+ All Categories
Home > Documents > Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

Date post: 02-Jun-2018
Category:
Upload: rociosuarez94
View: 217 times
Download: 0 times
Share this document with a friend

of 22

Transcript
  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    1/22

    Journa l of South American Earth Sciences Vol. 4. No. 4, pp. 351 372, 1991 089 5-98 } 1/91 $3. 00+ .00

    Printed in Great Britain , 1991 Pergamon Press plc

    & Earth Sciences & Resources Institute

    A n d e a n r e a c t i v a t i o n o f t h e C r e t a c e o u s S a l t a r if t

    n o r t h w e s t e r n A r g e n t i n a

    M. E. GRIER 1, J. A. SALFITY2, a n d R. W. ALLMENDINGER ~

    14-86 Nelson Street, K ingston, Ontario K7L 3W8, Canada; 2Facultad de Ciencias Naturales, Univer sidad

    Naciona l de Salta, 4400 Sa lta, Reptlblica de Argenti na; ~Department of Geological Sciences, Corncll

    Unive rsity , Ithaca, NY 14853-1504, USA

    Received May 1991; Accepted November 1991)

    Abstra ct--- Throug hout the Andes, foreland geometries are correlated with the or ientation of the sub-

    ducting Nazca Plate: fold-and-thrust belts with steep subduction and basement uplifts with flat. The

    geometries observed in the southern Cordillera Oriental and no rthern Sierras Pampeanas do not fit this

    pattern. Instead, in version of the Cretaceous Salta Rift Basin and mechanical differences between rift and

    non- rift domains are proposed as the pr imary controls on both the t imin g of late Tertia ry uplift and defor-

    mation, and foreland geometries. The influence of the rift basi n is documented through field observations of

    structures and lithologies, kinematic analysis of minor fault data, and published data on local stratigraphy.

    The southe rn Cordillera Oriental developed within the southwestern subbasin of the Salta rift and is a

    basement-i nvolved fold-and-thrust belt. The Sierras Pampeanas developed to the south of the rift and are

    basemen t uplifts. Dominant structures in both regions are N/S-trending reverse or thrust faults. They are

    cut by oblique strike -slip faulL~. Older deformation is Mio-Pliocene in age a nd is characterized by thrus t

    kinematics with E-W to NW-SE shortening. Younger deformation is Plio-Quaternary in age and is char-

    acterized by strike-slip kinematics with NE-SW shortening, except ahmg the boundary between the

    Cordillera Oriental and the Sierras Pampeanas where thrust kinematics with N-S shortening prevail. The

    simi lar ki nematics but di fferent geometries in the two provinces durin g Mio-Pliocene deformation and the

    anomalous thrust kinematics observed during Plio-Quaternary deformation suggest that the Salta rift is

    the mai n control on stru ctur al geometries. A rift invers ion model is developed and applied to the souther n

    Cordillera Oriental.

    Re su me n- -A lo largo de los Andes, la geometria estruc tural del antepais generalmente se correlaciona con

    la incl inac i6n de subducci6n de la placa Nazca. Las franjas de corrimientos se encu ent ran asociadas con

    subducci6n de alto ~ngulo y los levan tami entos de basamento con subducci6n de bajo ~ngulo. En el noroeste

    argentino entr e la Cordillera Oriental austral y las Sierras Pampeanas septentrionales, las geometrias no

    siguen el modelo. En cambio, para esta zona proponemos que la inver si6n estructural de la cuenca rift

    cret~cica de Salta y la diferencia mec~nica entre terrenos con y sin estructuras de rift controlan tanto el

    tiempo de levanta miento terciario como la geometria estructural del antepais. La influencia de la cuenca

    rift se muestra por observaciones estructurales y litol6gicas de campo, an~lisis quinem~tico de fallas, y

    datos publicados de la estrati graf ia local. La Cordillera Orient al austra l se desarroll6 en la subcuenca sud-

    occidental del rift Salt a y se clasifica como una fran ja de corrimientos que involucran al basamento. Las

    Sierras Pampoanas septentrionale s se desarrollaron al sur del rift y son levantamientos de basamento. Las

    estr uctu ras predominan tes en ambas regiones son corrimientos meridiona les de alto o bajo ~ngulo. Fall as

    de desplaza miento de rumbo cortan oblicuamente a los corrimientos. La deformaci6n ante rior tiene edad de

    Mioceno a Plioceno y se caracteriza por la quinem~tica de corrimiento con acortamiento este-oeste a

    noroeste-sudeste. La deformaci6n posterior tiene edad de Plioceno a Cuate rnar io y se caracteriza por la

    quinemgttica de desplazamiento de rumbo con acortamiento noreste-sudoeste, excepto por la frontera entr e

    la Cordillera Orie ntal y las Sierras Pampeanas en la cual predomina la quinem~tica de corrimiento con

    acortamiento norte-sur. Las quinemfiticas semejantes y geometrias distintas de l s dos provincias durante

    la deformaci6n mioc6nica-plioc6nica y la quinem~tica an6mala de corrimiento entre las dos provincias

    dura nte la deformaci6n plioc6nica-cuaternaria sugieren que el rift Salta control6 la geometria estructural.

    Desarroll amos un modelo de inversi 6n estructu ral y lo aplicamos a la Cordillera Orien tal austral.

    I N T R O D U C T I O N

    THE PRESENT BENIOFF ZONE be ne at h the Ce nt ra l

    Andes i s s egmen t ed i n t o r eg i ons o f s t eep and f l a t

    subd uct ion (F ig . 1) (Ba raz ang i an d Isacks , 1976) .

    T h e o r i e n t a t i o n o f t h e s u b d u c t i n g N a z c a p l a t e h a s

    b e e n c o r r e l a t e d w i t h t h e s t r u c t u r a l g e o m e t r i e s t h a t

    a r e d e v e l o p e d i n t h e f o r e l a n d ( J o r d a n e t a l . , 1983).

    R eg i ons o f s t eep s ubduc t i on a re co r r e l a t ed wi t h t h i n -

    *Work done while at Cornell University.

    Address l l correspondence and repr int requests to:

    Dr. Martha E. Grier; telephone [1] (613) 542-3656.

    s k i n n e d f o l d - a n d - t h r u s t g e o m e t r i e s a n d r e g i o n s o f

    n e a r - h o r i z o n t a l s u b d u c t i o n w i t h t h i c k - s k i n n e d b a s e -

    men t up l i f t s . The geo l ogy o f no r t hwe s t e rn Argen -

    t i na , however , s ugges t s t ha t t h i s co r re l a t i on may be

    over l y s i mp l i s t i c i n s ome pa r t s o f t he C e n t ra l Andes

    and t ha t p re -ex i s t i ng s t ruc t u res con t ro l t he s t y l e of

    f o r e l a n d d e f o r m a t i o n ( A l l m e n d i n g e r e t a l . , 1982;

    A l l m e n d i n g e r e t a l . , 1983).

    To the no r th of 24S , the fore land co ns i s t s of the

    C ord i l l e ra Or i en t a l and t he S i e r ras S uband i nas (F ig .

    2). Thes e moun t a i n s ys t ems a re N/ S - t r e nd i ng , domi -

    n a n t l y e a s t - v e r g i n g f o l d - a n d - t h r u s t b e l ts w i t h l o ca l

    wes t -ve rg i ng back - t h rus t s . To t he s ou t h o f 24 S,

    bas eme n t i s i nvo l ved i n t he de fo rmat i o n , t he C or -

    35

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    2/22

    352 M. E. GRIER, J. A. SALFITY, and R. W. ALLMENDINGER

    14

    t~

    t

    O

    g ,

    Q. .

    3

    74 62

    c -

    O

    o ~

    c -

    Fig. 1. The Cent ral Andes showing the Altip lano /Puna Plat eau and the major geological provinces of the foreland. The contours

    show the depth to the s ubduc ting Nazca plate i n kilometers (from Isacks, 1988); regions of steep and flat subduction are indicated.

    dillera Oriental broadens markedly, and zones of

    both west- and east-verging thrusting are common

    both in the Cordillera Oriental and in the southern

    extension of the Sierras Subandinas known as the

    Sistema de Sa nta B~rbara (Mon, 1976; Rolleri,

    1976). In th e reg ion of 2615'S, across a NW/SE-

    trending boundary, the geometries of the fold-and-

    thrust belt change to the thick-skinned basement

    uplifts of the Sierras P ampe anas ( Pampean Ranges).

    To the no rth of 24S and to the south of 27S, the

    correlation between foreland geometries and the

    orientation of the subducting Nazca plate holds.

    However, between 24S and 27S, the correlation is

    confused, if not inconsistent, in that the complex

    foreland overlies a broad, gentle flexure in the

    subducting plate (Fig. 1) (Bevis and Isacks, 1984).

    No short wavelength change in the contours of the

    Benioff zone is observed tha t can explain the abrupt

    change from fold-and-thrust geometries to basement

    uplifts that occurs in t he region of 2615'S (T. Cahill,

    pers. comm., 1989). In addition, underly ing plate

    geometries do not account for the broadening of the

    Cordillera Oriental, the basement involvement in

    the deformation, and the zones of reversed vergence

    within the thrust belt that are observed immediately

    to the north of the st ructural transition.

    Field observations in the southern Cordillera

    Oriental suggest instead that foreland development

    has been controlled by reactivation of pre-existing

    structures. The present-day southern Cordillera

    Oriental and Sistema de Santa B~rbara developed

    within the southern Alemania and Met~n subbasins

    of the Cretaceous Salta rift basin (Figs. 2 and 3). The

    vergence of Andean st ructures tra cks the basin mar-

    gins: in the southern Cordillera Oriental, on the

    west side of the rift, Andean faults are west-verging;

    in the southern Sistema de Santa B~rbara, on the

    east side of the rift, Andean faults are east-verging.

    Vergence changes within these regions may also be

    inheri ted from rift structures. In addition, reacti-

    vated normal faults are observed along the seuth-

    western rift margin. Finally, the abrupt N-S struc-

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    3/22

    Andea n reacti vation of the Cretaceous Salta rift, northwes tern Argent ina 353

    1 0 0 k m

    v v

    v ~

    v v v v v ~

    v v v J

    v v v v v v v v v ' v ' ~

    . v v v v v

    v v v v v v v v v v v ~

    w ~ v v ~

    v v v v v v v v v V

    v v v v v v v v v v v :

    v v v

    v v v v

    V y V V V

    V ~ V ~ y

    p V ~ V V V

    A R G E N T I N

    P u n a

    Sier ras . . / / . .

    . /

    S u b a n d i n a s y " " /

    : : : :~ / ~ / S i i t e m : a i

    : ~ " S a n t a B & r b a r a

    J u j u y

    i i i

    iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

    O r i e n t a l iii:i ~

    P u n a

    r ea

    27

    T u c u m a . n

    S i e r r a s

    P a m p e a n a s

    C e n o z o i c

    v o l c a n i c s

    M a j o r f a u l ts

    i

    {.~S: 6 6 '34

    F i g . 2 . T h e g e o lo g i c al p r o v i n c e s o f n o r t h w e s t e r n A r g e n t i n a .

    tural transition bet ween the Cordillera Oriental and

    the Sie rras Pa mpea nas occurs across the rift margin:

    the fold-and-thrust geomet ries of the southern Cord-

    illera Oriental and the Sistema de Santa B~rbara

    are developed within the rift and the basement up-

    lifts of the Sierras Pampeanas are developed to the

    south and west of the rift.

    A simple rift inversion model, in which Andean

    shortening is sub-parallel to rift extension, best ex-

    plains the st ructural geometries that are observed in

    this part of north west ern Argen tin a (Fig. 4). The

    model assumes that crustal extension during the

    Cretaceous was ac commodated along listric normal

    faults that sole into a zone of quasi-plastic decoup-

    ling at a depth of 10-12 km. It furt her assumes that,

    during Andean shortening from Miocene to Recent

    S A E S ~ 4 / ~ - - F

    times, the basal decollement of the deformation re-

    used the substructure of the old rift and that listric

    normal faults were reactivated in their entirety as

    thrus t faults. The model predicts tha t the foreland

    has been shortened 25% during Andean deforma-

    tion.

    RIFT REACTIVATION

    In order for old structures to have controlled

    later structural geometries they must not only exist

    but have been favorably oriented for reactivation

    during latest deformation. In any area in which the

    possibility of fault reactivat ion arises, several ques-

    tions must be answered.

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    4/22

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    5/22

    Q

    e

    n

    y

    a

    u

    u

    m

    u

    T

    a

    y

    o

    e

    a

    b

    n

    s

    a

    a

    E

    L

    w

    T

    a

    y

    a

    u

    C

    e

    a

    p

    S

    a

    G

    o

    i

    C

    e

    a

    s

    S

    a

    G

    o

    D

    a

    a

    S

    u

    a

    s

    a

    a

    P

    e

    m

    a

    P

    e

    c

    D

    P

    m

    s

    F

    m

    o

    m

    a

    m

    p

    c

    a

    n

    u

    o

    e

    =

    0

    2

    6

    0

    6

    0

    6

    0

    I

    t

    I

    P

    E

    T

    ,

    ~

    C

    o

    d

    e

    a

    O

    r

    e

    a

    ~

    S

    i

    s

    e

    m

    a

    d

    S

    a

    a

    B

    h

    b

    a

    ~

    W

    R

    o

    C

    c

    A

    m

    a

    V

    e

    N

    m

    a

    S

    e

    a

    d

    M

    =

    n

    E

    -

    ~

    I

    _

    L

    _

    ,

    /

    I

    I

    I

    ~

    a

    n

    .

    .

    .

    ~

    ~

    T

    I

    m

    ~

    J

    ]

    L

    L

    I

    M

    I

    D

    D

    L

    M

    I

    O

    C

    E

    E

    .

    .

    .

    .

    .

    1

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    :

    ~

    m

    l

    L

    A

    T

    E

    O

    C

    E

    E

    j

    :

    ~

    i

    ~

    :

    ~

    ~

    ~

    :

    ~

    :

    ~

    -

    ~

    2

    ~

    ~

    ~

    ~

    ~

    ~

    ~

    ,

    J

    ~

    ,

    =

    ~

    ~

    ~

    ~

    ~

    1

    ~

    -

    ~

    ~

    :

    ~

    :

    ~

    -

    ~

    ~

    :

    ~

    ~

    p

    e

    =

    0

    1

    ~

    z

    o

    o

    C

    u

    a

    D

    n

    E

    R

    L

    C

    R

    E

    A

    C

    E

    O

    U

    S

    |

    I

    0

    4

    k

    m

    >

    (

    0

    ~

    O c

    ~

    o

    o

    ~ o

    ~

    F

    g

    4

    M

    o

    o

    h

    C

    d

    e

    a

    O

    e

    a

    a

    S

    se

    m

    a

    d

    S

    a

    B

    b

    a

    a

    2

    3

    S

    a

    u

    T

    c

    o

    o

    s

    h

    w

    h

    d

    o

    m

    e

    o

    h

    o

    e

    a

    o

    m

    p

    e

    o

    n

    o

    n

    h

    e

    s

    a

    b

    n

    n

    n

    h

    E

    y

    C

    e

    a

    N

    s

    u

    a

    a

    a

    e

    o

    e

    a

    e

    b

    o

    e

    d

    o

    v

    o

    s

    u

    u

    a

    a

    e

    o

    e

    a

    e

    a

    u

    m

    e

    E

    c

    o

    o

    s

    a

    e

    b

    a

    S

    F

    g

    o

    o

    o

    C

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    6/22

    3 5 6 M . E . G R IE R , J . A . S A L F I T Y , a n d R . W . A L L M E N D IN G E R

    Qu a te rn a ry t :

    Miocene

    - Pl iocene

    a l eocene

    - Eocene

    Late

    Cre taceous

    Early I

    Cre taceous

    Late Precambr ian

    -Ear ly Camb r ian

    surficial alluvial deposits

    Andean fo re land bas in s t ra ta

    (Payogas t il la and Santa M ar ia Groups)

    Santa B rbara Subgroup

    Ba lbuena Subgroup

    M 3 : 6 3 - + 2 M a

    Intrusive)

    irgua Sugroup

    M 2 : 7 6 . 4 3 .5 a a

    to 78 _+ 5 M a

    Salta

    Group

    M I : 9 7 5 M a t o

    I

    28 5 M a - - I

    Pu nco viscan a Fo rm ation and I o. 1,0oom

    metamorphic equivalents

    Fig. 5 . St ra t igraphy of the so uthern Cordi l le ra Or ienta l and n or thernmo st Sier ras Pampean as be twee n 2515 'S and 2630 'S. M1,

    M2, and M3 represent three phase s of magm at ism. In th is region , M1 and M2 are rep resented by vo lcanic rocks, and M3 by

    int rus ives . A ges of vo lcanic and igneou s rocks f rom Gal l i sk i and Viram onte (1988) .

    t u r e . T h e y c o m b i n e d t o f o r m a t e r r a i n t h a t w a s in -

    h o m o g e n e o u s p r i o r t o a n d d u r i n g A n d e a n d e f o rm a -

    t i o n ( M o n , 1 9 7 9 ) .

    T h e P u n c o v i s c a n a F o r m a t i o n . T h e o l d e s t ex -

    p o s e d u n i t i n t h e r e g i o n i s a th i c k s e r i e s o f p a r a l l e l -

    b e d d e d c l a s t ic s w i t h c o m m o n c o n g l o m e r a t i c i n te r -

    c a l a t i o n s b u t r a r e s y n g e n e t i c v o l c a n i c s a n d c a r -

    b o n a t e s ( F i g . 5) ( O m a r i n i , 1 98 3) . P r o v e n a n c e o f t h e

    e l a s t i c s w a s t o t h e e a s t ( J e z e k a n d M i l le r , 1 9 85 ). T h e

    s e q u e n c e is la t e P r e c a m b r i a n t o C a m b r i a n i n a g e

    ( A c e f o l a z a , 1 9 79 ) a n d , o n t h e b a s i s o f i t s s t r a t i -

    g r a p h y a n d p r o v e n a n c e , i s t h o u g h t t o r e p r e s e n t a

    p r o g r a d i n g s u b m a r i n e - f a n s e q u e n c e d e p o s i t e d a l o n g

    t h e s t a b l e p r o t o - P a c i f ic m a r g i n o f G o n d w a n a ( J e z e k

    a n d M i l l e r , 1 9 85 ).

    T h e s e q u e n c e w a s d e f o rm e d a n d m e t a m o r p h o s e d

    p r i m a r i l y d u r i n g t h e e a r l y P a l e o z o ic (W i l l n e r

    e t a l .

    1 98 7) . I n t h e L a t e C a m b r i a n , t h e c o n t i n e n t a l

    m a r g i n b e c a m e a c t i v e a n d t h e P u n c o v i s c a n a w e d g e

    w a s s h o r t e n e d t h r o u g h f o l d i n g a n d , p o s s ib l y , t h r u s t -

    i n g . S h o r t e n i n g c o n t i n u e d i n t o t h e O r d o v i c ia n w i t h

    t h e d e v e l o p m e n t o f s h e a r b e l t s t h a t a r e a t t r i b u t e d t o

    l a r g e - s c a l e c r u s t a l i m b r i c a t i o n ( W i l l n e r e t a l . 1 9 8 7 ) .

    I n t h e l a t e s t O r d o v i c ia n , t h e r e g i o n w a s p r o b a b l y t h e

    s i te o f b a c k - a r c m a g m a t i s m w h i c h i s c u r r e n t l y r e p r e -

    s e n t e d b y th e F a j a E r u p t i v a d e la P u n a ( B ah l b u r g ,

    1 98 9). H o w e v e r , w e s p e c u l a t e t h a t , t o t h e e a s t o f t h e

    F a j a E r u p t i v a , t h e f i n a l e x t e r n a l f o r m o f t h e P u n c o -

    v i s c a n a w a s t h a t o f a t h i c k e n e d m i o g e o c l i n a l w e d g e

    o f s u b m e r i d i o n a l t re n d ; t h e f in a l i n t e r n a l f o r m t h a t

    o f a f o l d - a n d - t h r u s t b e l t . T h e f o r m o f t h e P u n c o v i s -

    c a n a F o r m a t i o n h a s b e e n m o d i f ie d s in c e t h e e n d o f

    t h e O r d o v i c i a n b y e r o s io n a n d b y s u b s e q u e n t d e -

    f o r m a t i o n w i t h th e r e s u l t t h a t d i f f e r e n t s t r u c t u r a l

    l e v e l s a r e c u r r e n t l y e x p o s e d i n d i s t i n c t t e c to n o -

    m e t a m o r p h i c z o n e s (F i g . 6) ( W i l l n e r a n d M i l le r ,

    1 9 8 5 ) .

    T h e S a l t a B a s i n .

    T h e S a l t a G r o u p r e p r e s e n t s a

    r i ft s y s t e m t h a t d e v e l o p e d w i t h i n a n d o n to p o f t h e

    P u n c o v i s c a n a w e d g e (F i g s . 3 a n d 5 ) ( B i a n u c c i a n d

    H o m o v c , 19 8 2 ; S a l f i t y , 1 98 2 ). T h e b a s i n ' s f o r m c o u l d

    h a v e b e e n c o n t r o ll e d b y s t r u c t u r e s w i t h in t h e w e d g e

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    7/22

    Andea n reactiv ation of the Cretaceous Salta rift, northwes tern Argent ina 357

    660 65

    ,_ K:;i:~i:;if St u d y r e a

    = A

    P u n c o v l s c a n a F ro .

    s t r u c t u r a l d e p t h

    s h a l l o w

    i n t . - s h a l l o w

    ~

    d e e p - i n t .

    d e e p

    g r a n i t i c

    I i n t r u s i o n s

    / f a u l t s

    C C a f a y a t e

    A A n g a s t a c o

    A I A l e m a n [ a

    T u c u m n

    0 2 5 k m

    Fig. 6. The tectonometamorphic ones of he PuncoviscanaFormation(modified romWillner

    t a l .

    1987); int = intermediate.

    and, in turn, its development modified the Punco-

    viscana wedge itself, creating new structures that

    may have been favorably oriented for reactivation

    during subs equent Andean deformation. The form of

    the basin at present reflects uplift and deformation

    since the end of the Cretaceous; the pre sent margi ns

    may be erosional and not depositional.

    This basin is one of a series th at formed during

    the Cre taceous from the Atl antic coast to Peru along

    a northwe sterl y tren d (Fig. 7). The series includes

    the Chaco- Paranense and Salta Basins of Argentina,

    and the Subandean and Andean Basins of Bolivia

    and Per u (Fig. 7). The links between the Salta, Sub-

    andean, and Andean Basins are well established

    (Riccardi, 1988; Macellari, 1989), but that between

    the Salta Basin and the Chaco-Paranense Basin is

    more tenuous, being based on subsurface data (Russo

    e t a l .

    1979). During the late Campani an through

    the Maastrichtian-Paleocene, the Salta Basin was

    also linked to the back-arc Andea n Basin of north ern

    Chile (Salfity e t a l . 1985; Riccardi, 1988; Macellari,

    1989).

    These basins were active during the Cretaceous

    and early Tertiary, and their plate tectonic setting

    altere d substantiall y during this time. Subduction

    of the oceanic plate was established along the

    western margin of Gondwana in the Jurassic, and

    the e aster n margin of South America was rifted from

    Africa during the Cretaceous. The basins could thus

    be subduction-related back-arc basins, a failed rift

    system associated with the opening of the South

    Atlant ic, or a combination of the two. The overall

    trend of the basin system makes a purely back-arc

    origin unlikely. The basins' trend and the time-

    transgressive nature of alkalin e volcanism along the

    trend~128_ 5 Ma in the Salta Basin (Reyes

    e t a l .

    1976) and 82.5 Ma in the Andean Basin (Cherroni

    Mendieta, 1977)--are consistent, however, with a

    failed rift sys tem (Gallisky and Viramonte, 1985).

    The Salta Basin itself consists of several sub-

    basins grouped around the Salta-Jujuy high (Fig. 3).

    The shape of the basin and the position of depo-

    centers within the basin are thought to have been

    controlled by NE/SW- and NW/SE-trending linea-

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    8/22

    358 M . E . GR I E R , J . A . S A LF I TY, a n d R . W. ALLMENDINGE R

    m e n t s (S a l fi ty , 1 98 2) . T h e b a s i n s t r a t a c a n b e

    d i v i d e d i n t o s y n - r i f t a n d p o s t - r i f t s e q u e n c e s ( F ig . 5 )

    ( B i a n u c c i

    e t a l .

    1 98 1) . T h e s y n - r i f t s e q u e n c e i s

    r e p r e s e n t e d b y t h e f i n i n g - u p w a r d s e q u e n c e o f c o n t i n -

    e n t a l c l a s t ic s o f t h e P i r g u a S u b g r o u p . T h e p o s t - r i f t

    s t r a t a a r e r e p r e s e n t e d b y th e l a c u s t r i n e t r a n s g r e s -

    s i v e s e q u e n c e o f t h e B a l b u e n a S u b g r o u p a n d t h e

    p o s t -r i ft r e g r e s s i v e c o n t i n e n t a l s e q u e n c e o f th e

    S a n t a B f i r b a r a S u b g r o u p ( M o r e n o , 1 9 7 0 ; S a l f i t y ,

    19 82 ). R i f t i n g t o o k p l a c e f r o m t h e N e o c o m i a n to

    C a m p a n i a n , a n d t h e p o s t - r i f t s t r a t a w e r e d e p o s i t e d

    f r o m th e l a t e C a m p a n i a n t o m i d d l e E o c e n e (M a r -

    q u i l l a s a n d S a l f i t y , 1 98 8 ).

    T h e f o r m a t i o n s t h a t c o m p r i s e th e s y n r i ft P i r g u a

    S u b g r o u p a r e t h o u g h t to r e p r e s e n t p r o x i m a l a l lu v i a l

    f a n d e p o s i t s , m i d a n d d i s t a l - f a n d e p o s i t s , a n d

    b r a i d e d s t r e a m d e p o s i t s f r o m a l o n g t h e f r o n t o f t h e

    f a n a p r o n ( M o r e n o , 1 97 0; R e y e s a n d S a l f i ty , 1 9 73 ;

    S a l f i t y a n d M a r q u i l l a s , 1 9 81 ). T h e f a c i e s c o m b i n a -

    t i o n i s c o n s i s t e n t w i t h d e p o s i t io n i n f a u l t - b o u n d e d

    b a s i n s ( S a lf i t y , 1 98 2 ). T h e o r i e n t a t i o n a n d s h a p e o f

    t h e b a s i n s c a n b e i n f e r r e d f r o m t h i c k n e s s c h a n g e s i n

    t h e p r o x i m a l f a n f a c ie s . O n t h e s o u t h w e s t s id e o f t h e

    A l e m a n i a s u b b a s i n , f o r e x a m p l e , t h e c o n g l o m e r a t e s

    o f t h e L a Y e s e r a F o r m a t i o n a r e o v e r 1 00 0 m e t e r s

    t h i ck n e a r t h e m a r g i n s o f t h e b a s i n b u t a r e a b s e n t

    f r o m t h e s e q u e n c e i n t h e c e n t e r o f t h e b a s i n ( F i g . 8).

    I n b o t h t h e A l e m a n i a a n d M e t f i n s u b b a s i n s , t h e s e

    F i g . 7. U p p e r m o s t C r e t a c e o u s b a s i n s o f w e s t - c e n t r a l S o u t h A m -

    e r i c a sh o w i n g s y n - r i f t s e q u e n c e s in n o r t h e r n A r g e n t i n a a n d

    B o l i v i a ( m o d i f i e d f r o m M a r q u i l l a s a n d S a l f i t y , 19 88 ): S B , S a l t a

    B a s i n ; C H PB , C h a c o - P a r a n e n s e B a s i n ; A B , A n d c a n B a s i n ; S A B ,

    S u b a n d e a n B a s i n ; B A B , b a c k - a r c b a s i n .

    f a c i e s a r e e l o n g a t e N - S o r , b u t w i t h l e s s f r e q u e n c y ,

    E - W ( M o r e n o , 1 97 0; G b m e z O m i l

    e t a l .

    1 9 8 9 ) . G i v e n

    t h e o v e r a l l s h a p e o f t h e s u b b a s i n s , t h i s s u g g e s t s t h a t

    b a s i n - b o u n d i n g n o r m a l f a u l t s h a d s u b m e r i d i o n a l

    t r e n d s a n d w e r e o f fs e t b y E / W - t r e n d i n g t r a n s v e r s e

    f a u l t s .

    T h e s y n - r i ft f a c ie s a r e o v e r l a i n b y t h e f o r m a t i o n s

    o f t h e B a l b u e n a S u b g r o u p w h i ch , in t h e s o u t h e r n

    s u b b a s i n s o f t h e r i f t , c o m p r i s e t h e b a s a l s a n d s o f a

    l a c u s t r i n e s e q u e n c e ( S a l f i t y , 1 9 8 0 ) a n d l i m e s t o n e s

    d e p o s i t e d i n a s h a l l o w ( 1 0 m d e p t h o n a v e r a g e ) ,

    r e s t r i c t e d b r a c k i s h b a s i n w i t h lo c a l ly h y p e r s a l i n e

    a n d f r e s h - w a t e r c o n d i t i o n s ( M a r q u i ll a s , 1 9 86 ). T h e

    s a n d s a n d l i m e s t o n e s w e r e d e p o s i t e d o v er a s u r f a c e

    o f r e l a t i v e l y l o w r e l i e f a n d r e a c h a c o m b i n e d th i c k -

    n e s s o f 4 0 0 m e t e r s i n t h e m a j o r d e p o c e n t e r s (M a r -

    q u i l l a s , 1 9 8 6 ).

    T h e B a l b u e n a S u b g r o u p i s o v e r l a i n b y t h e S a n t a

    B ~ i r b a r a S u b g r o u p , w h i c h i s d o m i n a t e d b y f l u v i a l

    c l a st ic s , th e e a r l i e r l a c u s t r i n e i n f l u e n c e s g r a d u a l l y

    d e c r e a s i n g i n i m p o r t a n c e o v e r t i m e (F i g . 5) (M o r e n o ,

    1 9 70 ; S a l f i ty , 1 98 2 ). T h e s e q u e n c e i s c a p p e d b y a n

    e r o s io n a l u n c o n f o r m i t y , a n d t h e p r e s e r v e d t h i c k n e s s

    r e a c h e s a m a x i m u m o f 1 50 0 m e t e r s i n t h e b a s i n

    d e p o c e n t e r s ( M o r e n o , 1 97 0) .

    T h e S a l t a G r o u p i n c lu d e s i n t r u s i o n s a n d v o l-

    c a n i cs r e p r e s e n t i n g t h r e e p h a s e s o f m a g m a t i s m (F ig .

    5 ) ( R e y e s

    e t a l .

    1 9 7 6 ; B i a n u c c i

    e t a l .

    1 9 8 1 ; B e r c -

    k o w s k i , 1 98 7). T h e f i r s t e v e n t o c c u r r e d f r o m m i d d l e

    N e o c o m i a n t o l a t e A l b i a n t i m e a n d i s r e p r e s e n t e d b y

    i n t r u s i v e s i n t h e T r e s C r u c e s s u b b a s i n o f t h e r i f t a n d

    b y l a v a f lo w s , d i k e s , a n d m i n o r p y r o c l a s t i c fl o w s t h a t

    a r e i n t e r c a l a t e d w i th t h e L a Y e s e ra F o r m a t i o n - - t h e

    p r o x i m a l f a n f a c ie s o f t h e r i ft s e q u e n c e - - a l o n g t h e

    m a r g i n s o f t h e s o u t h e r n s u b b a s i n s o f t h e r i ft ( R e ye s

    e t a l .

    1 97 6; S a l f i ty , 1 98 2). T h e i n t r u s i v e s a r e a l k a l i

    g r a n i t o i d s , a n d t h e v o l c a n i c r o c k s r a n g e i n c o m p o s i-

    t i o n f r o m r h y o l i t e s t o b a s a l t s ( R e y e s e t a l . 1976;

    S a l f i t y , 1 98 2 ; G a l l i s k i a n d V i r a m o n t e , 1 98 8).

    T h e s e c on d p h a s e o f m a g m a t i s m o c cu r re d d u r i n g

    C o n i a c i a n - S a n t o n i a n t i m e a n d i s r e p r e s e n t e d p r i -

    m a r i l y b y th e L a s C o n c h a s B a s a l t ( F ig s . 3 a n d 5). I t

    i n c l u d e s l a v a s a n d p y r o c l a s t ic f lo w s , d i k e s , a n d s i l l s

    o f b a s a n i te s a n d m u g e a r i t e s t h a t i n t r u d e a n d a n d

    a r e i n t e r c a l a t e d w i t h t h e L a s C u r t i e m b r e s F o r m a -

    t i o n - t h e m i d - to d i s t a l- f a n d e p o s i t s o f t h e r i f t se -

    q u e n ce . T h e y o c c ur p r i m a r i l y i n t h e c e n t e r o f t h e

    A l e m a n i a su b b a s i n , a l t h o u g h s o m e b a s a l t s t h a t m a y

    b e r e la t e d t o th i s p h a s e o f m a g m a t i s m a r e i n t r u d e d

    a l o n g w h a t w e c o n s i de r to b e a b a s i n m a r g i n f a u lt .

    T h e t h i r d p h a s e o f m a g m a t i s m o c cu r re d d u r i n g

    t h e P a l e o c e n e ( F ig . 5). I t is r e p r e s e n t e d i n t h e s o u t h -

    e r n p a r t o f t h e S a l t a B a s i n b y a s i n g l e l a m p r o i t i c si ll

    ( O m a r i n i

    e t a l .

    1 98 7) . T h e s il l , a p o t a s s i c t r a c h y t e ,

    i n t r u d e s t h e Lo s B l a n q u i t o s F o r m a t i o n . E l s e w h e r e

    i n t h e b a s i n , f lo w s a n d i n t r u s i v e s o f t h i s e p i s o d e a l s o

    o c c u r i n t h e o v e r l y i n g , p o s t - r i f t B a l b u e n a S u b g r o u p

    ( B i a n u c c i

    e t a l .

    1 9 8 1 ; B e r c o w s k i , 1 9 8 7 ).

    T h e v o l c a n i c r o c k s o b s e r v e d i n t h e S a l t a G r o u p

    a r e a l k a l i n e a n d a r e n e p h e l i n e n o r m a t i v e , a l t h o u g h

    t h e y v a r y w i d e l y i n c o m p o s i ti o n . T h i s , a n d t h e g e o -

    g r a p h i c d i s t r i b u t i o n o f t h e v o l c a n ic s , s u p p o r t s a r i f t

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    9/22

    A n d e a n r e a c t i v a t i o n o f t h e C r e t a c e o u s S a l t a r if t, n o r t h w e s t e r n A r g e n t i n a 3 59

    J

    f

    /

    23

    Bo,,v,a

    I

    Argent ina l

    Salta

    Study

    Area

    7

    T

    J u ju y

    Shale

    Cong lomera te 50% San ds tone

    Firs t cyc le

    volcanics

    ~ S e c o n d c y c le

    volcanics

    Tucum&n 641 100 km 6 /o_ ]

    Fig. 8 . The d is t r ibut ion of syn- r i f t conglom erate , sandston e, and shale (Pi rgua Sub group ) in the Sal ta Basin (modif ied f rom

    Moreno, 1970) : A, Alema nia su bbas in; M, Met~n subba s in .

    o r i g in f o r t h e S a l t a B a s i n ( B ia n u c c i e t a l . 1 9 8 1 ;

    S a l f i t y , 1 98 2 ; G a l l i s k i a n d V i r a m o n t e , 1 9 8 8 ).

    A n d e a n F o r e l a n d B a s i n S t ra t a .

    T h e r i f t b a s i n

    a n d t h e o l d e r , d e f o r m e d p a s s i v e m a r g i n s e q u e n c e a r e

    o v e r l a i n u n c o n f o r m a b l y b y 4 0 0 0- 6 00 0 m e t e r s o f s e d i-

    m e n t a r y r o c k s t h a t w e r e d e r i v e d f r o m th e u p l i f t o f

    t h e A n d e s M o u n t a i n s ( F ig s . 5 a n d 9 ). T h e s t r a t a

    e x p o s e d i n t h e s o u t h e r n C o r d i l le r a O r i e n t a l a r e

    e a r l y M i o c e n e t o l a t e P l i o c e n e i n a g e ( D i az a n d

    M a l i z z i a , 1 9 8 3 ; G r i e r a n d D a l l m e y e r , 1 9 9 0 ); t h o s e

    e x p o s e d i n t h e n o r t h e r n S i e r r a s P a m p e a n a s a r e l a t e

    M i o c e n e t o P l i o c e n e i n a g e ( B o s s i e t a l . 1 9 8 7 ) . T h e

    s e q u e n c e s i n b o t h l o c a t i o n s a r e d o m i n a t e d b y

    b r a i d e d s t r e a m a n d a l l uv i a l f a n d e p o si t s, a l t h o u g h

    t h e p r e - P li o c e n e s t r a t a e x p o s e d i n t h e s o u t h e r n

    C o r d i ll e r a O r i e n t al a r e m u c h c o a r s er t h a n t h o s e

    e x p o s e d i n t h e n o r t h e r n S i e r r a s P a m p e a n a s G r i er

    a n d D a l l m e y e r , 1 9 9 0 ) .

    T h e u n c o n f o r m i ty b e t w e e n t h e A n d e a n s t r a t a

    a n d t h e S a l t a G r o u p i s v a r i a b l e ( F i g . 4 ). J u s t t o t h e

    w e s t o f t h e s t u d y a r e a , a t t h e l a t i t u d e o f A n g a s t a c o

    ( F ig . 9), A n d e a n s t r a t a l ie d i r e c t l y o v e r s t r a t a f r o m

    t h e s y n - r i f t P i r g u a S u b g r o u p . T h e a n g l e o f u n c o n -

    f o r m i t y is 2 7 a n d t h e s t r a t a b e n e a t h t h e r e s t o r e d

    u n c o n f o r m i t y d i p t o t h e s o u t h . F a r t h e r t o t h e e a s t,

    i n t h e T o n c o V a l l e y , th e a n g l e o f u n c o n f o r m i t y

    b e t w e e n A n d e a n a n d S a l t a G r o u p s t r a t a i s 2 -3 . T h e

    u n c o n f o r m i t y s u g g e s t s t h a t u p l i f t o f t h e S a l t a B a s i n

    b e g a n b e f o r e A n d e a n f o r e l a n d b a s in s t r a t a w e r e

    d e p o s i te d , a n d t h e v a r i a t i o n i n th e u n c o n f o r m i t y

    s u g g e s t s t h a t u p l i f t w a s a c c o m p a n i e d b y d e f o r m a -

    t io n , a t l e a s t i n t h e w e s t e r n m o s t p a r t o f t h e b a s i n .

    T h e f o r e l a n d b a s i n s t r a t a w e r e d e p o s i t e d o n a

    v a r i a b l e s u b s t r a t e . D u r i n g t h e e a r l y s t a g e s o f d e p o s i -

    t io n t h e y a c c u m u l a t e d i n a b a s i n c o n t r o l l e d s t r u c t u r -

    a l l y on th e w e s t s i d e. D u r i n g l a t e r d e p o s i t io n , t h e

    b a s i n w a s d i v i d e d s t r u c t u r a l l y a s t h e l o c u s o f A n -

    d e a n d e f o r m a t io n m o v e d e a s t w a r d .

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    10/22

    3 6 0 M .E . G R TER , J . A . SA LFITY , a n d R . W . A LLMEND IN G ER

    . . . . . ~ ] . . o ] /%

    - - , ] ~ . . ~ , / ] /

    . . . . . : ~ s ]

    : . ~ . ~ . . . .

    ]

    N

    . . . . . - : ~ . . . .

    ' % ] ] ] ]

    : , : , ; . : , : , : ,

    D a m

    C

    0

    1 )

    D

    m _ _

    f .

    ] % ~ J~ % ] ] ] ] ]

    ] ]

    ] ~ :~ ] ] ,,~ ] ] ] ] ] ,

    r % % % . % ]

    , ] ] ] ] ]

    ] % ] ~

    , ] ] ~ , ~ ] t , , ,

    - - 2 6

    * * ] ] ] ] ] ] ] ] ] % ]

    ,% ] * . %

    ] ] ] , ~ ] ] ] ~ ' ]

    , ] ] ] ] ] ] ] ] ] ] g ~

    , ( g ' - 4

    % % % % % ~ ~ 1

    ' ] ] ] ] ] . / ] ' ~ ] ] % ~

    ' ] ] ] ] , ] ~* ] ] ] ] ]

    ' ~* ] ] ] ] ] ] ] ] ] ] ] a

    ' ] ] ] ~ ' ] ] ] ] / ] ] * . ' ]

    ' ] ] ] , ] ] / ] ] .. ] ] ]

    % % % % % % % ~

    ' ] ] ] , . , ] ] ] ~ ] ] / ' ] ] ]

    ' ] ] ] / ] / ] ] ] ] ] ] ,g

    , ] ] ] ] ] ] ~ * ] . ] % . . ' ] , , ~ % ]

    % % % ,

    - - ~ a llu v iu m

    A n d e a n f o re la n d

    b a s i n s t ra t a

    p s t r i ft 1 S a l ta

    s y n - r i f t G r o u p

    P u n c o v i s c a n a F r n . /

    m e t a s e d i m e n t s

    ~ g r a n i t e

    San ar los

    C a f a y a t e

    del Va~le

    r] ] ] ] ] ]~

    ]%] e % r .] ]

    ] ] ] ] ] ~ ] ]

    S ] ]

    , ~ 1 ] ]

    ] J ] ] ] ,

    : ~ ~

    ] ] ] ] ] ] ~ ] ] ]

    ~

    ~

    ] ] ] g ] ]

    ] ] ] ] - - . / ] ]

    ,

    ] ] ] ] ~ / ] ]

    ] ] ] ] ] ~ ] ] ]

    ] ] ] ] ] g ] ] ] ]

    ] ] ] ] ] ] ] ] ] ]

    ] ] ] ] ] g ] ] ] g ]

    g / J i g ] g ]

    ] ] ] ] ] ] ] / ] ]

    ~ ] ] g ] ~ ] ] ] ] ] ]

    ] ] ] ] ] ] ] / ] ] ] ]

    ] ] ] ] ] g ] ] ] ] ]

    ~ ] ] ] ] 1 ] ] ] ] ] ]

    t ' ; ' ; o l o k :

    % % % %

    g ] / t ] ] / g Y t ] g g ]

    ~ s ] ] 2 ] ] 1 ] ] ] i

    _q

    13

    3

    O

    D

    F i g . 9 . G e o l o g i c a l m a p o f t h e s o u t h e r n C o r d i l le r a O r i e n t a l a n d t h e n o r t h e r n m o s t S i e r r a s P a m p e a n a s .

    Ge om et r y a n d K i n em a t i c s o f h e A n d e a n F o r el a n d ,

    255 S to 260 S

    A p a l e o g e o l o g i c s t u d y o f t h e A n d e a n f o r e l a n d i n

    t h i s r e g i o n s h o w s t h a t , d u r i n g A n d e a n d e f o r m a t i o n ,

    a c o m p l e x c o m p o s i t e w e d g e h a s b e e n d e f o r m e d q u i t e

    u n l i k e , f o r e x a m p l e , t h e s i m p l e m i o g e o c l i n a l w e d g e

    f o u n d in t h e R o c k y M o u n t a i n s o f C a n a d a ( D a h l -

    s t r o m , 1 9 6 9) . T h e f o r e l a n d h a s t h r e e i n t e r a c t i n g

    c o m p o n e n t s : t h e P u n c o v i s c a n a w e d g e , t h e S a l t a ri f t

    b a s i n s t r a t a , a n d t h e A n d e a n f o r e l a n d b a s i n s t r a t a ,

    a l l f o u n d w i t h i n t h e r if t d o m a i n . E a c h c o m p o n e n t

    h a s a d i s t i n c t l i t h o l o g y , f o r m , a n d s t r u c t u r e.

    T h e p o s s i b i l i ty o f p a l e o t e c t o n i c c o n t r o l o n A n -

    d e a n d e f o r m a t i on t h u s e x i s t s, a l t h o u g h t h e d e g r ee t o

    w h i c h c o n d i t i o n s w e r e f a v o r a b le t o r e a c t i v a t i o n i s

    u n c e r t a i n . H o w e v e r , t h e p r e s e n t g e o m e t r y a n d k i n e -

    m a t i c s o f A n d e a n d e f o r m a t i o n c a n b e u s e d t o w e i g h

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    11/22

    Andean reacti vation of the Cretaceous Salta rift, northwes tern Argent ina 361

    the ext ent ofpaleotectonic control. That is, given the

    present-day geology, could reactivat ion of a suite of

    old struc ture s or lithologic inhomogeneities account

    for the configuration of modern structures, and is

    ther e any di rect evidence of fault reactivation?

    G e o m e t r y . The study area is divided into two

    structural domains across a NW-SE trend that

    crosses the Calchaqui Valley several kilometers to

    the south of San Carlos (Fig. 9). The southern part of

    the Cordillera Orie ntal lies to the north of this tren d

    and the northern part of the Sierras Pampeanas to

    the south. The struc tural geometries observed in the

    two mount ain systems are different: the Sierras

    Pampeanas are baseme nt uplifts and the Cordillera

    Oriental is a basement-i nvolved fold-and-thrust belt.

    The basement uplifts that are observed in the

    Sierras Pampeanas are Precambrian to Cambrian

    schists and gneisse s of the Puncoviscana Formation

    or equivalents and have been uplifted along N- to

    NE-stri king reverse faults. They are typically asym-

    metric, with a steep eroded slope on the fault-

    bounded margin. Remn ants of a peneplain are ex-

    posed, in some cases, on the tilted tops of the blocks

    where the Cenozoic cover has been eroded (Caminos,

    1979; Jordan e t a l . 1990). The block-bounding

    faults, in general , dip steeply where the y are exposed

    at the surface although, locally, shallow dips have

    been observed. They are observed to paral lel major

    planes of schistosity (Gonz~lez Bonorino, 1950).

    Their orientation at depth is uncertain, but it has

    been suggested, for geometric considerations, that

    the faults must flatten with depth (Gonz~ilez Bono-

    rino, 1950; Jor dan and Allmendinger, 1986). The

    blocks have been thru st over as much as 4000 meters

    of Tertiar y and Quaterna ry strata. Minor folding

    and fault ing is observed in the basin strat a, and the

    terminations of the mountain-bounding faults are

    often expressed as anticlines in thes e strata.

    The two northernmost Pampean ranges--Sierra

    de Quilmes and Cumbres Calchaquies--lie in part

    with in the study are a (Fig. 9). The Sierr a de

    Quilmes is uplifted along its east side by a series of

    faults that are exposed only at the north end of the

    block and are inferred along the length of the

    nor the as te rn par t of the block (Ruiz Huidobro, 1972;

    Vile la and Garcia, 1978; Galv~n, 1981). Cumbres

    Calchaquies is fault bounded to the east and west

    (Caminos, 1979), and a num ber of minor blocks are

    observed at its nor thern end: Filo Las Minas, Filo

    Paranilla and Loma Negra (Fig. 10). Remnants of

    the basemen t-cappin g peneplain have been observed

    on both rang es (Strecker, 1987). The ranges are

    separated by the Calchaqui or Santa Maria Valley,

    which is 20-25 km across.

    The mountain-bounding faults trend N-S, as do

    faults and fold axes that are observed in the de-

    formed Tertiary strata immediately to the west of

    Cumbres Calchaquies (Fig. 9). This suggests tha t

    major str uctur es were produced durin g an episode of

    E-W shortening. Other feat ures indicate that shor-

    tening continues in a subsequent episode of deforma-

    tion. Quat erna ry fans along the west side of

    Cumbres Calchaquies (at the latitude of Colalao del

    Valle, Fig. 9) are tilt ed 2-3 toward the moun ta in

    front. A fault observed in Quebrada La Vifia at t he

    northea st corner of Sierra de Quilmes has an orien-

    tati on of 052/52 SE and thr ust s par t of the Quilmes

    block over a Quate rna ry conglomerate. In both

    cases, the Quaternary strata unconformably overlie

    deformed Terti ary strata.

    In contrast to the Sierras Pampeanas, the

    southern Cordillera Oriental has been described as a

    basement-involved fold-and-thrust belt (Vilela a nd

    Garcia, 1978; Turner and Mon, 1979). Major struc-

    tures are more closely spaced than they are in the

    Sierras Pampeanas (10-15 km spacing as opposed to

    20-30 km spacing) and the y are developed not only in

    the Puncoviscana Formation and the Andean fore-

    land basin strata but in strata that are associated

    with the Salta rift basin.

    In the study area, major faults trend N-S to

    NNE-SSW and dip to the east (Fig. 9). Only one

    major east-verging thrust fault--in the Amblayo

    Val ley --i s observed. Most minor faul ts also have

    submeridional trends but dip to either east or west.

    Syn-rift Salta Group stra ta or Puncoviscana Forma-

    tion are commonly exposed in the han ging wal ls of

    the large-scale faults and post-rift Salta Group, and

    Andean foreland basin strata in the footwalls (Fig.

    9). Major fold axes parallel the faul t trends. Major

    anticlines are found in the hanging walls of the

    faults, and major synclines and minor anticlines in

    the footwalls. Many of the folds are overs teepened

    on their west-facing limbs as a result of out-of-the-

    syncline thrusting, particula rly in thick sequences of

    syn-rift strata. The N/S-trending folds and thru st

    faults do not involve Quatern ary strata.

    As in the Sierras Pampeanas, the orientation of

    the dominant structures suggests that they were

    produced during an episode of E-W to WNW-ESE

    shortening. Again, minor cross-cutting feature s

    show tha t one or more other episodes of deformation

    also occurred. One set of features shows a consis tent

    NW-SE to WNW-ESE trend (Fig. 9). The major fault

    that bounds the east side of the Calchaqui Valley

    north of Rio de Las Conchas is scalloped. The faul t

    consistently steps to the west along WNW-ESE to

    NW-SE trends. E/W-trending minor folds are obser-

    ved in the hanging wall of the main thrust at the

    corners of some of the scallops and may represent

    fault terminations or transpressional features rela-

    ted to later deformation. A left-lateral strike-slip

    fault that runs along the Rio Calchaqui, to the east

    of Angastaco, parallels the trend of these scallops

    (Fig. 11). The abrupt t ermina tions of the Tonco and

    Amblayo synclines are aligned along a similar tren d

    (Fig. 9). On a minor scale, near-vertical , NW/SE- to

    NNW/SSE-trending left-lateral strike-slip fault s are

    observed in the vicinity of Mina Don Otto on the east

    side of the Tonco syncl ine (Raskovsky, 1968).

    Other trends are also observed in the cross-cut-

    ting st ructures (Fig. 10). In Quebrada Las Chacra s a

    NNE/SSW-trending, low-angle strike-slip fault cuts

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    12/22

    3 6 2 M . E . G R IE R , J . A . S A L F I T Y , a n d R . W . A L L M E N D IN G E R

    Fig. 10 . Cross-cut t ing s t ruc tures in the region of Queb rada La Yesera . See Fig . 9 for locat ion.

    Fig . 11 . Cross-cut t ing s t ruc tures in the reg ion of he Q uebrad a de

    Piscuyacu. See Fig . 9 for locat ion.

    a N / S - t r e n d i n g t h r u s t f a u l t . T h e s t r i k e - s li p f a u l t is

    o r i e n t e d p a r a l l e l t o b e d d i n g a n d m a y b e a r e a c t i-

    v a t e d t h r u s t f a u l t. A l o n g t h e n o r t h s i d e o f Q u e b r a d a

    L a Y e s e r a , t h e E 1 Z o r r i t o r e v e r s e f a u l t t r e n d s E - W t o

    N E - S W a n d c u t s a N / S - t r e n d i n g t h r u s t f a u l t . I n t h e

    q u e b r a d a i ts e lf , th e m a j o r N -S f o ld s a n d f a u l t s h a v e

    t h e m s e l v e s b e e n f o ld e d a b o u t a n E - W a xi s . F i n a l l y ,

    a N / S - t re n d i n g f a u l t s c a r p w i t h r i g h t - l a t e r a l d i s-

    p l a c e m e n t h a s b e e n o b s e r v e d in Q u a t e r n a r y a l l u v i a l

    f a n s t o t h e w e s t o f C e r r o E 1 Z o r r i t o ( F i g . 9 ).

    C r o s s - c u t ti n g a n d s t r a t i g r a p h i c r e l a t io n s , a s d e s -

    c r i b e d a b o v e , s h o w t h a t t h e s e m i n o r s t r u c t u r e s , w i t h

    t h e p o s s i b le e x c e p t io n o f t h e s c a l l o p s i n t h e m a i n

    t h r u s t , p o s t - d a t e m a j o r E - W A n d e a n s h o r t e n i n g .

    T h e y a r e c o n s i s t e n t w i t h a s i n g l e e p i s o d e o f m i n o r

    d e f o r m a t i o n w i t h N E - S W t o N - S s h o r t e n i n g t h a t

    b e g a n a s e a r l y a s t h e l a t e P l i o c e n e a n d c o n t i n u e d

    i n t o t h e Q u a t e r n a r y .

    K i n e m a t i c s .

    T h e k i n e m a t i c s o f t h e d e f o r m a t i o n

    a r e d e r i v e d f r o m t h e a n a l y s i s o f 3 04 f a u l t - s li p m e a -

    s u r e m e n t s w i t h in t h e s t u d y a r e a a n d a r e c o n s i s t e n t

    w i t h t h e k i n e m a t i c s d e r i v e d f r o m t h e a n a l y s i s o f

    o v e r 1 2 00 m e a s u r e m e n t s f r o m a d ja c e n t a r e a s

    ( M a r r e t t

    e t a l .

    1 98 9 ; G r i e r , 1 9 90 ). T h e r e g i o n a l d a t a

    s e t c o m p r is e s t w o g r o u p s o f f a u l t s t h a t a r e t h o u g h t t o

    r e p r e s e n t t w o e p i s o d e s o f d e f o r m a t io n : o n e t h a t i s

    M i o - P li o c e n e in a g e , a n d o n e t h a t i s y o u n g e r a n d

    i n c l u d e s d e f o r m a t i o n d u r i n g t h e Q u a t e r n a r y . F a u l t /

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    13/22

    Andea n reactivat ion of the Cretaceous Salta rift, northwest ern Argent ina 363

    23 -

    I

    1 O 0 k m v v . . ~

    ~~ v ~ / ~ '~ A R G E N T I N A

    i::i

    : : : : : 9

    ~ v v V v V v V v V ~

    vvvvvVvVvVv '

    ::iiiii iii iil

    V v

    P u n a

    Sie rra . . .~ .s

    :S a : d n . a s~ : ." . i /

    I

    S is te m a e

    S a n t a & r b a r a

    ~ v v v v v ~ ( ~ / J : :: ~ : i l: : S a l ta . . . . . .

    i i i i i i i

    t i i i i i ;

    P u n a

    rea

    2 7

    T u c u m & n

    [ ~ C e n o z o i c

    vo lcan ics

    S i e r ras

    P a m p e a n a s

    I I I I I

    6 8 6 6 6 4

    Fig. 12. The ki nemat ics of Mio-Pliocene deformation (modified from Marrett e t a l . 1989). Kinemat ic analyses are displayed as

    fault p lane solutions. Solid boxes represent ave rage s horte ning directiorL~; open boxes, average exten sion directions.

    stratigraphic relations outside the study area sug-

    gest that the chang e in kinematics occurred between

    2.35 and 0.78 Ma (Marret t e t a l . 1989).

    The kinema tics of Mio-Pliocene deformation are

    homogeneous throughout the southern Cordillera

    Oriental, the northern Sierras Pampeanas, and the

    adjacent Puna margin (Fig. 12). The maximum

    shortening direction is betwe en E-W and NNW-SSE.

    Shortening is horizontal and extension is vertical.

    Maximu m shorte ning is perpendicular to major An-

    dean structures. The kinema tics of Plio-Quat ernary

    deformation are less homogeneous (Fig. 13). Strike-

    slip kinematics prevail, although thrust faults and

    normal fault s are observed locally. Maximum shor-

    tening directions typically lie between NE-SW and

    E-W.

    Within the study area, deformation has also

    occurred in two kinematically distinct episodes; the

    division into two episodes is based on cross-cutting

    relationships between faults, fault stratigraphic

    relationships, and considerations of kinematic com-

    patibility as described in Marret t and Allmendinge r

    (1990). The older deformat ion shows th rus t k inema -

    tics with maximum shortening directions between

    WNW-ESE and E-W (Fig. 12). The younger defor-

    mation shows strike-slip kinematics with NE-SW

    shortening in the north ern and southern parts of the

    study area ~Fig. 13) and thrust kinematics with N-S

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    14/22

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    15/22

    A

    ault

    B

    Andean reactiva tion of the Cretaceous Salta rift, northwest ern Argenti na 365

    W

    S k y l i n e

    s t ra t a - -~ S a l t a G r o u p

    s y n - r if t s t r a ta |

    P u n c o v is c a n a F m .

    F i g . 1 4 . A ) P h o t o g r a p h o f t h e L a s C h a c r a s f a u l t ( s e e F i g . 1 0 f o r l o c a t io n ) . B ) S k e t c h o f t h e f a u l t / s t r a t i g r a p h i c r e l a t i o n s , w h i c h

    s u g g e s t t h a t t h e f a u l t is a r e a c t i v a t e d n o r m a l f a u lt .

    Chacras suggest that this is unlikely (Figs. 10 and

    14).

    Quebrada Las Chacras is little more that 100

    mete rs wide. On the east side of the Las Chacras

    fault, syn-rift stra ta lie directly on basement; on the

    west side, only post-rift strata lie directly on base-

    ment. Strat igraphi c relations across the fault sug-

    gest that the syn-rift strata onlapped an erosional

    basement surface in the hanging wall of a normal

    fault and th at the normal fault was reactivated dur-

    ing Andean deformation (Fig. 14). The fault system

    that forms the boundary between the Cordillera

    Oriental and the Sierras Pampeanas therefore pro-

    bably represent s the original rift margin.

    A map view of fault tre nds and vergences in the

    combined Alemania and Met~n subbasins shows

    that Andean fault trends track the old basin margin

    (Fig. 15). Faul t vergences correlate with position in

    the basin. On the west side of the basins, major

    faults are west-verging and on the east side they are

    east-verging; vergence changes in the Andean struc-

    tures are associated with interbasin highs. This,

    combined with evidence of reactiva ted basin-margin

    faults along the Cordillera Oriental/Sierras Pam-

    peanas boundary, suggests that the southern Cor-

    dillera Oriental developed within the rift domain

    and that the northern Sierras Pampeanas developed

    outside the rift.

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    16/22

    3 6 6 M . E . G R IE R , J . A . S A L F I T Y , a n d R . W . A L L M E N D IN G E R

    66 65

    J

    I I

    Fig. 15. T he vergen ce of An dean s t ruc tures w i th in the southern subb ass ins o f he S al ta r i f t bas in .

    - 250

    2 6

    T h e e v i d e n c e a ls o s u g g e s t s t h a t r e a c t i v a t i o n

    w i t h i n t h e r i f t d o m a i n w a s e x t e n s i v e a n d w a s n o t

    c o n f in e d to b a s i n m a r g i n f a u l ts . S e i s m i c d a t a f r o m

    o u t s i d e t h e r e g i o n o f i n t e r e s t s h o w r e a c t i v a t e d n o r -

    m a l f a u l t s in t h e l e s s - d e f o r m e d L o m a s d e O l m e d o

    s u b b a s i n ( B i a n u c c i e t a l . 1 9 8 1 ) .

    T h e c o r r e l a t i o n o f r i f t d o m a i n w i t h t h e s o u t h e r n

    C o r d i l le r a O r i e n t a l a n d n o n - r i f t d o m a i n w i t h t h e

    n o r t h e r n S i e r r a s P a m p e a n a s i s f u r t h e r s u p p o r t e d b y

    t h e p r e s e n t - d a y a n d p r e - M i o c e n e t o p o g r a p h y o f t h e

    r e g i o n (F i g . 16). T h e p r e s e n t - d a y s o u t h e r n C o r -

    d i l le r a O r i e n t a l i s t o p o g r a p h i c a l l y l o w e r t h a n t h e

    n o r t h e r n S i e r r a s P a m p e a n a s , a n d t h e r e la t i v e a g e s

    o f A n d e a n f o r e l a n d b a s i n s t r a t a i n t h e t w o r e g io n s

    s u g g e s t t h a t a s i m i l a r r e la t i o n s h i p e x i s t e d d u r i n g

    t h e e a r l y M i o c en e . F o r e l a n d b a s i n s t r a t a w e r e de -

    p o s i t e d 5 -6 m il l io n y e a r s e a r l i e r i n t h e s o u t h e r n

    C o r d i l le r a O r i e n t a l t h a n i n t h e n o r t h e r n S i e r r a s

    P a m p e a n a s ( G r i e r a n d D a l l m e y e r , 19 90 ). B e c a u s e

    t h e m o u n t a i n s y s t e m w a s e v o l v in g t o t h e w e s t o f

    b o t h r e g i o n s , t h i s s u g g e s t s t h a t f o r e l a n d b a s i n s t r a t a

    i n i t i a l l y a c c u m u l a t e d i n a t o p o g r a p h i c l o w t h a t c o -

    i n c i d e s w i t h t h e p r e s e n t - d a y s o u t h e r n C o r d i l le r a

    O r i e n t a l . T h e S a l t a r i f t b a s i n i s t h e o n l y p a l e og e o -

    g r a p h i c f e a t u r e t h a t c o u l d g i v e r is e t o s u c h a lo w .

    T h e c r u s t b e n e a t h t h e b a s i n m u s t a l s o h a v e b e e n

    t h i n n e d d u r i n g r i f t in g , a n d t h i s e f fe c t m a y h a v e

    p e r s i s te d t o t h e p r e s e n t d e s p i t e s h o r t e n i n g d u r i n g

    A n d e a n d e f o r m a t i o n .

    T h e b o u n d a r y b e t w e e n t h e C o r d i l l e ra O r i e n t a l

    a n d t h e S i e r r a s P a m p e a n a s i s n o t a k i n e m a t i c b o u n -

    d a r y w i t h r e s p e c t to m a jo r l a t e T e r t i a r y d e f o r m a t i o n ,

    b u t i t s e p a r a t e s r e g i o n s w i t h d i s t i n c t s t r u c t u r a l g e o-

    m e t r ie s . D u r i n g l a te P l i o c e n e - Q u a t e r n a r y d e f o r m a -

    t io n , t h e b o u n d a r y h a s a c t e d a s a l o cu s o f a n o m a l o u s

    s h o r t e n i n g d i r e ct io n . T h e d i s t i n c t g e o m e t r i e s b u t

    s i m i l a r k i n e m a t i c s d u r i n g l a t e T e r t i a r y d e f o r m a t i o n

    a r e a t t r i b u t a b l e t o r e a c t i v a t i o n o f r i f t - r e l a te d n o r -

    m a l f a u l t s a n d t o t h e m e c h a n i c a l d i f f e r e n c e s b e -

    t w e e n a d o m a i n t h a t i s m a d e u p o f f o r e l a n d b a s i n

    s t r a t a , r i f t s t r a t a , a n d h i g h s t r u c t u r a l l e v e l s o f t h e

    P u n c o v i s c a n a w e d g e a n d o n e th a t i n c l u d e s o n l y

    f o r e l a n d s t r a t a a n d l o w s t r u c t u r a l l e v e l s o f t h e

    P u n c o v i s c a n a w e d g e . T h e a n o m a l o u s s h o r te n i n g

    d i re c t i o n s a lo n g t h e b o u n d a r y b e t w e e n t h e t w o

    d o m a i n s d u r i n g l a t e r d e f o r m a t i o n i s a t t r i b u t a b l e t o

    i n t e r a c t i o n b e t w e e n th e t w o d o m a i n s . R e a c t i v a t i o n

    o f P a le o z o ic s t r u c t u r e s w i t h i n t h e P u n c o v i s c a n a

    w e d g e is n o t p r e c l u d e d b u t i s d i ff i c u lt t o d o c u m e n t .

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    17/22

    Andean reactivation of the Cretaceous Salta rift, northwestern Argentina 367

    J u j u y

    S a l t a

    O_

    i

    i : : : : : : :

    : o i :

    . . . . ~:~:~:~;~;:~ ~ : ~ , ~ Tucu m ,~n

    : : : : : . . : . 6 6 o

    6 o

    Ele v a t io n

    > 6 ,00 0 m

    r o

    4,500-6 ,000

    3,000-4 ,5oo

    ~-] 1,500-3,000

    I I o - 1 5 o o

    S a l t a R i ft B a s i n

    ~ limitof syn-rift

    s t r a t a t i c k s o n

    b a s i n s i d e o f

    boundary

    Fig. 16. The relationship between opographyand the southern par~ of the Salta rift basin.

    THE RIFT INVERSION MODEL

    Field evidence shows that structural inversion of

    the Salta Basin is a major controlling factor in the

    develo pment of the Andean foreland. Inversion of

    the Alemania and Met~n subbasins is well deve-

    loped; in the Lomas de Olmedo subbasin it is inci-

    pient. To und erst and the effect of inversion on

    Andean deformation, it is useful to consider the

    geometric po ssibilities of simple rift inversion.

    Given a rift an d the existence of the conditions

    that will allow inversion through the reactivation of

    rift str uctu res (see Sibson, 1985), the suite of struc-

    tures observed in an inverted rift depends on several

    factors: 1) the rift setting; 2) the suite of extensional

    structures developed within the rift; 3) the relative

    alignment of the direction of rift extension and the

    direction of sub sequ ent shortening; and 4) the degree

    to which the syn-rift strata have been overlain by

    post-rift strata. The degree to which the rift has

    been inverted will affect the scale of the inverted

    structures but not the suite of structures itself.

    The i f t Se t t ing

    Rift structures are developed along passive mar-

    gins and within failed rift systems. All may be re-

    activated during shortening but the potential for and

    the na ture of the reactiv ation will vary according to

    tectonic setti ng (Dewey 1969). In a passive margin

    in which a thick miogeoclinal wedge overlies the rift

    structures, the basal decollement during shortening

    may follow the unconformity between the basement

    and the sedimentary cover, ramping up to higher

    stratigraphic levels along the pre-existing normal

    faults. Fold-and-thrust g eometries would develop,

    but the reactivation of rift structures would be

    limited. Where a failed rift is being shortened, the

    basal decollement of the deformati on may re use the

    rift detachment and rift-controlling normal faults

    may be reactiv ated in their entirety. In this case,

    thrust faults will be listric in form within the rift

    basement, and the basement itself will be involved

    in the deformation. The decollement may also follow

    the unconformity between the basement and the

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    18/22

    368 M. E. GRIER, J. A. SALFITY, and R. W. ALLMENDINGER

    sedimentary cover on the foreland side of the rift

    where the basem ent steps up in the direction of fault

    propagation. Where reactivation of rift structures is

    extensive, va riabl e fau lt cut-offs will lead to higher

    amplitude-shorter wavelength geometries than is

    typical of ramp and flat thr ust ing (Suppe, 1983).

    T he Su i t e o f S t r uc t u r es Deve l oped w i t h i n t he R i f t

    Rifts are developed along one or more sets of

    normal faults and associated lateral- or oblique-

    trending transvers e faults. Normal faults dominate

    the rift g eometry, tra nsve rse faults oriented at 90 to

    the normal faults are rare, and the oblique trans-

    verse faults decrease in number as their obliquity to

    the rift trend increas es (Harding, 1984). The normal

    faults are curved in plan view and die out along

    strike into monoclines. They are usua lly listric in

    form, typ ically dip bet ween 30 and 60 at the surface,

    and have cut-off angles of 60-65 betw een t he fault

    and syn-rift bedding (Harding and Lowell, 1979;

    Gibbs, 1984; Ch~net et al. 1987). The late ral and

    oblique fault s dip steeply. Strain compatibility

    requires that antithetic normal faults not cross the

    main normal faults and that movement on the

    linking fau lts is controlled by the mov ement on the

    associated normal faults (Jackson and McKenzie,

    1983).

    The relative o rientat ions of the normal and

    transverse faults will affect the stru ctures th at deve-

    lop durin g inversio n (Fig. 17a). If the direction of

    shortening parallels the original extension direction

    of the rift, for example, tr ansv erse faults tha t are

    perpendicular to the normal faults will act as tear

    faults. An oblique-tren ding tran sver se fault will re-

    activate with a thrust component and act in the

    manner of a lateral ramp.

    T he Re l a t i ve A l i gn me n t o f t he Di rec t ion o f R i f t Ex -

    t ensi on and t he Di r ec ti on o f Subs eq uen t Shor t en i ng

    Given a suite of rift structures , the struc tures

    tha t will develop during rift inversion will depend on

    the orientation of the sh ortening direction relative to

    the rift axis (Fig. 17b). If shorteni ng is sub-parallel

    to the direction of rift extension, no rmal faults will

    be reactivated as thrust faults. As the shortening

    direction becomes oblique to the rift axis, there will

    be an increasing component of strike-slip moveme nt

    along reactivated normal faults and an increasing

    thr ust compo nent across tran sver se faults. If shor-

    tening parallels the rift axis, rift inversion is not

    possible although reactivation of transfer faults

    within the rift may occur and the entire rift may

    control the position of first order latera l ramps.

    The Degree to W hich the Ri f t has been Over la in by

    Y o u n g e r S t r a t a

    The syn-rift strata of rift basins may be overlain

    by strata associated with the thermal subsidence of

    the basin and by strata related to a later geologic

    event. A thick sequence of overlying stra ta will

    permit the tr anslati on of the rift fill well beyon d the

    rift margins through the propagation of reactivated

    faults into the overlying stra ta (Anderson, 1951). It

    will also increase the possibility of fault develop-

    ment in the post-rift strata. These faults are not, in

    themselves, reactivated structures and will have

    lower cut-off angles than the rift structures. This

    will again lead to higher amplitude-shorter wave-

    length geometries than is typical of ramp and flat

    thrusting (Suppe, 1983).

    THE RIFT INVERSION MODEL APPLIED

    TO THE ANDEAN FORELAND

    A rift inversion model in which shortening par-

    allels the rift extension direction during major de-

    formation and is oblique to the extension direction

    during subsequent minor deformation explains the

    geometries observed in the southern Cordillera Ori-

    ental and the Sistema de Santa B~rbara. The rift

    extended E-W along N/S-trending normal faults.

    One set of transv erse faults tren ds WNW-ESE to

    NW-SE. The trend of the southern rift margin was

    NW-SE in the Alemania subbasin and NE-SW in the

    Met~n subbasin. During major Andea n deforma-

    tion, the short ening direction was sub-parallel to the

    rift-phase extension direction, and the N/S-trending

    normal faults were reactivated as thrust faults.

    Transverse structures ma y have been reactivated as

    tear faults, although such reactivation has not been

    documented. During subs equen t deformation, the

    shortening direction was oblique to the rift exten sion

    direction and thrust faults (reactivated normal

    faults) were in turn reactivated as strike-slip faults.

    Because the strike lengt h of the norma l faul ts is

    much greater than that of the transverse faults,

    strain compatibility requires that the latter were

    reactivated principally as thrust faults instead of

    strike-slip faults as the model predicts. Movement

    on these faults created the transpressional struc-

    tures that are observed adjacent to oblique trending

    faults (Figs. 9 and 11). Burial of the rift durin g ear ly

    Andean deforma tion allowed the tran slatio n of the

    rift fill beyond the rift's western margin and ac-

    counts for the develo pment of low-angle thrust faults

    within the Salta Group and the overlying Andean

    foreland basin strata.

    In addition to explaining the geometries of the

    Andean foreland, the rift inversion model has been

    used to infer the subsurface geometry of the Salta

    Basin in cross-sectional form. Some assum ptions

    were made about the original rift and about Andean

    deformation because no subsurface data are avail-

    able. Where this was necessary, the simplest pos-

    sible assumptions were made.

    The cross-section runs E-W at appro ximate ly 25

    30'S latitude and extends from 6625'W on the west

    side of the Valle Calchaqui to 6352'W to the east of

    Met~n (Figs. 2 and 4). Presen t-day surface geo-

    metries can be generated by interactively extending

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    19/22

    Andea n reactivati on of the Cretaceous Salta rift, northwes tern Argent ina 369

    A

    }

    Transv erse fau l ts

    perpendicular to normal faul ts

    T ransverse fau l ts

    obl ique to normal faul ts

    B

    i f fmarg in

    Shortening paral le l

    to the direct ion of

    original r ift extension

    Shortening obl ique

    to the direct ion of

    or ig inal r i f t extension

    Shortening perpendicular

    to the direct ion of

    original r ift extension

    Fig. 17. Rift nversion: a) The effecton inversiongeometries of he relative orientation of ransverse structures and rift-controlling

    normal faults, b) The effecton inversion geometries of he relative alignment of he shorteningdirection o the original direction of

    rift extension.

    one section to generate the rift and shortening a

    second section in two stages to invert it (Fig. 4).

    Each section is area balanced. Shortening and,

    therefore, degree of inversion decrease to the east

    but, w ith in th e confines of the rift, the section is

    shortened by 25%. It is assume d that the basin-

    controlling normal faults are listric and sole into a

    quasi-plastic zone of decoupling, that the normal

    faults and their orientations correspond to major

    thrust faults observed in the southern Cordillera

    Oriental and Sistema de Santa B~rbara, and that

    basin extension is reflected in known t hicknesses of

    syn-rift strata. The actual amoun t of extension tha t

    occurred in the southe rn s ubbasins of the rift is un-

    known. It was sufficient, however, to allow as much

    as 2 km of tectonic subside nce and to acco mmodate

    3000-4000 met ers of compacted syn-ri ft fill. In re-

    constr ucting the rift, extensio n of 10% was needed to

    create room for known syn-rift stratigraphic thick-

    nesses given a m ax imu m of 2 km tectonic subsi-

    dence. It is assumed that the rift strat a restore the

    full thickness of the crust above the detach ment. It

    is also assumed t hat the basal d~collement of An-

    dean deformation reused the basal rift structure and

    tha t t he rift-controlling normal fa ults have been re-

    activated in their entirety. Shortening is sub-paral-

    lel to rift extension during major late Tertiary An-

    dean deformation, and it is assumed that movement

    in and out of the pl ane of the cross-section duri ng

    younger Plio(?)-Quaternary deformation is negli-

    gible.

    The cross-section illustrates the rift inversion

    model and shows that it is possible to generate ob-

    served surface geometries almost entirely through

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    20/22

    370 M.E. GRIER, J. A. SALFITY, and R. W. ALLMENDINGER

    rift reactivation. Some of the par amet ers used in the

    cross-section will be modified as more is known

    about the region. However, the rift inversion model

    allows an interpretation of the southern Cordillera

    Oriental and Sistema de Santa Bfirbara that in-

    corporates the complex paleogeology of the region.

    CONCLUSIONS

    The paleogeology of the Andean foreland

    between 2515'S and 2630'S is the primary control

    on the structural geometries that have formed

    during Andean deformation from late Tertiary to

    Recent times. The foreland has thre e components:

    the deformed passive ma rgin sequence of the Punco-

    viscana wedge, the rift basin sequence of the Salta

    Group, and the continental clastics of the Andean

    foreland basin. Each component has a dist inct litho-

    logy, a distinct form, and distinct internal struc-

    tures. The structures developed in each component

    include all structures that are contemporaneous or

    younger. The Puncoviscana wedge and the Andean

    stra ta are exposed throu ghout the region. The Salta

    Group is exposed within the southern Cordillera

    Oriental and Si stema de Santa B~irbara.

    The thrust front that bounds the eastern side of

    the Calchaqui Valley marks the southwestern limit

    of the syn-rift strata in the Cordillera Oriental. The

    thrust is a reactivated normal fault and is probably

    the translated southwestern margin of the rift. It

    divides the foreland into rift and non-rift domains.

    To the n orth of the margin, the foreland is comprised

    of all paleogeologic components; to the south, the rif t

    sequence and st ructu res are absent.

    The northern domain includes the basement-

    involved fold-and-thrust belts of the southern Cor-

    dille ra Orienta l and Sistema de Sant a B~irbara. The

    southern domain includes the basement uplifts of

    the north ernmo st Sierras Pampeanas. The geome-

    tries observed in these regions are very different, but

    the kinematics of major late Tertiary deformation

    throu ghout the region are homogeneous. The dis-

    tinct geometries but similar kinematics during late

    Tertiary deformation can be attributed to reactiva-

    tion of old structures and to lithologic differences

    between the two domains. It is difficult to document

    reactivation of structures associated with deforma-

    tion of the Puncovi scana wedge. However, re-

    activated normal faults are observed in the Cor-

    dillera Oriental and the correlation of thrust-fault

    orientation with location in the rift suggests that

    reactivation of rift structures has been extensive.

    Subsequent minor deform ation again shows region-

    ally homogeneous kinematics but anomalous kine-

    matics along the rift boundary. This is again attri-

    butable to reactivation of older structures but, in

    this case, reactivation of oblique structures in the

    rift margin and strain compatibility requirements

    have contr ibuted to a boundar y effect.

    The original orie ntations of rift stru ctures in the

    southern subbasins of the Salta rift have been in-

    ferred from the distribution of syn-rift facies and the

    orientation of known reacti vated faults. Basin-

    controlling normal faults probably had N-S trends

    and one set of oblique struc ture s WNW-ESE to NW-

    SE trends. A rift inversion model in which the direc-

    tion of Andean shortening is sub-parallel to the

    direction of rift extension is used to generate the

    present-day structural geometries tha t are observed

    within the rift domain. It is illustrated in an E/W-

    tre nding cross-section. The model predicts that the

    rift has been shortened by 25%. This figure is con-

    siderably less than is predicted for classic foreland

    fold-and-thrust belts and may reflect the relatively

    high-angle trajectories of reactivated, rift-related

    faults.

    The param ete rs of the rift model will undoubted-

    ly be modified as more is learned of this region.

    However, the model incorporates both paleogeology

    and recent geology. In addition, it explains the

    structural anomalies observed in the Andean fore-

    land that cannot be explained by variations in the

    underlying, subducting Nazca plate. The broaden-

    ing of the Cordillera Oriental t hrust belt, t he

    basement involvement in the deformation, and the

    zones of east- and west-vergence within the thrust

    belt are attributable to inversion of the Salta rift

    basin. The abrupt change from fold-and-thrust

    geometries to basement uplifts that occurs in the

    region of 2615'S marks the transition from rift to

    non-rift domain.

    A c k n o w l e d g m e n t s q W e

    are grateful to Theresa Jordan, Randall

    Marrett, Ricardo Mon, Stella Montes-Weber, Apolo Ortiz, Victor

    Ramos, and Manfred Strecker for their assistance in the field and

    for discussions of this work. We also tha nk Miles Shaw, Nivaldo

    Rojas, Mary Gilzean, and Gonzalo Bravo of BHP Utah Inter-

    national for providing us with a field vehicle, field support, and

    much hospitality, and Yacimientos Petroliferos Fiscales and the

    Comicion Nacional de Energia At6mica for their assistance in the

    field. We are also very grateful to the Flores famil y of Salta for

    the ir hospitality. The work was supported by the Divisio n of

    Earth Sciences, National Science Foundation, through grants to

    R. W. All men din ger (EAR-8206172, EAR-8519037, and EAR-

    8816287), the Geological Society of America, Sigma Xi, and the

    Marty Memorial Scholarship from Queen's University, Canada.

    REFERENCES

    Acefiolaza, F. G., 1979. E1 Paleozoico inferior de Argentina segun

    sustrazas fbsiles. A m e g h i a n a 15, 15-64.

    Allme nding er, R. W., Jordan , T. E., Palma, M., and Ramos, V. A.,

    1982. Pertll estruc~ural en la Puna Cat amarqu efia (25-17S),

    Argentina.

    Actas V Congreso La t inoamer icano Gco l6g ico Bu enos

    A i r e s

    1,499-518.

    Allmen dinge r, R. W., Ramos, V. A., Jordan, T. E., Palma, M., and

    Isacks, B. L., 1983. Paleogeography and Andean structural geo-

    metry, northwest Argentina. Tectonics 2, 1-16.

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    21/22

    A n d e a n r e a c t i v a t i o n o f t h e C r e t a c e o u s S a l t a r i ft n o r t h w e s t e r n A r g e n t i n a 3 7 1

    Anderson, E. M., 1951.

    The Dynamics of Faulting and Dyke

    Formation with Applications to Britain. Oliver & Boyd, Edin-

    burgh, Scotland, UK, 206 p.

    Galveln, A. F., 1981. DeseripeiOn Geoldgica de la Hoja lOe,

    Cafayate Provincias de Tucumtin, Salta, y Catamarea).

    Direcci6n

    Nacional de Mineria , Buenos Aires, Boletin 177, 45 p.

    Bahlburg, H., 1989. Ordovician clastic and volcanic rocks in the

    norther n Puna of Chile and Argentina: Evidence of back-arc

    basin development west of the Faja Eruptiva de la Pu na Oriental.

    XX VI II Symposium, International Geologic Congress, Washington

    DC 1, 71.

    Barazangi, M., and IsacL% B. L., 1976. Spatial d istri buti on of

    earthquakes and subduction of the Nazca Plate beneath South

    America. Geology 4,686-692.

    Bercowski, F., 1987. Colada basfiltica en la FormaciSn Yacoraite

    (Cretficico Superior), pozoCaimaneito, Norte Argentina. Res?t-

    menes, II I Simposio, Proyeeto 242, PICG-UNESCO, Tueumdn, 36-

    41.

    Boris, M., and Isacks, B.L., 1984 . Hypocentral tren d surface

    analysis: Probing the geometry of BenioffZones. Journal of Geo-

    physical Research

    89, 6153-6170.

    Bianucci, H., Acevedo 0. , and Cerdan J., 1981. EvoluciSn tecto-

    sedimentaria del Grupo Salta en la subcuenca Lomas de Olmedo

    (Provincias de Salta y Formosa). Actas, VII I Congreso Geoldgieo

    Argentino, San Luis

    3, 159-172.

    Bianucci, H., and Homovc, J., 1982. Tectog~nesis de un sector de

    la cuenca del Subgrupo Pirgua, Noroeste Argentina.

    Actas, V

    Congreso Latinoamerieano Geoldgico, Buenos Aires

    5,539-546.

    Bossi, G. E., Ovejero, R., and Strecker, M., 1987. CorrelaciSn

    entre los perfiles del Terciario superior en la Puerta de Corral

    Quemado-Hualfiny de Ent re Rios (Chiquimil), Provincia de Cata-

    marca, Argentina. Actas, X Congreso Geolbgico Argentino, San

    Miguel de Tucumgtn

    2, 117-120.

    Caminos, R., 1979. Sierras Pamp eana s noroccidentales, Salta,

    Tucum~n, Catamarea, La Rioja, y Sa n Juan.

    H Simposio de Geo-

    logia Regional Argentina, Cdrdoba 1,225-292.

    Chdnet, P.Y., Colletta, B., Letouzey, J., Desforges, G., Ousset, E.,

    and Zaghoul, E.A., 1987. Struc tures associated with extensi onal

    tectonics in the Suez rift. In: Continental Extensional Tectonics

    (edited by M. P. Coward, J. F. Dewey, and P. L. Hancock). Geo-

    logical Society of London, Special Publication 28, 551-558.

    Cherron i Mendieta, C., 1977. El sistema Cretficico en la parte

    boliviana de la cuenca Cret~cica andina.

    Yacimien tos Petroliferos

    Fiseales Bolivianos, Revi sta Tdcnica 6, 5-46.

    Dahls trSm, C. D. A., 1969. Balanced cross-sections. Canadian

    Journal of Earth Science

    6, 743-757.

    Dewey, J. F., 1969. Cont inenta l Margins: A model for conversion

    of Atlantic type to Andean type. Earth and Planetary Science

    Letters

    6, 198-197.

    Diaz, J. I., and Malizzia, D. C., 1983. Estudio geol6gico y sedimen-

    tol6gico del Terciar io superior del Valle Calchaqui.

    Universidad

    Naeional de Tueumgm, Faeul tad de Ciencias Naturales, Boletin

    Sedimentol6gieo 2, 8-28.

    Galliski, M. A., and Viramon te, J. G., 1985. Un paleorift Cre-

    tficico en el noroeste ar gentino : Aproximaci6n petrol6gica.

    Com-

    unicaciones Santiago)

    35, 89-91.

    Gallis ki, M. A., and Viramonte, J. G., 1988. The Cretaceous

    paleorift in nort hwes tern Arge ntina: A petrologic approach.

    Journal o f South Amer ican Earth Sciences

    1,329-342.

    Gibbs, A. D., 1984. Structural evolution of extensional basin mar-

    gins. Journal o f the Geological Society o f London 141,609-620.

    GSmez Omil, R. J., Boll, A., and Hern~ndez , R. M., 1989. Cuenca

    Cretficico-Terciaria del Noroeste argenti no. In: Simpasio Cuen-

    cas Sedimentarias Argentinas, X Congreso Geologico Argentino ,

    Tucuman. Universidad Nacional de Tucuman, Serie CorrelaciSn

    GeolSgica 6, 43-64.

    Gonz~lez Bonorino, F., 1950. Algunos problemas geolSgicos de las

    Sierras Pampeanas. Revista de al Asociacidn Geol6gica Argentina

    5

    81-110.

    Grier, M. E., 1990. The Influence of the Cretaceous Salta Rift

    Basin on the Development of Andean Structural Geometries, NW

    Argentine Andes. Unpublished PhD thesis, Cornell University,

    Ithaca, NY, USA, 178 p.

    Grier, M. E., and Dallmeyer, R. D., 1990. Age of the Payogas tilla

    Group: Implications for foreland basin development, NW Argen-

    tina.

    Journal of South American Earth Sciences

    3, 269-278.

    Harding, T. P., and Lowell, J. D., 1979. Structural styles, their

    plate tectonic habitats, and hdrocarbon traps in petroleum pro-

    vinces. Bullet in of the Amer ican Association of Petroleum Geo-

    logists

    63, 1016-1059.

    Harding, T. P., 1984. Graben hydrocarbon occurrences and struc-

    tural style. Bulletin of the Amer ican Association of Petroleum

    Geologists 68 333-362.

    Isaeks, B. L., 1988. Uplift of the centra l Andean plateau and

    bend ing of the Bolivian orocline. Journ al of Geophysical Research

    93 3211-3231.

    Jackson, J. A., and McKenzie, D. P., 1983. The geometrica l evolu-

    tion of normal fault systems.

    Journal of Structural Geology

    5,

    471-482.

    Jezek, P., and Miller, H., 1985. Deposition and facies d istrubut ion

    of turbiditic sediments of the Puncoviscana Formation (upper

    Precambrian-Lower Cambrian) within the basement of the NW

    Argentine Andes. Zentralblatt f~r Geologie und Paldontologie 1,

    1235-1244.

    Jordan, T. E., Isacks, B. L., Allmendinger , R. W., Brewer, J. A.,

    Ramos, V. A., and Ando, C. J., 1983. Ande an tectonics related to

    geometry of subducted Nazca plate.

    Bulletin of the Geological

    Society o f America 94, 341-361.

    Jordan, T. E., and Allmendinger, R. W., 1986. The Sier ras Pam-

    peanas of Argentina: A modern analogue of Rocky Mount ain fore-

    land deformation.

    American Journal o f Science

    286, 737-764.

    Jordan, T. E., Zeitler, P., Ramos, V., and Gleadow, A. J. W., 1989.

    Thermochronometric data on the development of the basement

    peneplain in the Sierras Pampeanas, Argentina.

    Journal of South

    American Earth Sciences 2, 207-222.

    Macellari, C. E., 1988. Cretaceous paleogeography and deposi-

    tional cycles of weste rn South America. Journal of South Ameri-

    can Earth Sciences

    1,373-418.

    Marquillas , R., 1986. Ambito de deposito de la Fo rmaci6n Yacor-

    aite (Grup Salta, Cret~icico-Eoc6no), Notre a rgentino.

    I Simposio

    Proyecto 242, PICG- UNESCO, La Paz 1,157-173.

  • 8/10/2019 Andean reactivation of the Cretaceous Salta rift, northwestern Argentina

    22/22

    372 M .E . GRIER J. A. SALFrrY an d R. W. ALLMENDINGER

    Marquil las, R., and Salfity, J. A., 1988. Tectonic framework and

    correlation.q of the Cretaceous-Eocene Salta Group, Argentina.

    In: The Southern Central An des (edited by H. Bahlburg , C. Breit-

    kreuz, and P. Giese). Lecture Notes in Earth Sciences 17, 119-

    136.

    Marre tt, R. A., and Allmendinge r, R. W., 1990. Quan tita tive

    kinematic analysis of fault-sli


Recommended