+ All Categories
Home > Documents > Analysis of perturbations of moments associated with orthogonality ...

Analysis of perturbations of moments associated with orthogonality ...

Date post: 09-Jan-2017
Category:
Upload: tranlien
View: 221 times
Download: 0 times
Share this document with a friend
47
V EIPOA 2015 ANALYSIS OF PERTURBATIONS OF MOMENTS ASSOCIATED WITH ORTHOGONALITY LINEAR FUNCTIONALS THROUGH THE S ZEG ˝ O TRANSFORMATION EDINSON FUENTES &LUIS E. GARZA UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA J UNE 2015
Transcript
Page 1: Analysis of perturbations of moments associated with orthogonality ...

V EIPOA 2015

ANALYSIS OF PERTURBATIONS OF MOMENTS

ASSOCIATED WITH ORTHOGONALITY LINEAR

FUNCTIONALS THROUGH THE SZEGO

TRANSFORMATION

EDINSON FUENTES & LUIS E. GARZA

UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA

JUNE 2015

Page 2: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 3: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

ORTHONORMAL POLYNOMIAL SEQUENCE (OPS)

Let α be a positive, non trivial Borel measure, supported on asubset E of the real line. The sequence of polynomials{pn(x)}n≥0, with

pn(x) = γnxn + δnx

n−1 + ..., γ > 0,

is said to be an orthonormal polynomial sequence associatedwith α if ∫

Epn(x)pm(x)dα(x) = δm,n, m, n ≥ 0.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 4: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

THE STIELTJES FUNCTION

If L is quasi-definite, S(x) admits the following formal seriesexpansion at infinity

S(x) =

∞∑k=0

µkxk+1

,

where µk are the moments associated with α given by

µk =

∫Exkdα(x), k ≥ 0.

The Stieltjes function

S(x) =

∫E

dα(t)

x− t.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 5: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TRANSFORMATION OF THE STIELTJES FUNCTION

A rational spectral transformation of a Stieltjes function S(x) isa transformation of the form

S(x) =A(x)S(x) +B(x)

C(x)S(x) +D(x),

where A(x), B(x), C(x) y D(x) are polynomials in x withAD −BC 6= 0 and such that S(x) has a formal seriesexpansion around infinity. The transformation is said to belinear if C(x) ≡ 0.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 6: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION CANONICAL

Given a measure α supported on the real axis, some canonicalperturbations are

1 The Christoffel transformation dαc = (x− β)dα,β /∈ supp(α).

2 The Uvarov transformation dαu = dα+Mrδ(x− β),β /∈ supp(α), Mr ∈ R.

3 The Geronimus transformation dαg = dαx−β +Mrδ(x− β),

β /∈ supp(α), Mr ∈ R,where δ(x− β) is the Dirac’s delta functional, defined by

〈δ(x− β), q〉 = q(β), q ∈ P, β ∈ R.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 7: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

The three canonical perturbations defined above correspond tolinear spectral transformations of the corresponding Stieltjesfunctions

1 The Christoffel canonical transformation

Sc(x) = RC(β)[S(x)] =(x− β)S(x)− 1

µ1 − β.

2 The Uvarov canonical transformation

Su(x) = RU (β,Mr)[S(x)] =S(x) +Mr(x− β)−1

1 +Mr.

3 The Geronimus canonical transformation

SG = RG(β,Mr)[S(x)] =S(β) +Mr − S(x)

(x− β)(Mr + S(β)).

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 8: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

The group of spectral linear transformations of the form

S(x) =A(x)S(x) +B(x)

D(x),

It is a non-commutative group generated from Christoffeltransformations and Geronimus described above. furthermore

RC(β) ◦RG(β,Mr)[S(x)] = S(x), Identity transformation

RG(β,Mr) ◦RC(β)[S(x)] = RU (β,Mr)[S(x)]

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 9: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 10: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

ORTHONORMAL POLYNOMIAL ON THE UNIT CIRCLE

Let σ be a, non trivial Borel measure, supported on the unitcircle T = {z ∈ C : |z| = 1}. Then there exists a sequence{ϕn}n≥0 of orthonormal polynomials

ϕn(z) = κnzn + ..., κn > 0,

which satisfies∫ π

−πϕn(eiθ)ϕm(eiθ)dσ(θ) = δm.n, m, n ≥ 0. (1)

The corresponding monic polynomials are defined by

Φn(z) =ϕn(z)

κn.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 11: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

THE CARATHÉODORY FUNCTION

When F (z) is analytic on the unit open disc and ReF (z) > 0 insuch a disk, F (z) is called Carathéodory function and it canrepresented as a Riesz-Herglotz transformatión of σ as follows

F (z) =

∫ π

−π

eiθ + z

eiθ − zdσ(θ).

If L is quasi-definite F (z) admits the following formal in terms ofthe moments {cn}n≥0 as follows

F (z) = c0 + 2

∞∑k=1

c−kzk,

where ck are the moments associated with σ given by

ck =

∫ π

−πeikθdσ(θ).

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 12: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PROPERTIES OF THE MEASURE

If we denote by ω(θ) = σ′ the Radon-Nikodyn derivative of σand by σs singular measure, then

dσ(θ) = ω(θ)dθ

2π+ dσs(θ). (2)

Whereω(θ) = ReF (eiθ). (3)

The singular part σs is supported in {θ| lımr↑1Re(reiθ) =∞}.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 13: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TRANSFORMATION OF THE CARATHÉODORY FUNCTION

A rational spectral transformation of a Carathéodory functionF (z) is a transformation of the form

F (z) =A(z)F (z) +B(z)

C(z)F (z) +D(z),

where A(z), B(z), C(z) and D(z) are polynomials in z withAD −BC 6= 0, and such that F (z) is analytic in D and haspositive real part therein. Again, if C(z) ≡ 0, the transformationis said to be linear.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 14: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION CANONICAL

Given a linear functional σ supported on the unit circle , somecanonicals perturbations are

1 The Christoffel transformation dσC = |z − ξ|2dσ,|z| = 1, ξ ∈ C,

2 The Uvarov transformationdσU = dσ+Mcδ(z−ξ)+M cδ(z−ξ

−1), ξ ∈ C−{0},Mc ∈ C,

3 The Geronimus transformationdσG = dσ

|z−ξ|2 +Mcδ(z − ξ) +M cδ(z − ξ−1

), ξ ∈C− {0},Mc ∈ C, |ξ| 6= 1.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 15: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

The three transformations defined above correspond to linearspectral transformations,

The Christoffel canonical transformation

FC(z) =A(z)F (z) +B(z)

D(z),

where

A(z) =−ξz2 + (1 + |ξ|2)z − ξ

(1 + |ξ|2)− 2Reξc1,

B(z) =−ξz2 + (ξc1 − ξc1)z + ξ

(1 + |ξ|2)− 2Reξc1,

D(z) = z.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 16: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

The Uvarov canonical transformation

FU (z) = F (z) +B(z)

D(z),

where

B(z) = (ξ − ξz2)(Mc +M c)− (1− |ξ|2)(Mc −M c)z,

D(z) = (z − ξ)(ξz − 1).

The Geronimus canonical transformation

FG(z) =A(z)F (z) +B(z)

D(z),

where A(z) = z, D(z) = −ξz2 + (1 + |ξ|2)z − ξ,B(z) = ξz2 − 2iIm(q0)z − ξ, and q0 = c0 − ξc1.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 17: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 18: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

SZEGO TRANSFORMATION

From a positive, nontrivial Borel measure α supported in[−1, 1], we can define a positive, nontrivial Borel measure σsupported in [−π, π] by

dσ(θ) =1

2|dα(cos θ)|, (4)

in such a way that if dα(x) = ω(x)dx, then

dσ(θ) =1

2ω(cos θ)| sin θ|dθ. (5)

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 19: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

SZEGO TRANSFORMATION

There exists a relation between the Stieltjes and Carathéodoryfunctions associated with α and σ, respectively, given by

F (z) =1− z2

2z

∫ 1

−1

dα(t)

x− t=

1− z2

2zS(x), (6)

where x = z+z−1

2 and z = x+√x2 − 1, (see [2]). This relation is

known as the Szego transformation.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 20: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

[−1, 1]

Christoffel|β| > 1

UvarovIf |β| = 1.If |β| > 1.

Geronimus|β| > 1

TranformationSzego −→

TChristoffelξ = β ±

√β2 − 1

Uvarov|ξ| = 1, ξ = ξaddition of onemass Mr at thepoint ξ = ±1.|ξ| 6= 1,Mc = Mr/2,ξ = β ±

√β2 − 1.

Geronimusξ = β ±

√β2 − 1

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 21: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 22: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j−TH MOMENT

Definition

Let L be a quasi-definite linear functional. The linear functionalLj is defined by

〈Lj , p(x)〉 = 〈L, p(x)〉+ (−1)jmj

j!〈D(j)δ(x− a), p(x)〉

= 〈L, p(x)〉+mj

j!p(j)(a),

(7)

where mj and a are real constants, and p(j)(x) denotes j−thderivative of p(x).

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 23: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j−TH MOMENT

If both L and Lj are positive definite, then the previoustransformation can be expressed in terms of the orthogonalitymeasures as follows

dαj = dα+ (−1)jmj

j!D(j)δ(x− a). (8)

On the other hand, from (7) it is easily obtained that

νk = 〈Lj , (x− a)k〉 =

νk, if k < j,

νj +mj , if k = j,νk, if k > j.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 24: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j−TH MOMENT

if Lj is quasi-definite and S(x) denotes its correspondingStieltjes function, S(x) =

∑∞k=0

νk(x−a)k+1 and S(x) are related by

Sj(x) = S(x) +mj

(x− a)j+1. (9)

As a consequence, (9) is a linear spectral transformation ofS(x), where

A(x) = D(x) = (x− a)j+1

andB(x) = mj .

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 25: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

DIREC PROBLEM

[−1, 1]

Stieltjes function

Sj(x) = S(x) +mj

(x− 0)j+1.

Measure

dαj = dα+ (−1)jmj

j!D(j)δ(x− 0).

TransormationSzego −→

TCarathéodory

F (z).

Measure

dσj .

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 26: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

CARATHÉODORY FUNCTION

Applying the Szego transformation (6), and using x = z+z−1

2 ,we obtain the Carathéodory function

F (z) = F (z) + 2jmjzj(1− z2)

∞∑n=0

(−1)n(n+ j

j

)z2n. (10)

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 27: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MOMENTS PERTURBED

The moments

c−n =

c−n, if n < j or n = j + 2k + 1,

for k ∈ N,c−n + in−j2j−1mj

(((n+j)/2j

)+((n+j−2)/2

j

)), if n = j + 2k,

for k ∈ N,(11)

with(j−1j

):= 0.

From (10) we conclude that, if the j−th moment associated withα is perturbed and we apply the Szego transformation, then theobtained perturbation in F (z) corresponds to a perturbation ofthe moments associated with σ in the following way

If j is even, all even moments starting from cj areperturbed.If j is odd, all odd moments starting from cj are perturbed.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 28: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MEASURE PERTURBED

The absolutely continuous part of the measure remainsinvariant with respect to the Szego transformation, and we have

dσ = σ′(θ)dθ

2π+ dσs(θ)

= σ′(θ)dθ

2π+ dσs(θ).

(12)

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 29: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

EXAMPLE

[−1, 1]

If j = 0,Stieltjes function

S0 = S(x) +m0

x.

Meaure

dαj = dα+m0δ(x−0),

Uvarov with|β| = 0 < 1.

Szego−→

TCarathéodory

F0(z) =

F (z)+m0 +2m0

∞∑n=1

(−1)nz2n,

Moments

c−n ={c−n, if n is odd,

c−n + inm0, if n is even.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 30: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

EXAMPLE

In matrix form, we have

H =

µ0 +m0 µ1 µ2 µ3 · · ·µ1 µ2 µ3 µ2 · · ·µ2 µ3 µ4 µ1 · · ·µ3 µ4 µ5 µ6 · · ·...

......

.... . .

Szego transformation⇓

T =

c0 +m0 c1 c2 −m0 c3 · · ·c−1 c0 +m0 c1 c2 −m0 · · ·

c−2 −m0 c−1 c0 +m0 c1 · · ·c−3 c−2 −m0 c−1 c0 +m0 · · ·

......

......

. . .

.EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 31: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

EXAMPLE

For instance, for the third kind Chebyshev polynomials, theorthogonality measure is

dα = dα+m0δ(x− 0)

= 2

√1− x1 + x

dx

π+m0δ(x− 0),

and the perturbed measure σ on the unit circle is

dσ = |z − 1|2 dθ2π

+ dσs.

i.e. a Christoffel transformation of the normalized Lebesguemeasure, with parameter 1.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 32: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 33: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j-TH MOMENT

Definition

Let L be an Hermitian linear functional quasi-definite anddefine a linear functional Lj such that the associated bilinearfunctional satisfies

〈p(z), q(z)〉Lj = 〈p(z), q(z)〉L+Mj〈zjp(z), q(z)〉Lθ +M j〈p(z), zjq(z)〉Lθ ,

(13)

where Mj ∈ C, p, q ∈ P, j ∈ N is fixed, and 〈·, ·〉Lθ is the bilinearfunctional associated with the normalized Lebesgue measure inthe unit circle.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 34: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j-TH MOMENT

If L is a positive definite linear functional, then the abovetransformation can be expressed in terms of the correspondingmeasures as

dσj = dσ +Mjzj dθ

2π+M jz

−j dθ

2π. (14)

From (13), one easily sees that

ck = 〈Lj , zk〉 = 〈zk, 1〉Lj =

ck, si k /∈ {j,−j},

c−j +Mj , si k = −j,cj +M j , si k = j.

(15)

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 35: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

PERTURBATION j-TH MOMENT

If Lj is quasi-definite and F (z) denotes its correspondingCarathéodory function, S(x) and F (z) are related by

Fj(z) = F (z) + 2Mjzj , (16)

which is a linear spectral transformation of F (z) with

A(z) = D(z) = 1

andB(z) = 2Mjz

j .

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 36: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

INVERSE PROBLEM

[−1, 1]

Stieltjes

S(x)

Measure

dαj .

Szego←−

TCarathéodory

Fj(z) = F (z) + 2Mjzj .

Measure

dσj = dσ +Mjzj dθ

2π+M jz

−j dθ

2π.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 37: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MEASURE PERTURBED

MeasureWhere

dαj = dα+ 2MjTj(x)

π

dx√1− x2

, (17)

where Tj(x) := cos(jθ) are the Chebyshev polynomials of thefirst kind. Notice that a measure that changes its sign in theinterval [−1, 1] is added to dα.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 38: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MEASURE PERTURBED

Because

dαj = dα+Mj(x+ i√

1− x2)jdx

π√1− x2

+Mj(x+ i√

1− x2)−jdx

π√1− x2

= dα+Mj(cos(jθ) + i sin(jθ))dx

π√1− x2

+Mj(cos(jθ)− i sin(jθ))dx

π√1− x2

= dα+ 2Mjcos(jθ)dx

π√1− x2

= dα+ 2MjTj(x)

π

dx√1− x2

.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 39: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MOMENTS PERTURBED

The moments perturbed are

µn =

µn +MjB(n, j), if j ≥ n, n+ j is even,

µn, otherwise,(18)

where

B(n, j) = j

[j/2]∑k=0

(−1)k(j − k − 1)!(2)j−2k

k!(j − 2k)!

(j+n−2k)/2∏i=1

j + n− 2k − (2i− 1)

j + n− 2k − 2(i− 1)

.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 40: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MOMENTS PERTURBED

Becauseif j ≥ n and n+ j is even, we have

∫ 1

−1xnTj(x)

dx√1− x2

=j

2

∫ 1

−1xn

[j/2]∑k=0

(−1)k(j − k − 1)!(2x)j−2k

k!(j − 2k)!

dx√1− x2

=j

2

[j/2]∑k=0

(−1)k(j − k − 1)!(2)j−2k

k!(j − 2k)!

∫ 1

−1xj+n−2k dx

√1− x2

,

and j + n− 2k is even, we get

∫ 1

−1xj+n−2k dx

√1− x2

=

(j+n−2k)/2∏i=1

j + n− 2k − (2i− 1)

j + n− 2k − 2(i− 1)

π.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 41: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

MOMENTS PERTURBED

From (17) we conclude that, if the j−th moment associatedwith σ is perturbed and we apply the inverse Szegotransformation, then the obtained perturbation in S(x)corresponds to a perturbation of the moments associated withα in the following way

If n+ j is even, all even moments starting from µj areperturbed.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 42: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

STIELTJES PERTURBED

The Stieltjes function

Sj(x) =

j−1∑k=0

µkxk+1

+

∞∑k=j+1

µ2k−j−1x2k−j

+

∞∑k=j

µ2k−jx2k−j+1

= S(x) +Mj

∞∑k=j

B(2k − j, j)x2k−j+1

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 43: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

EXAMPLE

In matrix form, we have

T =

c0 +M0 c1 c2 c3 · · ·c−1 c0 +M0 c1 c2 · · ·c−2 c−1 c0 +M0 c1 · · ·c−3 c−2 c−1 c0 +M0 · · ·

......

......

. . .

.⇓

Szego transformation inverse⇓

H =

µ0 µ1 µ2 µ3 · · ·µ1 µ2 µ3 µ4 · · ·µ2 µ3 µ4 µ5 · · ·µ3 µ4 µ5 µ6 · · ·...

......

.... . .

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 44: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

TABLE OF CONTENTS

1 PERTURBATION OF MEASURES ON THE REAL LINE

2 PERTURBATION OF MEASURES ON THE UNIT CIRCLE

3 THE SZEGO TRANSFORMATION

4 DIRECT PROBLEM

5 INVERSE PROBLEM

6 REFERENCES

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 45: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

REFERENCES

Fuentes E., Garza L.E., Analysis of perturbations ofmoments associated with orthogonality linear functionalsthrough the Szego transformation, Rev. Integr. Temas Mat.33 (2015), no. 1, 61-82.

Garza L.E., Hernández J. and Marcellán F., "Spectraltransformations of measures supported on the unit circleand the Szego transformation", Numer. Algorithms 49(2008), no.1, 169-185.

Szego G. Orthogonal Polynomials, Amer. Math. Soc. Coll.Publi. Series, vol 23, Amer. Math. Soc., Providence, RI,1975. Fourth Edition.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 46: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

REFERENCES

Simon B., Orthogonal Polynomials on the unit circle, 2 vol.Amer. Math. Soc. Coll. Publi. Series. vol 54, 2005.

Marcellán F., Hernández J., Christoffel transforms andHermitian linear functionals, Mediterr. J. Math. vol. 2, 2005,451-458.

Marcellán F., Quintana Y., Polinomios ortogonales noestándar. Propiedades algebraicas y analíticas, XXIIEscuela Venezolana de Matemáticas, 2009.

Tasis C., Propiedades diferenciales de los polinomiosortogonales relativos a la circunferencia unidad, Tesisdoctoral, Universidad de Cantabria, España, 1989.

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS

Page 47: Analysis of perturbations of moments associated with orthogonality ...

PERT. REAL LINE PERT. UNIT CIRCLE SZEGO TRANS. DIR. PROBLEM INV.PROBLEM REFERENCES

Thanks for your attention!

EDINSON FUENTES & LUIS E. GARZA PERTURBATIONS OF MOMENTS


Recommended