+ All Categories
Home > Documents > Analysis Simulator for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

Analysis Simulator for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

Date post: 05-Feb-2016
Category:
Upload: phoebe
View: 32 times
Download: 0 times
Share this document with a friend
Description:
Analysis Simulator for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH). International Nuclear Forum BULGARIAN NUCLEAR ENERGY – NATIONAL, REGIONAL AND WORLD SAFETY BULATOM , M ay 28-30, 2008 , Varna, Bulgaria. Analysis Simulators on the basis of ATHLET and ATLAS. - PowerPoint PPT Presentation
41
Analysis Simulator for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH) International Nuclear Forum BULGARIAN NUCLEAR ENERGY – NATIONAL, REGIONAL AND WORLD SAFETY BULATOM, May 28-30, 2008, Varna, Bulgaria
Transcript
Page 1: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

Analysis Simulator

for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

International Nuclear Forum

BULGARIAN NUCLEAR ENERGY – NATIONAL, REGIONAL AND WORLD SAFETY

BULATOM, May 28-30, 2008, Varna, Bulgaria

Page 2: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 2

Analysis Simulators on the basis of ATHLET and ATLAS

By means of the best-estimate thermal-hydraulic code ATHLET and plant analyzer system ATLAS, analysis simulators both for German NPPs and for NPPs with WWER type reactors have been developed at GRS during the recent years. Analysis simulators for WWER have been developed, verified and validated in the framework of the technical cooperation between GRS and different Russian organisations:

Balakovo NPP Units 1 ÷ 4 (WWER-1000/320) Volgodonsk NPP Unit 1 (WWER-1000/320) Kalinin NPP Units 1 and 2 (WWER-1000/338) Kola NPP Unit 1 and 2 (WWER-440/230) Kola NPP Unit 3 and 4 (WWER-440/213)

snr
Последните десетина години в GRS се разработват аналитически симулатори на базата на топлохидравличния код ATHLET и системата за визуализация ATLAS. Cимулатори са разработени за всички блокове с PWR в Германия.В рамките на двустранното сътрудничество между GRS и някой руски организации са разработени симулатори за следните блокове с реактори ВВЕР:
Page 3: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 3

Analysis Simulator for Kozloduy NPP Units 5 and 6

In the framework of the technical cooperation between GRS and ENPRO Consult an analysis simulator for Kozloduy NPP has been developed, based on the AS for a generic WWER-1000/320.

The differences between the generic WWER-1000/320 plant and Kozloduy NPP 5&6 have been specified and the input deck has been modified in order to represent the real characteristics of Kozloduy Units 5 and 6.

Additionally, the initial nodalization of the reactor has been improved to take into account the unsymmetrical location of the circulation loops, which is important for transients with non-symmetrical behaviour of the loops.

The graphical user interface of the simulator is created by means of the GRS developed plant analyser system ATLAS and is also based on the graphical interface of the AS for a generic WWER-1000/320 plant.

snr
В рамките на двустранното сътрудничество между GRS и ENPRO Consult, на базата на типов симулатор за ВВЕР-1000, в ENPRO се разработва аналитичен симулатор за 5 и 6 блок на АЕЦ Козлодуй.Най-напред беше направено сравнение между типовия проет на блок с ВВЕР-1000/320 и 5 и 6 блок на Козлодуй. След това бяха определени онези разлики, които са важни за топлохидравличнити анализи. Накрая бяха внесени съответнити промени в набора изходни данни. Следващият етап от работата беше посветен на усъвършенстването на нодализационната схема с цел адекватното моделиране на транзиенти с несиметрично поведение на циркулационните кръгове. (По-късно ще се спра по-подробно на това.)Графичният интерфейс на симулатара за 5 и 6 блок на Козлодуй също се базира на интерфейса на типовия симулатор.
Page 4: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 4

ATHLET code

The thermal–hydraulic system code ATHLET (Analysis of THermal–hydraulics of LEaks and Transients) is being developed by GRS for the analysis of the whole spectrum of leaks and transients in light water reactors. The code is composed of several basic modules for the simulation of the different phenomena involved in the operation of light water reactors:

thermo-fluid dynamics; heat transfer and heat conduction; neutron kinetics; non-condensable gases behaviour; dissolved nitrogen; boron transport.

snr
Термо-хидравличният код ATHLET се разработва в GRS и е предназначен за анализ на широк спектър от транзиенти и аварии, вкючително течове, за реактори с лека вода. Моделират се всички основни явления, срещащи се в този тип реактори и свързани с:- топло-масообмен и динамика на флуидите;- топлообмен и топлопроводност;- неутронна кинетика;- поведение на некондезируеми газове;- разтворен в топлоноситиля азот;- пренос на бор в топлоносителя.
Page 5: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 5

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (1)

The ATHLET model of Kozloduy NPP Units 5 and 6 represents the following components:

reactor; four loops of the primary circuit; pressurizer; steam generators with steam lines; emergency core cooling systems; emergency gas evacuation system.

snr
Моделът за ATHLET на 5, 6 блок на АЕЦ Козлодуй включва:- рактор;- 4 циркулационни кръга;- компенсатор на обема;- ПГ, паропроводи и съответната армарура;- система за аварийно охлаждане на активната зона;- система за аварийно газоотделяне.
Page 6: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 6

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (2)

For an effective simulation of the main plant controllers a number of FORTRAN subroutines are implemented. They model in detail the following controllers:

reactor power controllers (ARM, ROM); pressurizer level controller (make-up system); primary circuit pressure controller (spray system and heaters); electro-hydraulic turbine control system; secondary side pressure controllers (BRU-A and BRU-K); steam generators level controllers and emergency feed water controllers.

snr
Регулаторите са моделирани подробно с помощта на отделни модули, написани на FORTRAN. (По принцип, възможно е и използването само на средствата на самия код, но те са по-тромави от средствата на FORTRAN). Моделирани са следнити регулатори:- регулатори на мощността АРМ и РОМ;- регулатор на нивото в КО (система за подпитка-продувка)- електро-хидравлична система за регулиране на турбината;- регулатори на налягането във втори контур (БРУ-К и БРУ-А)- регулатори на нивото в парогенераторите и регулатори на аварийната питателна вода.
Page 7: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 7

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (3)

Page 8: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 8

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (4)

Nadya
При моделирането на втори контур е отчетена вътрешната циркулация в парогенератора. За целта са моделирани низходящ и възходящ участък с паралелни връзки между тях, сепаратор и горна част на парогенератора, съдържаща пара.
Page 9: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 9

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (5)

Page 10: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 10

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (6)

The basic input data deck models the downcomer with four parallel channels, but without taking into account the neighbouring nozzles asymmetry. Further the four parallel flows of the downcomer are fully mixed in the lower plenum, which is modelled as one channel. The core region is modelled by two parallel thermal-hydraulic channels, representing the central and peripheral part of the core, which are azimuthally equivalent. In each of them a “hot” fuel element is determined with the maximal possible power. The upper plenum region follows the nodalization of the core. Such nodalization of the reactor is suitable for regimes with symmetrical behaviour of the loops.

snr
В основния модел на симулатора спускателният канал се моделира с помощта на 4 паралелни обекта, съответсващи на потоците от четирите кръга, но без да се отчита несиметричното положение на входнити щуцери. След това, в долна смесителна камера четирите потока се смесват. Активната зона е представена от два успоредни концентречти елемента, представящи централната и периферната част на зоната. Във всяка част се моделира по един топлоотделящ елемент с максимално възможно линейно енергоотделяне.Нодализацията на горна смесителна камера следва нодализацията на зоната, т.е. състои се от обекти, представящи централната и периферната част.
Page 11: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 11

ATHLET input data deck for Kozloduy NPP Units 5 and 6 6-channel nodalization of the reactor (1)

The symmetrical nodalization of the reactor is suitable for regimes with symmetrical behaviour of the loops. But even the regime with trip of one MCP, which is an anticipated transient for WWER-type reactors and quite an often operational event, could not be simulated adequately if a complete coolant mixing is assumed. As it is known by the plant measurements, the influence of the loop with the tripped MCP is stronger for the loop, located closer, than to the loop, located farther.

That is why a new input data deck has been developed, providing a finer nodalization of the reactor: 6 channels in the downcomer, 6 – in the lower plenum, 18 channels in the core (6 central, 6 peripheral and 6 bypasses), 12 – in the upper plenum (6 inner and 6 outer).

snr
Симетричната нодализация е достатъчна за анализи на повечето проектни аварии, но нейните ограничения се проявяват при моделиранито та транзиенти с несиметрично поведение на кръговете: изключване на ГЦП, включване на ГЦП, скъсване на паропровод.Известно е, например от регистрацията на параметрите при изключване на ГЦТ, че влиянието на кръга със спряната помпа е по силна върху по-близки кръг, отколкото върху по-далечния и противоположния. След малко ще покажа графика, която демонстрира това.Ето защо в ENPRO Consult беше разработен нов модел на реактора с по-подробна нодализация на реактора. Тя включва 6 паралелни канала в спускателния участък, 6 в долна свесителна камера, 18 в зоната (6 централни, 6 периферни и 6 представящи байпса) и 12 във горна смесителна камера (6 централни, 6 периферни).
Page 12: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 12

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (2) 6-channel nodalization of the reactor (2)

Page 13: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 13

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (1) 6-channel nodalization of the reactor (3)

Page 14: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 14

ATHLET input data deck for Kozloduy NPP Units 5 and 6 (1) 6-channel nodalization of the reactor (4)

Page 15: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 15

CONDRU code

The CONDRU code was developed at GRS to model in a simple way the thermal-hydraulic parameters in the containment during LOCA. It has a two-phase, three-component model. The containment is represented by two nodes. Another node represents the environment. The code is coupled with ATHLET. In case of LOCA the data for the mass and energy rates of the leak are transferred from ATHLET to CONDRU. Also the spray system mass flow rate and the heat, added to the containment from the structures of the reactor facility, can be transferred to CONDRU. The main output of CONDRU is the calculated containment pressure. It is used in ATHLET code as a back pressure for the leaks and also for determination of the time of the signal for containment isolation, which is important for the correct modelling of the status of many systems.

snr
Програмата CONDRU е разработена в GRS за упростено моделиране на термохидравличните параметри в контаймента при аварии с течове. Кодът е двуфазен и трикомпонентен. Защитната обвивка е представена от два нода, още един моделира околната среда. CONDRU е куплиран с ATHLET. Параметрите на изтичащата среда - масов разход и енталпия-се предават от ATHLET към CONDRU. Също могат да бъдат предадени разходът на спринклерната система и топлинния поток от структурите на първи контур към обвивката. Основният резултат, който се получава в кода CONDRU, е налягането в контаймента. Това налягане се използва ката обратно налягане за теча и за формиране на сигнала за изолиране на контаймента, който влияе на работата на редица системи.
Page 16: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 16

Plant analyzer system ATLAS (1)

The plant analyser tool ATLAS (ATHLET Analysis Simulator) was developed by GRS with the aim to create a multi purpose tool for analyses in the field of nuclear and industrial plant safety. It is based on computer codes, modelling the dynamic processes in the plant, and offers a simulation environment in which the presentation and evaluation of the numerous results is supported by an interactive visual display system. In this way, it provides possibilities to intervene directly into the simulation as the calculation proceeds. The visual display system is supplemented by the graphics editor APG (ATLAS Picture Generator) which creates the images interactively.

Nadya
Системният анализатор ATLAS се разработва в GRS като многоцелеви инструмент за анализи в областта на ядрената безопасност. Взаимодействайки с компютърни кодове, моделиращи работата на атомни централи, той представлява визуализираща среда за огромното количество расчетни параметри и инструмент за интерактивно взаимодействие с кода.Изготвянето на графическия интерфейс се осъществява с помощта на специален редактор.
Page 17: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 17

Plant analyzer system ATLAS (2)

Special features of the visualisation system are:

Graphics based on OpenGL (WINDOWS version) and GKS (UNIX version) for portability;

All geometrical and graphical attributes can be dynamically changed by using data from the simulation;

All simulation data are available as trends; Trend group images with several axes and several functions per axis can be

created; Handling of the process by interactive mouse-clicks on symbols; Automatic or manual scaling of the parameters and the time section. The plant analyser is controlled by the mouse. A menu bar with the most

important functions always appears on each frame. Image related functions can be activated by mouse-clicks on buttons in each image. Clicking on the symbols either activates interventions in the simulation program or calls up the trend of the associated process variable.

Nadya
Основните характеристики на ATLAS са:- базира се на графическата система OpenGL;- всички геометричти и графични атрибути се променят динамично според данните от анализа;- значенията на всички разчитани от ATHLET параметри могат да бъдат получени във всеки един момент като числа и във вид на графики;- управлението се извършва само с мишка и е достатъчно интуитивно (кликването вътху даден обект предизвиква появата на малко меню с възможните действия, които могат да бъдат извършени с обекта )
Page 18: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 18

Page 19: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 19

Graphical user interface (1)Synopsis picture

Page 20: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 20

Graphical user interface (2)Main interactive picture

Page 21: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 21

Graphical user interface (3)Reactor power control

Page 22: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 22

Graphical user interface (4)Reactor protection and interlocks

Page 23: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 23

Graphical user interface (5)Main parameters of the unit

Page 24: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 24

Graphical user interface (6)Containment and ECCS

Page 25: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 25

Graphical user interface (7)Secondary side

Page 26: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 26

Graphical user interface (8)Reactor

Page 27: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 27

Graphical user interface (9)Steam generators

Page 28: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 28

Cross-verification with Relap 5 (1)

The first application of the newly developed analysis simulator for Kozloduy NPP Unit 5 and 6 was performed on the transient with inadvertent opening of one pressurizer safety valve with failure to close. This scenario had been previously analyzed in ENPRO Consult using RELAP 5 code.

The comparison demonstrates a very good agreement between the codes.

Page 29: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 29

Cross-verification with Relap 5 (2)Scenario of the transient

Event Time, s

Relap ATHLET

Inadvertent opening of the first pressurizer safety valve with failure to close.

0.0 0.0

Reactor scram signal, due to decrease of the upper plenum pressure below 14.81-0.098 MPa.

18.0 23.9

Loss of off-site power together with the reactor scram signal; Turbine trip; Tripping of all MCPs; Signal for the first program of ASSS.

18.0 23.9

Tripping of the main feed water pumps, due to loss power to their support systems.

18.0 23.9

Opening of all BRU-A valves, due to increase of the SGs pressure to 7.355 + 0.098 MPa

31.0 29.4

TQ23,33D01 begin to inject to the primary circuit 128.0 128.3

Page 30: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 30

Cross-verification with Relap 5 (3)Scenario of the transient

Event Time, s

Relap ATHLET

TQ23,33D01 begin to inject to the primary circuit 128 128

Difference between the saturation temperature and the coolant temperature in the hot leg of any one of the primary loops < 10 – 2oC. Isolation of the containment

200 207

Two-phase flow through the open valve 330 364

ECCS tanks TQ23,33B01 are empty. The pumps are reconnected to the sump TQ10,20,30B01

550 473

Closing of BRU-As from the pressure controller 803 - 1517 1004 - 1019

Page 31: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 31

Cross-verification with Relap 5 (4)Inadvertent opening of one pressurizer safety valve

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Ma

ss fl

ow

ra

te [k

g/s

]

Relap

ATHLET

Mass flow rate through the opened valve

Page 32: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 32

Cross-verification with Relap 5 (5)Inadvertent opening of one pressurizer safety valve

Integral mass flow through the opened valve

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Ma

ss [t

]Relap

ATHLET

Page 33: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 33

Cross-verification with Relap 5 (6)Inadvertent opening of one pressurizer safety valve

Power, released through the valve

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Po

we

r [M

W]

Relap

ATHLET

Page 34: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 34

Cross-verification with Relap 5 (7)Inadvertent opening of one pressurizer safety valve

Power, transferred through one steam generator

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Po

we

r [M

W]

Relap

ATHLET

Page 35: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 35

Cross-verification with Relap 5 (8)Inadvertent opening of one pressurizer safety valve

Pressure above the core

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Pre

ssu

re [M

Pa

]

Relap

ATHLET

Page 36: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 36

Cross-verification with Relap 5 (9)Inadvertent opening of one pressurizer safety valve

Mass flow rate from ECCS

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

Ma

ss fl

ow

ra

te [k

g/s

]

Relap

ATHLET

Page 37: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 37

Validation with operational event № 747 (1)Trip of MCP 3

Temperature in the cold leg of loop 3

Operational event No 747: MCP 3 Trip

270

272

274

276

278

280

282

284

286

288

290

0 100 200 300 400 500 600 700 800 900 1000

time, s

Tem

pera

ture

, C

YA32T01

Tcl3, C

Page 38: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 38

Validation with operational event № 747 (2)Trip of MCP 3

Temperature in the hot leg of loop 3

Operational event No 747: MCP 3 Trip

270

275

280

285

290

295

300

305

310

315

320

0 100 200 300 400 500 600 700 800 900 1000

time, s

Tem

pera

ture

, C

YA31T24

Thl3, C

Page 39: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 39

Validation with operational event № 747 (3)Trip of MCP 3

Temperatures in the cold legs of non-affected loops (1, 2 and 4)

Operational event No 747: MCP 3 Trip

280

281

282

283

284

285

286

287

288

289

290

0 100 200 300 400 500 600 700 800 900 1000

time, s

Tem

pera

ture

, C

YA12T01

Tcl1, C

YA22T01

Tcl2, C

YA42T01

Tcl4, C

Page 40: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 40

Validation with operational event № 747 (4)Trip of MCP 3

Temperatures in the cold legs of non-affected loops (1, 2 and 4)

Operational event No 747: MCP 3 Trip

300

302

304

306

308

310

312

314

316

318

320

0 100 200 300 400 500 600 700 800 900 1000

time, s

Tem

pera

ture

, C

YA11T24

Thl1, C

YA21T24

Thl2, C

YA41T24

Thl4, C

Page 41: Analysis Simulator  for Kozloduy NPP Units 5 and 6 N.Rijova (ENPRO Consult), J.Steinborn (GRS mbH)

May 28-30, 2008, Varna, Bulgaria

BULATOM 41

Conclusions

The analysis simulator for Kozloduy NPP is based on the well known best-estimate code ATHLET and plant analyser tool ATLAS.

The model represents all important reactor systems and controllers. It is based on the generic input data deck for WWER-1000/320, which has been constantly developed, verified and validated during approximately 15 years. It has been used for analysing wide spectrum of accidents for different NPP units, including operational events.

The first applications of the Analysis simulator for Kozloduy NPP Units 5 and 6 demonstrated its ability for adequate modelling of the thermal hydraulic processes at the plant.

Further improvement, verification and validation of the AS are planed. For instance, coupling with the GRS code COCOSYS for a better simulation of the processes in the containment is possible in the near future.

The possibilities of the graphical user interface for on-line visualisation and interactive initiation of equipment failures and operators actions make it a very powerful instrument for verification of emergency operating procedures.

Nadya
- Аналитичният симулатор за 5 и 6 блок на АЕЦ Козлодуй е резработен на базата на добре известния съвременен best-estimate код ATHLET.- Моделът представя всички основни системи и компоненти на първи и втори контур. Разработен е на базата на типов набор входни данни за ВВЕР-1000, който непрекъснато се усъвършенства, верефицира и валидира в продължение на 15 години и е използван за огромно количество анализи за различни блокове с ВВЕР-1000, включително експлоатационни събития.- Първити две приложения на симулатара за АЕЦ Козлодуй демонстрират възможностите му за адекватно моделиране на топлохидравличните процеси.- Планира се по-нататъчно развитие, верефикация и валидация на симулатора. Например, куплирането му с CONDRU за по-добро моделиране на просесите в контанймента.- Възможностите на графичния интерфейс за on-line визуализация и интерактивно моделиране на откази на оборудване и действия на оперативния персонал правят симулатора много мощен инструмент за верификация на аварийни инструкции.

Recommended