line

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

Feedwater

Steam521-8

531-8

551-8 561-8

151-

8

Feedwater

Steam521-8

531-8

551-8 561-8

151-

8

841- 4

851- 8441-8

801- 4

811-4831-4

815

401-8

841- 4

-

801- 4

811-4831-4

815

841- 4

-

801- 4

811-4831-4

815

611- 8

841- 4

-

801- 4

811-4831-4

815

611-

711-

731-

741- 4

751- 8

761- 4

621- 4

641- 4

771

781- 8

601- 4

661- 4

611-

711- 8

731- 8

741- 4

751-

761- 4

621- 4

641- 4

771 - 8

781-

601- 4

661- 4

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781

601- 4

661- 4

841- 8

-

801- 4

811-4831-4

815

841-

-

801- 8

811-8831-8

815

611-

841-

-

801-

811-831-

411-8

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771

781

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

601- 8

661- 8

611-

711-

731-

741- 8

751-

761- 8

621- 8

641- 8

841- 4

851- 8441-8

801- 4

811-4831-4

815

401-8

841- 4

-

801- 4

811-4831-4

815

841- 4

-

801- 4

811-4831-4

815

611- 8

841- 4

-

801- 4

811-4831-4

815

611-

711-

731-

741- 4

751- 8

761- 4

621- 4

641- 4

771

781- 8

601- 4

661- 4

611-

711- 8

731- 8

741- 4

751-

761- 4

621- 4

641- 4

771 - 8

781-

601- 4

661- 4

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781

601- 4

661- 4

841- 8

-

801- 4

811-4831-4

815

841-

-

801- 8

811-8831-8

815

611-

841-

-

801-

811-831-

411-8

611-

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771

781

711-

731-

741- 4

751-

761- 4

621- 4

641- 4

771 -

781-

601- 8

661- 8

611-

711-

731-

741- 8

751-

761- 8

621- 8

641- 8

ALFRED Nodalization scheme with RELAP5

8 SGs

8 Secondary loops Primary circuit

8 IC loops

Steam line

Feedwater line

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

100

101102109

110

115

060061-8 070

050

020

200 151-8

121-8

131-8

141-8

220

230

210

Page 8: Analyses of representative DEC events of the ETDR

8

Model steady state

Parameter By design Previous input New input (5.11.12)Nominal reactor power 300 MWth 300.01 MWth 299.35 MWthNumber of SGs 8Number of PPs 8Power removed per SG 37.5 MWth 37.50125 MWth 37.41875 MWth

Lead (primary system)Core inlet temperature 400 C 673.07 K (399.92 C) 670.42 K (397.27 C)Core outlet temperature 480 C 753.03 K (479.88 C) 754.75 K (481.60 C)Mass flow rate 3247.5*8 kg/s 25013 kg/s (3126.625 * 8) 24636 kg/s (3079.5 * 8)

Secondary sidePressure

180 bar Imposed 188 bar feed water inImposed 180 bar steam out

Water inlet temperature 335 C 608.14 K (334.99 C) 608.14 K (334.99 C)Steam outlet temperature 450 C 723.36 k (450.21 C) 722.24 K (449.09 C)Mass flow rate 24.1 kg/s/SG 24.08 kg/s/SG 24.08 kg/s/SGPressure drop over core 0.98 bar

Page 9: Analyses of representative DEC events of the ETDR

9

T-DEC1 – Description

• T-DEC1 – complete loss of forced flow + SCRAM fail

• Pumps are tripped at 1500s

• Secondary side is operational, IC valves closed

Page 10: Analyses of representative DEC events of the ETDR

10

T-DEC1 - loss of 8 pumps

Page 11: Analyses of representative DEC events of the ETDR

11

T-DEC1 - loss of 7 pumps

Page 12: Analyses of representative DEC events of the ETDR

12

T-DEC4 – Description

• T-DEC4 – complete loss of forced flow + complete loss of secondary cooling system + SCRAM fail

• Pumps are tripped at 1500s• SCS is tripped at 1500s

• IC valves opened at 1500.5s

Page 13: Analyses of representative DEC events of the ETDR

13

T-DEC4 – loss of flow + loss of SCS + IC valves open

?

Page 14: Analyses of representative DEC events of the ETDR

14

Next steps

• Check T-DEC4 results

• Combine T-DEC1 and T-DEC4– Only some pumps fail– Only some IC valves open– Possibility of pump/valve recovery

• Look for – Overcooling/overheating scenarios– High local velocity scenarios– …

Page 15: Analyses of representative DEC events of the ETDR

15

Page 16: Analyses of representative DEC events of the ETDR

16

SGTR


Recommended