+ All Categories
Home > Documents > Analysis(and(Validation(of(Winds(from( High(Altitude ... · U.S.&Naval&Research&Laboratory...

Analysis(and(Validation(of(Winds(from( High(Altitude ... · U.S.&Naval&Research&Laboratory...

Date post: 11-Apr-2019
Category:
Upload: duonghuong
View: 214 times
Download: 0 times
Share this document with a friend
19
Analysis and Validation of Winds from High Altitude Meteorological Analyses during Northern Hemisphere winters of 20092010 and 20122013 John McCormack Space Science Division, Washington DC SPARC Data Assimilation Workshop 17 October 2016 Victoria, BC, Canada
Transcript

Analysis and Validation of Winds from High Altitude Meteorological Analyses during Northern Hemisphere winters of 2009-­2010 and 2012-­2013

John McCormackSpace Science Division, Washington DC

SPARC Data Assimilation Workshop17 October 2016

Victoria, BC, Canada

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Recent Advances in High-­altitude DA

Introduction of hybrid ensemble DA methods provide more realistic background error covariance estimates than earlier static estimates

Significant reduction in forecast model upper-­level cold bias;; temperature distribution key to getting upper level winds right.

Increase in temporal resolution: from 6-­hourly analyses à 3 hourly analysis+forecast important for resolving tides!

Validation of NAVGEM winds with independent ground-­based obs.

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Why is stratospheric DA important?

Ocean Large Heat ReservoirLong Time Scales, Long Memory (ENSO/PDO)

TroposphereShort Time Scales

0-­15 km Short Memory

Middle Atmosphere = stratosphere + mesosphere + lower thermosphere

Large Angular Momentum and Drag15-­100 km Long Radiative/Dynamical Time Scale

Long Memory (NAM/AO/QBO)

wave energy

heat

Vertical Coupling

NAVGEM with AR-­ New SL/SI

dynamical core-­ New 4DVAR DA with

adjoint-­ New upper-­level radiance channels

NOGAPS-­ALPHA -­ Eulerian dynamical

core-­ 3DVAR DA-­ New GWD

-­ New SW/LW htg-­ H2O & O3

photochemistry

High Altitude NWP Research at NRL

U.S. Naval Research Laboratory | 4

• Collaboration between Marine Meteorology, Remote Sensing, & Space Science Divisions.

• Initially based on high-­altitude version of the Navy Operational Global Atmospheric Prediction System (NOGAPS)

•ALPHA: Advanced Level Physics-­ High Altitude

• AR: Accelerated Representer

• NAVGEM: Navy Global Environmental Model 100 km

50 km

OperationalNOGAPS

2008 2010 2012 2016

L74 NAVGEM with Hybrid DA

-­ Ensemble-­based DA combined with 4DVAR-­ Improved SW/LW htg at

upper levels-­ Diurnal O3 photo-­

chemistry-­ Solar variability

Presentation Title | 5U.S. Naval Research Laboratory

NAVGEM High Altitude NWP System:DA component

Ensemble Error Covariance

(B)

E

9-hr Ensemble

Forecast (xbi)

Background(xb)

Observations(y)

Analysis(xa)

Long forecast:10 days

Short forecast: 9 hours

Data Assimilation(DA) System

E4D-Var

ForecastModel

NAVGEMObservation

Error (R)

Physics

Investigating E4D-Var

Ensemble Generation Testing

E4D-Var

Over 1M obs every 6 hoursRadiosondes, Pibals, Dropsondes, DriftsondeLand and Ship Surface Obs, Fixed and Drifting Buoys, Aircraft Obs Surface Winds: WindSat, ASCAT, SSMIS Feature Tracked Winds: AVHRR, MODIS, VIIRS Total Water Vapor: SSMI/SSMIS GPS Bending AngleIR Sounding: IASI and AIRS (NPP CrIS)MW Sounding: AMSU-­A (Ch 4-­14), SSMIS (Ch 2-­7, 22-­24), SSMIS/MHS, NPP ATMSMiddle Atmosphere: SABER T, MLS T, MLS O3, MLS H2O, SSMIS/UAS

NAVGEM T119 L74Model Grid Spacing

SPARC DA Workshop 2016U.S. Naval Research Laboratory

nav_L74 NOGAPS-ALPHA: lm = 74, nprlev = 38

-180 -90 0 90 180longitude (oE)

0

20

40

60

80

100

120

pres

sure

alt

itud

e (k

m)

1000

100

10

1

0.1

0.01

0.001

0.0001

pres

sure

(hP

a)

L74 NAVGEMSSMIS UAS Channels

Sponge layer

Forecast Model Setup• Semi-­Lagrangian/semi-­implicit dynamical core;; T119 spectral truncation (grid spacing ~110 km) • 74 hybrid σ-­p levels, top at 6 x 10-­5 hPa or ~116 km (for now);; Time step = 360 sec.

Middle Atmosphere Physics:• Parameterized non-­orographic gravity wave drag, O3 & H2O photochemistry, exothermic chemical heating

NAVGEM High Altitude NWP System:Global forecast model component

U.S. Naval Research Laboratory

Comparisons with meteor radar windsNH winters 2009-­2010 & 2012-­2013

NAVGEM T119L74 AnalysesGlobal 1o lat/lon 3 hourly output

Nov 2009 – March 2010 (SSW late Jan 2010)

Nov 2012 – March 2013 (SSW early Jan 2013)

Meteor radar observation sitesLocation Periods Analyzed

Andenes 69.3oN , 16.0oE 1-18 Dec. 2009, 1-26 Jan 2010, 12-28 Feb 2010 1-20 Dec. 2012, 1-28 Jan 2012, 1-24 Feb. 2013

Trondheim 63.4oN , 10.5oE 1 Dec. 2012 – 28 Feb. 2013

Juliusruh 54.6oN , 13.4oE 1 Dec. 2009 – 28 Feb. 20101 Dec. 2012 – 28 Feb. 2013

Collm 51.3oN , 13.0oE 1 Dec. 2009 – 28 Feb. 20101 Dec. 2012 – 28 Feb. 2013

CMOR 43.3oN , 80.0oW 1 Dec. 2009 – 28 Feb. 2010 1 Dec. 2012 – 26 Feb. 2013

Bear Lake 41.9oN , 111.4oW 1 Dec. 2009 – 28 Feb. 2010 1 Dec. 2012 – 28 Feb. 2013

Ascension Is. 8.0oS , 14.4oW 1 Jan. 2010 – 31Mar. 2010Tierra del

Fuego 53.7oS , 67.7oW 1-31 Dec. 2012, 1 Feb. – 31 Mar 2013

Rothera 67.5oS, 68.0oW 15 Jan 2013 – 28 Feb 2013

U.S. Naval Research Laboratory

NAVGEM vs. Meteor radar V at 88 km

NAVGEM 3-­hourly analyzed winds

Radar 1-­hourly observations

SPARC DA Workshop 2016U.S. Naval Research Laboratory

NAVGEM U & V at Trondheim 63oN

SPARC DA Workshop 2016U.S. Naval Research Laboratory

NAVGEM U & V at Ascension Is. 8oS

U.S. Naval Research Laboratory

Wavelet analysis using S-­Transform

S-­Transform is based on approach described in Stockwell (IEEE Trans. Sig. Proc., 1996)

Pros: -­ No a priori assumptions

about periodicity-­ Time mean S-­transform

spectrum exactly matches Fourier spectrum

-­ Flexibility in choosing wavelet “window” function

Con: Needs continuous time series.

Analysis of Ascension Is. V at 88km for Feb. 2010

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Semi-­diurnal tideMonthly mean amplitude and phase: V

Juliusruh 54oN

2009-­2010 2012-­2013

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Diurnal tideMonthly mean amplitude and phase: V & U

Ascension Island 8oSJan-­Mar 2010

SPARC DA Workshop 2016U.S. Naval Research Laboratory

2-­day waveMonthly mean amplitude and phase: V

Ascension Island 8oSJan-­Mar 2010

Tierra del Fuego 54oSDec 2012 –Feb 2013 -­Mar 2013

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Semi-­diurnal tide & SSWs

Mean amplitudes of SW2 in V over 4 NH radar sites around SSWs of 2010 and 2013

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Obs. Sensitivity TestsDo We Need Middle Atmosphere Obs.?

Latitude

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Obs. Sensitivity TestsDo We Need Middle Atmosphere Obs.?

NAVGEM with MA OBS NAVGEM with no MA OBS

SPARC DA Workshop 2016U.S. Naval Research Laboratory

Summary

• New high-­altitude NAVGEM system using hybrid ensemble/4DVAR DA provides 3-­hourly global synoptic meteorological analyses from 0 to ~100 km.

• Comparison with independent meteor radar observations shows good agreement.

• NAVGEM analyses show modulation of SW2 around the time of major SSWs in Jan 2010 and Jan 2013.

• Middle atmospheric obs. (MLS/SABER/UAS) help capture tides

Acknowledgments

U.S. Naval Research Laboratory

Many thanks to the MLS and SABER instrument teams, to the meteor radar PIs, and to NRL-­MRY NAVGEM development team. This work was supported by NASA Heliophysics Division grant NNH13AV95I.


Recommended