+ All Categories
Home > Documents > Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y...

Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y...

Date post: 23-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
140
9–1. SOLUTION Ans. Ans. = 124 mm = (300) 2 C sin u D 2p 3 - 2p 3 300 a 4 3 p b x = L x ' dL L dL = L 2p 3 - 2p 3 300 cos u (300du) L 2p 3 - 2p 3 300d u y ' = 300 sin u x ' = 300 cos u dL = 300 d u Locate the center of mass of the homogeneous rod bent into the shape of a circular arc. y x 30 300 mm 30
Transcript
Page 1: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–1.

SOLUTION

Ans.

Ans.y = 0 (By symmetry)

= 124 mm

=(300)2 Csin u D 2p

3-2p

3

300a43pb

x = Lx'dL

LdL=L

2p3

-2p3

300 cos u (300du)

L2p3

-2p3

300d u

y' = 300 sin u

x' = 300 cos u

dL = 300 d u

Locate the center of mass of the homogeneous rod bentinto the shape of a circular arc.

y

x

30�

300 mm

30�

Page 2: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

.

.

Page 3: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Determine the mass and the location of the center ofmass of the rod if its mass per unit length is

.m = m0(1 + x>L)x

y

x

L

9–3.

Page 4: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

Page 5: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–5.

Locate the centroid of the uniform rod. Evaluate theintegrals using a numerical method.

SOLUTION

Differential Element. The length of the element shown shaded in Fig. a is

Here,

The centroid of the element is located at and . Applying

Eq. 9–5 we have

Ans.

Ans.y = LLy~ dL

LLdL

= La>2

0a cos

p

a xB1 + p

2 sin 2 p

a x dx

La>2

0 B1 + p 2 sin

2 p

a x dx

=0.6191a2

1.1524a= 0.537a

x = LL

~x dL

LLdL

= La>2

0xB1 + p

2 sin 2 p

a x dx

La>2

0 B1 + p 2 sin

2 p

a x dx

=0.3444a2

1.1524a= 0.299a

yc = y = a cos p

a xxc = x

dL = C1 + a -p sin p

a xb2

dx = C1 + p2 sin2 p

a x dx

dy

dx= aa -sin

p

a xb ap

ab = -p sin

p

a x

dL = 2dx2 + dy2 = C1 + ady

dxb2

dx

( x, y ) y

x

a

y � a cos x

a––2

––ap

Page 6: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–6.

Locate the centroid of the area.y

SOLUTIONArea and Moment Arm: The area of the differential element is

and its centroid is .

Centroid: Due to symmetry

Ans.

Applying Eq. 9–4 and performing the integration, we have

Ans.=

¢x

2-

x3

12+

x5

160≤ ` 2m

-2m

¢x -x3

12≤ ` 2m

-2m

=25

m

y = LAy'

dA

LAdA

=L

2m

-2m

12¢1 -

14

x2≤ ¢1 -14

x2≤dx

L2m

-2m¢1 -

14

x2≤dx

x = 0

y' =

y

2=

12a1 -

14

x2bdA = ydx = a1 -14

x2bdx

y

x2 m

1 m

y 1 – x21–4

Page 7: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–7.

SOLUTIONDifferential Element:The area element parallel to the x axis shown shaded in Fig. awill be considered. The area of the element is

Centroid: The centroid of the element is located at and .

Area: Integrating,

y' = yx

' =x

2=

a

2h1>2 y1>2

dA = xdy =a

h1>2 y1>2 dy

Determine the area and the centroid of the parabolic area.x

x

h

a

y x2h––a2

y

Ans.

Ans.x = LAx'

dA

LAdA

=L

h

0¢ a

2h1>2y1>2≤ ¢ a

h1>2 y1>2 dy≤23

ah

= Lh

0

a2

2hy dy

23

ah

=

a2

2h¢y2

2≤ ` h

0

23

ah

=38

a

A = LAdA = L

h

0

a

h1>2 y1>2 dy =2a

3h1>2 Ay3>2 B 2 h0

=23

ah

Page 8: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

x

h

a

y � x2 h––a2

y

9–8.

Locate the centroid of the parabolic area.

SOLUTION

Differential Element: The area element parallel to the x axis shown shaded in Fig. awill be considered. The area of the element is

Centroid: The centroid of the element is located at .

Area: Integrating,

Ans.

Ans.y = LAy '

dA

LAdA

=L

h

0ya a

h1>2 y

1>2

dyb23

ah

=L

h

0

a

h1>2 y

3>2

dy

23

ah

=

2a

5h1>2 y

5>2 20

h

23

ah

=35

h

A = LA dA = L

h

0

a

h1>2 y1>2 dy =2a

3h1>2 Ay3>2 B 2 h0

=23

ah

x'

=x

2=

a

2h1>2 y

1>2 and y

'= y

dA = x dy =a

h1>2 y1>2 dy

y

Page 9: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–9.

Locate the centroid of the area.

SOLUTION

Differential Element: The differential area element parallel to the y axis shownshaded in Fig. a will be considered. The area of the element is

Area: Integrating the area of the differential elements gives

Ans.

Centroid: The centroid of the element is located at Applying Eq. 9–4, we have

Ans.x = LAx'

dA

LAdA

= L8

0x Ax2>3dx B19.2

= L8

0x5>3dx

19.2=c38

x 8>3 d 20

8

19.2= 5 m

x' = x.

A = LA dA = L

8

0x2>3 dx = c3

5 x5>3 d 2 8

0= 19.2 m2

dA = y dx = x2>3 dx

x y

y � x

x

8

4

2––3

m m

m m m

m

m

m

Page 10: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

y

y � x

x

8

4

2––3

9–10.

Locate the centroid of the area.

SOLUTION

Area: Integrating the area of the differential element gives

Ans.

Centroid: The centroid of the element is located at . Applying Eq. 9–4, we have

Ans.=

c 314

x7>3 d 20

8

19.2= 1.43 m

y = LAy'

dA

LAdA

=L

8

0

12

x2>3 Ax2>3 Bdx

19.2=L

8

0

12

x4>3dx

19.2

y'

= y>2 =12

x2>3

A = LA dA = L

8

0x2>3 dx = c3

5 x5>3 d 2 8

0= 19.2 m2

y

m m

m m

m

m

m

m

Page 11: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–11.

Locate the centroid of the area.

SOLUTION

Ans. x = LA x'

dA

LA dA

= Lb

0 h

b2 x3 dx

Lb

0 h

b2 x2 dx

=B h

4b2 x4R0

b

B h

3b2 x3R0

b=

34

b

x' = x

dA = y dx

x

bx

y

h

y � x2h—b2

Page 12: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

bx

y

h

y � x2h—b2

9–12.

Locate the centroid of the shaded area.

SOLUTION

Ans. y = LA y'

dA

LA dA

= Lb

0

h2

2b4 x4 dx

Lb

0 h

b2 x2 dx

=B h2

10b4 x5R0

b

B h

3b2 x3R0

b=

310

h

y' =

y

2

dA = y dx

y

Page 13: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–13.

Locate the centroid of the shaded area.

SOLUTION

Ans. x = 6.00 m

x = LA x'

dA

LA dA

= L8

0 x a x2

16 b dx

L8

0 a 1

16 x2b dx

x' = x

dA = 14 - y2dx = a 116

x2b dx

x y

x8 m

4 my � 4 � x2 1––

16

Page 14: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–14.

Locate the centroid of the shaded area.

SOLUTION

Ans. y = 2.80 m

y = LA y'

dA

LA dA

=

12

L8

0 ¢8 -

x2

16 b a x2

16b dx

L8

0 a 1

16 x2b dx

y =4 + y

2

dA = 14 - y2dx = a 116

x2b dx

y y

x8 m

4 my � 4 � x2 1––

16

Page 15: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–15.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at

Area: Integrating,

We have

Ans. x = LA x'

dA

LA dA

= Lb

ax a c2

x dxb

c2 ln ba

= Lb

ac2 dx

c2 ln ba

=c2x 2 b

a

c2 ln ba

=

b - a

ln ba

A = LA dA = L

b

a

c2

x dx = c2 ln x 2 b

a= c2 ln

ba

x'

= x

dA = y dx =c2

x dx

x y

x

a

b

xy � c2

Page 16: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–16.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at

Area: Integrating,

Ans.

We have

Ans.=

-c4

2x3b

a

c2 ln ba

=

c2(b - a)

2ab ln ba

y = LA yc dA

LA dA

= Lb

aa c

2

2xb a c

2

x dxb

c2 ln ba

= Lb

a

c4

2x2 dx

c2 ln ba

A = LA dA = L

b

a

c2

x dx = c2 ln x 2 b

a= c2 ln

ba

y'

=y

2=

c2

2x.

dA = y dx =c2

x dx

y y

x

a

b

xy � c2

Page 17: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–17.

SOLUTION

and its centroid is

Centroid: Applying Eq. 9–4 and performing the integration, we have

Ans.=n + 1

2 n + 2a

=

h¢x2

2-

xn+2

1n + 22an ≤ `0

a

h x -xn+1

1n + 12an `0

a

x = LAx'

dA

LAdA

=L

a

0xBh¢1 -

xn

an ≤dxR

La

0h¢1 -

xn

an ≤dx

x' = x.dA = 1h - y2dx = h¢1 -

xn

an ≤dx

Locate the centroid of the shaded area.x y

x

a

h

y = h xnan

Area and Moment Arm: T he area of the differential element is

Page 18: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–18.

Locate the centroid of the shaded area.

SOLUTION

Ans. x =ah

2-

h

n + 2ba2

ah -h

n + 1ba

=n + 1

21n + 22 a

=Bh

2 x2 -

h1xn+22an1n + 22R0

a

Bhx -h1xn+12

an1n + 12R0

a

x = LA x'

dA

LA dA

=L

a

0 ¢hx -

h

an xn+1≤ dx

La

0 ¢h -

h

an xn≤ dx

x' = x

dA = y dx

x y

xa

y � h � xn

h

h—an

Page 19: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

y

xa

y � h � xn

h

h—an

9–19.

Locate the centroid of the shaded area.

SOLUTION

Ans. y =

2n2

21n + 1212n + 12 h

n

n + 1

=n

2n + 1 h

=

12

Bh2x -2h21xn+12an1n + 12 +

h21x2n+12a2n12n + 12R0

a

Bhx -h1xn+12

an1n + 12R0

a

y = LA y'

dA

LA dA

=

12

La

0 ¢h2 - 2

h2

an xn +h2

a2n x2n≤ dx

La

0 ¢h -

h

an xn≤ dx

y' =

y

2

dA = y dx

y

Page 20: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–20.

SOLUTION

Ans.y = LAy'

dA

LAdA

=

12 L

a

0

h2

a2n x2n dx

La

0

han xn dx

=h2(a2n + 1)

2a2n(2n + 1)

h(an + 1)an(n + 1)

=n + 1

2(2n + 1)h

y =y

2

dA = y dx

Locate the centroid of the area.y y

x

h

a

y xnh––an

Page 21: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–21.

Locate the centroid of the area.

SOLUTION

Ans.x = LA x'

dA

LA dA

=

14

a3

23

a2=

38

a

LA x'

dA = La

0 x2

2 dy = L

a

0 a

2 y dy =

14

a3

LA dA = L

a

0 x dy = L

a

0 1ay1>2dy = 1a a2

3 a3>2b =

23

a2

x' =

x

2

dA = x dy

x

a

a

x

y

y � x21–a

Page 22: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–22.

Locate the centroid of the area.

SOLUTION

Ans.y = LA y'

dA

LA dA

=

25

a3

23

a2=

35

a

LA y'

dA = La

0 xy dy = L

a

0 1ay3>2dy = 1a a2

5 a5>2b =

25

a3

y' = y

dA = x dy

y

a

a

x

y

y � x21–a

Page 23: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–23.

Locate the centroid of the quarter elliptical area.

SOLUTION

Ans.x = LA x'

dA

LA dA

=13 a2bp4 ab

=4a

3 p

LA x'

dA =12

Lb

0 ¢a2 -

a2

b2 y2≤ dy =12

Ba2y -a2

3b2 y3R0

b

=13

a2b

LA dA = L

a

0 Bb2 -

b2

a2 x2 dx =b

2a cx2a2 - x2 + a2 sin-1

xad

0

a

=p

4 ab

y' = y

x' =

x

2

dA = y dx

x y

x

a

� � 1

b

y2—b2

x2—a2

Page 24: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–24.

Locate the centroid of the quarter elliptical area.

SOLUTION

Ans.y = LA y'

dA

LA dA

=13 ab2

p4 ab

=4b

3 p

LA y'

dA =12

La

0 ¢b2 -

b2

a2 x2≤ dx =12

Bb2x -b2

3a2 x3R0

a

=13

ab2

LA dA = L

a

0 Bb2 -

b2

a2 x2 dx =b

2a cx2a2 - x2 + a2 sin-1

xad

0

a

=p

4 ab

y' =

y

2

x' = x

dA = y dx

y y

x

a

� � 1

b

y2—b2

x2—a2

Page 25: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

m2

m3

m

2 m

2 m

.

Page 26: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

y

x

a

a––2

––a

y � a cos xp

9–26.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at .

Area: Integrating,

Ans.

We have

Ans.=

a 2

p x sin

p

a x +

a3

p 2 cos

p

a x 2

0

a>2

a2

p

= ap - 22p

ba

x = La>2

0x'

dA

LA dA

= La>2

0xaa cos

p

a x dxb

a2

p

= La>2

0ax cos

p

a x dx

a2

p

A = LA dA = L

a>2

0a cos

p

a x dx =

a2

p sin

p

a x 2

0

a>2=

a2

p

x' = x

dA = y dx = a cos p

a x dx

x

Page 27: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–27.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at

Area: Integrating,

Ans.

We have

Ans. =

a2

4 La>2

0acos

2pa

x + 1b dx

a2

p

=

a 2

4 a a

2p sin

2pa

x + xb 20

a>2

a2

p

=p

8 a

y = LAy'

dA

LA dA

= La>2

0aa

2 cos p

a xb aa cos

p

a x dxb

a2

p

= La>2

0

a2

2 cos2

p

ax dx

a2

p

A = LA dA = L

a>2

0a cos

p

a x dx =

a2

p sin p

a x 2

0

a>2=

a2

p

y' =

y

2=

a

2 cos p

a x.

dA = y dx = a cos p

a x dx

y y

x

a

a––2

––a

y � a cos xp

Page 28: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

1 m

1 m

y

x

y � x2––3

y � x3––2

9–28.

Locate the centroid of the area.

SOLUTION

Differential Element: The differential element parallel to the y axis shown shadedin Fig. a will be considered. The area of the element is

Centroid: The centroid of the element is located at .

Ans.

We have

Ans.=¢3

8 x8>3 -

27

x7>2≤ `0

1m

15

=2556

m

x = LAx' dA

LAdA

= L1 m

0x(x2>3 - x3>2) dx

15

= L1 m

0(x5>3 - x5>2) dx

15

A = LAdA = L

1 m

0(x2>3 - x3>2) dx = ¢3

5 x5>3 -

25

x5>2≤ ` 10=

15

m2

x' = x

dA = (y1 - y2) dx = (x2>3 - x3>2) dx

x

Page 29: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–29.

Locate the centroid of the area.

SOLUTION

Differential Element: The differential element parallel to the y axis shown shadedin Fig. a will be considered. The area of the element is

Centroid: The centroid of the element is located at .

Ans.

We have

Ans.=2556

m

=

12

B 37

x7>3 -x4

4R ` 1 m

0

15

y- = LAy' dA

LAdA

= L1 m

0 12

(x2>3 + x3>2)(x2>3 - x3>2) dx

15

= L1 m

0 12

(x4>3 - x3) dx

15

A = LAdA = L

1 m

0(x2>3 - x3>2) dx = ¢3

5 x5>3 -

25

x5>2≤ ` 10=

15

m2

y' =

12

(y1 + y2) =12

(x2>3 + x3>2)

dA = (y1 - y2) dx = (x2>3 - x3>2) dx

y

1 m

1 m

y

x

y � x2––3

y � x3––2

Page 30: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–30.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at .

Area: Integrating,

Ans.

We have

Ans. =

16

x3 -1

16 x4 2

0

2 m

0.3333= 1 m

x- = LAxc dA

LAdA

=L

2 m

0x¢1

2 x -

14

x2≤

dx

0.3333=L

2 m

0¢1

2 x2 -

14

x3≤

dx

0.3333

= 0.333 m2

A = LAdA = L

2 m

0¢1

2 x -

14

x2≤ dx =14

x2 -1

12 x3 2

0

2 m

= 0.3333m2

x' = x

dA = (y1 - y2) dx = ¢12

x -14

x2≤

dx

x y

x

y � x2

y � x1 m

2 m

1––2

1––4

Page 31: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–31.

Locate the centroid of the area.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The area of the element is

Centroid: The centroid of the element is located at

Area: Integrating,

Ans.

We have

Ans. =

12¢ 1

12x3 -

180

x5≤ 20

2 m

0.3333= 0.4 m

y = LAy' dA

LAdA

=L

2 m

0

12¢1

2x +

14

x2≤ ¢12

x -14

x2≤

dx

0.3333=L

2 m

0

12

¢14

x2 -1

16x4≤

dx

0.3333

= 0.3333 m2 = 0.333 m2

A = LAdA = L

2 m

0¢ 1

2 x -

14

x2≤ dx =14

x2 -1

12 x3 2

0

2 m

= 12¢1

2 x +

14

x2≤y' =

12

(y1 - y2)

dA = (y1 - y2) dx = ¢12

x -14

x2≤

dx

y y

x

y � x2

y � x1 m

2 m

1––2

1––4

Page 32: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–32.

Locate the centroid of the shaded area.

SOLUTION

Area and Moment Arm: The area of the differential element isand its centroid are

Ans. =p

2 a

=ca3 sin

xa

- xaa2 cos xab d `

0

pa

a -a2 cos xab `

0

pa

x = LA x'

dA

LA dA

= Lpa

0xaa sin

xa

dxb

Lpa

0a sin

xa

dx

x = xdA = ydx = a sin xa

dx

x

p

y

xa

a

y � a sin xa

Page 33: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–33.

Locate the centroid of the shaded area.

SOLUTION

Area and Moment Arm: The area of the differential element isand its centroid are

Ans. y = LA ydA

LA dA

= Lpa

0

a2

sin xa

aa sin xa

dxb

Lpa

0a sin

xa

dx

=c14

a2ax -12

a sin 2xab d `

0

pa

a -a2 cos xab `

0

pa=p

8 a

y =y

2=

a

2 sin

xa

.dA = ydx = a sin xa

dx

y

p

y

xa

a

y � a sin xa

Page 34: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–34.

The steel plate is 0.3 m thick and has a density ofDetermine the location of its center of mass.

Also compute the reactions at the pin and roller support.

SOLUTION

Ans.

Ans.

a

Ans.

Ans.

Ans.Ay = 73.9 kN

Ay + 47.92 cos 45° - 107.81 = 0 + c ©Fy = 0;

Ax = 33.9 kN

-Ax + 47.92 sin 45° = 0©Fx = 0;:+NB = 47.92 = 47.9 kN

-1.25711107.812 + NB A222 B = 0+ ©MA = 0;

W = 785019.81214.667210.32 = 107.81 kN

A = 4.667 m2

y = LA y'

dA

LA dA

= L2

0

22x - x

2 A22x + x B dx

L2

0 A22x + x B dx

=cx2

2-

16

x3 d0

2

c2223

x3>2 +12

x2 d0

2= 0.143 m

x = LA x'

dA

LA dA

= L2

0 x A22x + x B dx

L2

0 A22x + x B dx

=c222

5 x5>2 +

13

x3 d0

2

c2223

x3>2 +12

x2 d0

2= 1.2571 = 1.26 m

y' =

y2 + y1

2=22x - x

2

x' = x

dA = 1y2 - y12 dx = A22x + x B dx

y22 = 2x2

y1 = -x1

7850 kg>m3.

A

B

x

y

y � �x

y2 � 2x

2 m

2 m

2 m

Page 35: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 5.

Locate the centroid xc of the shaded area.

Given:

a 4 m�

b 4 m�

Solution:

A

0

a

xbxa

bxa������

2

��

��

����

d�

xc1A

0

a

xx bxa

bxa������

2

��

��

����

d�

xc 1.80 m�

3

Ans.

Page 36: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 6.

Locate the centroid yc of the shaded area.

Given:

a 4 m�

b 4 m�

Solution:

A

0

a

xbxa

bxa������

2

��

��

����

d�

yc1A

0

a

x12

bxa

bxa������

2�

��

��

bxa

bxa������

2

��

��

����

d� yc 1.80 m�

3

Ans.

Page 37: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–37.

If the density at any point in the quarter circular plate isdefined by = 0xy, where 0 is a constant, determine themass and locate the center of mass ( , ) of the plate. Theplate has a thickness t.

SOLUTION

Differential Element: The element parallel to the y axis shown shaded in Fig. a willbe considered. The mass of this element is

Mass: Integrating,

Ans.

Center of Mass: The center of mass of the element is located at . ApplyingEq. 9–2 we have

Ans.

By considering the element parallel to the x axis shown shaded in Fig. b,. In this case, .

Applying Eq. 9–2, we have

Ans.y = Lm y~ dm

Lm dm

= Lr

0y cr0 t(r

2y - y

3)dy d14

r0 r

4 t= L

r

0r0 t(r

2y

2 - y

4) dy

14

r0 r4t

=815

r

yc = ydm = r dV = r0xy(tx dy) = r0 tx2y dy = r0 t(r 2y - y

3) dy

=

r0 ta r

2x

3

3-

x5

5b 2 r

0

14

r0 r4t

=815

r

x = Lm x~ dm

Lm dm

= Lr

0x cr0 t(r

2x - x

3)dx d14

r0 r

4 t

= Lr

0r0 tar2x2 - x4bdx

14r0 r4t

xc = x

m = Lm dm = L

r

0r0 t(r

2x - x

3) dx = r0 ta r

2x

2

2-

x

4

4b 2

0

r

=14

r0 r4 t

= r0 t(r 2x - x

3) dx

= r0 txy2dx

dm = r dV = r0 xy(ty dx)

yxrrr

y

x

r

x2 � y2 � r2

Page 38: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–38.

Determine the location of the centroid C of the cardioid,r = a11 - cos u2.

r

SOLUTION

Ans.= LArx'

dA

LAdA

=3.927 a 3

32p a 2

= 0.833 a

=23

a 3

Lp

0(1 -

-

cos u)3 cos u du = -3.927 a 3

LArx dA = 2L

p

0a2

3r cos ub a 1

2b(a 2)(1 - cos u)2 du

A = 2Lp

0

12

(a 2)(1 - cos u)2 du =32p a 2

dA =12

r2 du

r

Cu

r

~

r~

Page 39: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–39.

SOLUTION

Volume and Moment Arm: The volume of the thin disk differential element is

Centroid: Applying Eq. 9–3 and performing the integration, we have

Ans.=

py3

3 0

py2

2 0

m=

y = LVy'dV

LV dV= L0

y3p1 y2dy4

L4 m

0p1 y2dy

Locate the centroid of the paraboloid.y

y

z =2 y

m

m

z

and its centroid y' = y.dV = pz dy2 = p1 y2dy6

6 m

6

6

66 m

66

4 m

6

6

6

(6y)½

6 m

Page 40: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–40.

Locate the center of gravity of the volume. The material ishomogeneous.

z

y

y 2 = 2z2 m

2 m

SOLUTION

Volume and Moment Arm: The volume of the thin disk differential element isand its centroid

Centroid: Due to symmetry about z axis

Ans.

Applying Eq. 9–3 and performing the integration, we have

Ans.=

2pz3

3 0

2 m

2pz2

2 0

2 m=

43

m

z' = Lv

z'dV

Lv dV= L

2 m

0z12pzdz2

L2 m

02pzdz

x' = y' = 0

z' = z.dV = py2dz = p12z2dz = 2pzdz

Page 41: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–41.

Locate the centroid of the hemisphere.z

SOLUTIONVolume and Moment Arm: The volume of the thin disk differential element is

and its centroid

Centroid: Applying Eq. 9–3 and performing the integration, we have

Ans.=

pa2z2

2-z4

4 0

a

p a2z -z3

3 0

a=

38a

z' = LV

z'dV

LV dV= L

a

0z3p1a2 - z22dz4

La

0p1a2 - z22dz

z' = z.dV = py2dz = p1a2 - z22dz

y

z

x

a

y 2 + z 2 = a 2

Page 42: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 43: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 44: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–44.

SOLUTION

Ans.

(By symmetry) Ans.x = z = 0

y = LVy'dV

LVdV=

pa2b2

42pa2b

3

=38b

Ly'dV = L

b

0p a2ya1 -

y2

b2 b dy = p a2 cy2

2-y4

4b2 db

0=p a2b2

4

LdV = Lb

0p a2 a1 -

y2

b2 b dy = p a2 cy -y3

3b2 db

0=

2pa2b

3

dV = p z2 dy

Locate the centroid of the ellipsoid of revolution. z

x

b

y

a

� 1�y2

b2

z2

a2

Page 45: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Locate the center of gravity zc of thefrustum of the paraboloid.The materialis homogeneous.

Given:

a 1 m�

b 0.5 m�

c 0.3 m�

Solution

V

0

a

z� b2 za

b2 c2� ���

��

����

d�

zc1V

0

a

zz� b2 za

b2 c2� ���

��

����

d�

zc 0.422 m�

45.

Ans.

Page 46: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–46.

The hemisphere of radius r is made from a stack of very thinplates such that the density varies with height where k is a constant. Determine its mass and the distanceto the center of mass G.

SOLUTION

Mass and Moment Arm: The density of the material is The mass of the thindisk differential element is and itscentroid Evaluating the integrals, we have

Ans.

Centroid: Applying Eq. 9–3, we have

Ans.z = Lm z'

dm

Lm dm

=2pkr5>15

pkr4>4 =8

15 r

= pk¢ r2z3

3-

z5

5≤ `

0

r

=2pkr5

15

Lm z'

dm = Lr

0z5kz3p(r2 - z2) dz46

= pk¢ r2z2

2-

z4

4≤ `

0

r

=pkr4

4

m = Lm dm = L

r

0kz3p(r2 - z2) dz4

z' = z.

dm = rdV = rpy2dz = kz3p(r2 - z2) dz4r = kz.

r = kz,

z

y

z

G

x

_r

Page 47: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–47.

SOLUTION

Ans.

Ans.x = y = Lx'

dV

LdV

=

a3 h

12p a2h

12

=ap

=p a2

4 h2 aa h3

3pb =

a3 h

12

=p a2

4 h2

4a

3phah4 -

3h4

2+ h4 -

h4

4b

Lx'

dV =pa 2

4 h2Lh

0

4 r

3p(h - z)2 dz =

pa2

4 h2Lh

0

4a

3 p h(h3 - 3h2 z + 3hz2 - z3) dz

z = Lz'

dV

LdV

=

p a2 h2

48p a2h

12

=h

4

=p a2

4 h2 a h4

12b =

pa2h2

48

Lz'

dV =p a2

4 h2 Lh

0(h2 - 2hz + z2) z dz =

p a2

4 h2 ch2 z2

2- 2h

z3

3+

z4

4dh

0

=p a2

4 h2 ah3

3b =

pa2 h

12

LdV =p a2

4 h2 Lh

0(h2 - 2hz + z2) dz =

p a2

4 h2 ch2z - hz2 +z3

3dh

0

dV =p

4r2 dz =

p a2

4 h2 (h - z)2 dz

r =a

h(h - z)

z' = z

Locate the centroid of the quarter-cone.

y

z

x

h

a

Page 48: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–48.

SOLUTION

Volume and Moment Arm: From the geometry,

The volume of the thin disk differential element is

and its centroid

Centroid: Applying Eq. 9–3 and performing the integration, we have

Ans.=R2 + 3r2 + 2rR

4 R2 + r2 + rRh

=

p

h2 B1r - R22¢ z4

4≤ + 2Rh1r - R2¢ z3

3≤ + R2h2¢ z2

2≤ R `

0

h

p

h2 1r - R22 z3

3+ 2Rh1r - R2 z2

2+ R2h21z2 `

0

h

z' = LV

z'

dV

LVdV

=L

h

0zb p

h2 31r - R22z2 + 2Rh1r - R2z + R2h24dz r

Lh

0

p

h2 3 r - R21 2z2 + 2Rh1r - R2z + R2h24dz

z = z.

=p

h2 c1r - R22z2 + 2Rh1r - R2z + R2h2 ddz

dV = py2dz = p c a 1r - R2z + Rh

hb2 ddz

y =1r - R2z + Rh

h.

y - r

R - r=

h - z

h,

Locate the centroid of the frustum of the right-circularcone.

z z

x y

h

r

R

Page 49: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–49.

The king’s chamber of the Great Pyramid of Giza is locatedat its centroid. Assuming the pyramid to be a solid, provethat this point is at Suggestion: Use a rectangulardifferential plate element having a thickness dz and area(2x)(2y).

z = 14 h,

z

h

a

a

a

a

x y

SOLUTION

(QED)z' = L

z'dV

L dV=a2 h2

3

4 a2 h3

=h

4

L z'dV = L

h

0

4 a2

h2 1h - z22z dz =4 a2

h2 Bh2 z2

2- 2h

z3

3+z4

4R

0

h

=a2 h2

3

LdV = Lh

0

4 a2

h2 1h - z22 dz =4 a2

h2 Bh2z - hz2 +z3

3R

0

h

=4 a2 h

3

x = y =a

h1h - z2

dV = 12x212y2 dz = 4xy dz

Page 50: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–50.

SOLUTION

Ans.z = Lz'dV

LdV=

abc2

24abc

6

=c

4

Lz'dV =

12L

c

0z aa1 -

zcbba1 -

zcbdz =

abc2

24

LdV = Lc

0

12

(x)(y)dz =12L

c

0aa1 -

zcbba1 -

zcb dz =

abc

6

z = ca1 -1byb = ca1 -

1axb

Determine the location of the centroid for thetetrahedron. Hint: Use a triangular “plate” element parallelto the x–y plane and of thickness dz.

z

y

z

x

ab

c

Page 51: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–51.

The truss is made from five members, each having a lengthof 4 m and a mass of If the mass of the gusset platesat the joints and the thickness of the members can beneglected, determine the distance d to where the hoistingcable must be attached, so that the truss does not tip(rotate) when it is lifted.

7 kg>m.

SOLUTION

Ans.d = x =©x'M©M

=420140

= 3 m

©M = 4(7)(5) = 140 kg

©x'M = 4(7)(1+ 4 + 2 + 3 + 5) = 420 kg # m x

y

4 m

4 m4 m

4 m

4 m

CB

A D

60�

d

Page 52: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

Page 53: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–53.

Locate the centroid ( , ) of the cross section. All thedimensions are measured to the centerline thickness of eachthin segment.

SOLUTION

Centroid: The centroid of each composite segment is shown in Fig. a.

Ans.

Ans. =106.57(103)

882.84= 121 mm

y =©y'

L

©L=

0(200) + 50(100) + 200a22002 + 2002b + 150(300)

200 + 100 + 22002 + 2002 + 300

=68.28(103)

882.84= 77.3 mm

x =©x

'L

©L=

100(200) + 200(100) + 100a22002 + 2002b + 0(300)

200 + 100 + 22002 + 2002 + 300

yx y

x

300 mm

100 mm

200 mm

Page 54: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–54.

Locate the centroid ( ) of the metal cross section. Neglectthe thickness of the material and slight bends at the corners.

yx,

Due to symmetry about y axis, Ans.

Ans.y =©y'

L

©L=

53457.56917.63

= 58.26 mm = 58.3 mm

x- = 0

50 mm

x

150 mm

100 mm 100 mm50 mm 50 mm

y

Segment L (mm) y (mm)'

y'

L (mm2)

1 50p 168.17 26415.93

2 180.28 75 13520.82

3 400 0 0

4 180.28 75 13520.82

© 917.63 53457.56

SOLUTIONCentroid: The length of each segment and its respective centroid are tabulated below.

Page 55: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

.

.

.

Page 56: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–56.

SOLUTION

Ans.x =©x'm©m

=3964.222.092

= 179 mm

= 3964.2 kg.mm

©x'm = 150{2 C7.85(10)3(0.3)(0.2)(0.02) D}+350 C2.71(10)3(0.3)(0.2)(0.02) D

©m = 2 C7.85(10)3(0.3)(0.2)(0.02) D +2.71(10)3(0.3)(0.2)(0.02) = 22.092 kg

The steel and aluminum plate assembly is bolted togetherand fastened to the wall. Each plate has a constant width inthe z direction of 200 mm and thickness of 20 mm. If thedensity of A and B is and for C,

determine the location of the center ofmass. Neglect the size of the bolts.

xral = 2.71 Mg>m3,rs = 7.85 Mg>m3,

300 mm

200 mm100 mm

A

BC

x

y

Page 57: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–57.

To determine the location of the center of gravity of theautomobile it is first placed in a level position, with the twowheels on one side resting on the scale platform P. In thisposition the scale records a reading of . Then, one side iselevated to a convenient height c as shown. The newreading on the scale is . If the automobile has a totalweight of W, determine the location of its center of gravityG .(x, y)

W2

W1

SOLUTIONEquation of Equilibrium: First,we will consider the case in which the automobile isin a level position. Referring to the free-body diagram in Fig. a and writing themoment equation of equilibrium about point A,

a Ans.

From the geometry in Fig. c, and . Using the result of

and referring to the free-body diagram in Fig. b, we can write the moment equation

of equilibrium about point .A¿

xcos u =2b2 - c2

bsin u =

c

b

+©MA = 0; W1(b) - W(x) = 0 x =W1

Wb

b

Pc

G–y

–x

W2

a

Ans.y =b(W2 - W1)2b2 - c2

cW

+©MA¿ = 0; W2Bb¢2b2 - c2

b≤ R - W¢2b2 - c2

b≤ aW1

Wbb - Wa c

bby = 0

Page 58: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–58.

SOLUTION

Ans.y =©y'A©A

=1 907 981.05

12 353.98= 154 mm

= 12 353.98 mm2

©A = 15(150) + 150(15) + p(50)2

= 1 907 981.05 mm2

©y'A = 7.5(15) (150) + 90(150) (15) + 215(p) (50)2

Determine the location of the centroidal axis of thebeam’s cross-sectional area. Neglect the size of the cornerwelds at A and B for the calculation.

x xy

50 mm

A

C

B

15 mm

15 mm

150 mm

150 mm

y

xx

-

Page 59: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Locate the centroid of the cross-sectional area ofthe built-up beam.

y y

x

450 mm

150 mm150 mm

200 mm

20 mm

20 mm

9–59.

Page 60: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Locate the centroid of the cross-sectional area ofthe built-up beam.

y

200 mm

20 mm50 mm

150 mm

y

x

200 mm

300 mm

10 mm

20 mm 20 mm

10 mm

9–60.

Page 61: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–61.

Locate the centroid ( ) of the member’s cross-sectionalarea.

yx,

SOLUTIONCentroid: The area of each segment and its respective centroid are tabulated below.

Thus,

Ans.

Ans.y =©y'

A

©A=

287 0009 050

= 31.71 mm = 31.7 mm

x =©x'

A

©A=

698 5009 050

= 77.18 mm = 77.2 mm

y

x

100 mm60 mm

30 mm

50 mm

40 mm

Segment A (mm2) x'

(mm) y'

(mm) x'

A (mm3) y'

A (mm3)

11213021902 20 30 27 000 40 500

2 30(90) 45 45 121 500 121 500

3 100(50) 110 25 550 000 125 000

© 9 050 698 500 287 000

Page 62: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–62.

Locate the centroid of the bulb-tee cross section.y

SOLUTIONCentroid: The area of each segment and its respective centroid are tabulated below.

Thus,

Ans.y =©y'A©A

=28 078 12596 562.5

= 290.78 mm = 291 mm

_y

C

x

400 mm

300 mm

75 mm

100 mm

75 mm

50 mm

225 mm 225 mm

Segment A 1mm22 y'1mm2 y

'A 1mm32

1 450(50) 600 13 500 000

2 475(75) 337.5 12 023 437.5

312122521752 125 1 054 687.5

4 300(100) 50 1 500 000

© 96 562.5 28 078 125

Page 63: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

Page 64: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–64.

SOLUTION

Ans.y =© y'A©A

=19.44(106)

0.144(106)= 135 mm

©A = 900(80) + 100(360) + 2 c12

(100) (360) d = 0.144(106) mm2

© y' A = 900(80) (40) + 100(360) (260) + 2 c12

(100) (360) (200) d = 19.44(106) mm3

Locate the centroid of the concrete beam having thetapered cross section shown.

y 300 mm300 mm

300 mm

80 mm

360 mmx

100 mm

C

y

Page 65: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Locate the center of gravity G(xc, yc) of the streetlight.Neglect the thickness of each segment. The mass perunit length of each segment is given.

Given:

a 1 m� �AB 12kgm

b 3 m� �BC 8kgm

c 4 m� �CD 5kgm

d 1 m� �DE 2kgm

e 1 m� f 1.5 m�

Solution:

M �AB c �BC b� �CD a e��d2

����

���

� �DE f��

xc1M

�CD�d2

d2d�

���

���

�CD e de2

����

���

� �DE f d e�f2

����

���

���

��

yc1M

�CD a c b�a2

����

���

�d2

c b� a�2d�

����

���

� e c b� a� d�( )���

��

�DE f c b� a� d�( ) �BC b cb2

����

���

� �AB cc2

��

�������

����

xc

yc

���

���

0.200

4.365���

���

m�

65.

Ans.

Page 66: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–66.

Thus,

Ans.y' =

©y'A©A

=4 000 500

14 700= 272.14 mm = 272 mm

Locate the centroid of the cross-sectional area of thebeam constructed from a channel and a plate. Assume allcorners are square and neglect the size of the weld at A.

y

y

70 mm

20 mm

10 mm

350 mm

325 mm

C

A

325 mm

Segment A (mm2) y'

(mm) y'A (mm3)

1 350(20) 175 1 225 000

2 630(10) 355 2 236 500

3 70(20) 385 539 000

© 14 700 4 000 500

SOLUTIONCentroid: The area of each segment and its respective centroid are tabulated below.

Page 67: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–67.

An aluminum strut has a cross section referred to as a deephat. Locate the centroid of its area. Each segment has athickness of 10 mm.

y

SOLUTION

Centroid: The area of each segment and its respective centroid are tabulated below.

Thus,

Ans.y =©y'A©A

=3600

=

–y

120 mm

30 mm

x'

30 mm

C

Segment A (mm2) y'

(mm) y'A (mm3)

1 40(10) 5 2000

2 120(20) 144 000

3

© 3600 000

80(10)

60

115 92 000

238

100 mm

238 00066.1 mm

10 mm 20 mm

60 mm

110 mm

80 mm

110 mm 115 mm

Page 68: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–68.

Locate the centroid of the beam’s cross-sectional area.

SOLUTION

Centroid: The centroid of each composite segment is shown in Fig. a. We have

Ans.y =© y

'A

©A=

5(180)(10) + 2[37.5(75)(10)] + 2[70(40)(10)]

180(10) + 2(75)(10) + 2(40)(10)= 29.6 mm

y

x

y

50 mm

100 mm

10 mm10 mm10 mm

10 mm

10 mm

100 mm

75 mm

50 mm

Page 69: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–69.

Determine the location of the centroid C of the shadedarea which is part of a circle having a radius

Using symmetry, to simplify, consider just the top half:

r.x

SOLUTION

Ans.x =©x'

A

©A=

r3

3 sin3 a

12 r2 Aa - sin 2 a

2 B =23 r sin3a

a - sin 2a2

=12

r2aa -sin2a

2b

©A =12

r2 a -12

(r sin a) (r cos a)

=r3

3sin3 a

=r3

3sin a -

r3

3sin a cos2a

©x'

A =12

r2 aa 2r

3asin ab -

12

(r sin a) (r cos a) a23

r cos ab

y

xC

r

x

a

a

Page 70: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–70.

SOLUTIONCentroid : The area and the centroid for segments 1 and 2 are

Listed in a tabular form, we have

y'

2 = aa

2-t

2bcos 45° +

t

2cos 45°=2241a + t2

A2 = at

y'

1 = aa - t

2+t

2bcos 45° +

t

2cos 45°=2241a + 2t2

A1 = t1a - t2

Locate the centroid for the cross-sectional area of theangle.

y

Thus,

Ans.=22 a2 + at - t2

2 2a - t

y =©y'A©A

=

22t21a2 + at - t22

t12a - t2

aa–y

t t

C

Segment A y'

y'A

1 t1a - t2 2241a + 2t2

22t41a2 + at - 2t22

2 at 2241a + t2

22t41a2 + at2

© t12a - t2 22t21a2 + at - t22

Page 71: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–71.

SOLUTION

Ans.y =©y'

A

©A=

393 1124575.6

= 85.9 mm

©A = p(25)2 + 15(110) + pa352b2

= 4575.6 mm2

©y'

A = p(25)2(25) + 15(110)(50 + 55) + pa352b2a50 + 110 +

352b = 393 112 mm3

Determine the location of the centroid of the beam’s cross-sectional area. Neglect the size of the corner welds at A and Bfor the calculation.

y

35 mm

50 mm

110 mm

15 mmC

A

By

Page 72: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Uniform blocks having a length L and mass m arestacked one on top of the other, with each block overhangingthe other by a distance d, as shown. If the blocks are gluedtogether, so that they will not topple over, determine thelocation of the center of mass of a pile of n blocks.x

L

d

2d

y

x

9–72.

.

Page 73: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Uniform blocks having a length L and mass m arestacked one on top of the other, with each blockoverhanging the other by a distance d, as shown. Show thatthe maximum number of blocks which can be stacked inthis manner is .n 6 L>d

L

d

2d

y

x

9–73.

.

Page 74: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The assembly is made from a steel hemisphere,, and an aluminum cylinder,. Determine the mass center of the

assembly if the height of the cylinder is .h = 200 mmral = 2.70 Mg>m3rst = 7.80 Mg>m3

160 mm

h

z

y

x

80 mm

z

G

_

9–74.

.

Page 75: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The assembly is made from a steel hemisphere,, and an aluminum cylinder,. Determine the height h of the cylinder

so that the mass center of the assembly is located at.z = 160 mm

ral = 2.70 Mg>m3rst = 7.80 Mg>m3

160 mm

h

z

x

80 mm

z

G

_

9–75.

.

Page 76: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Locate the centroid yc for the beam’s cross-sectional area.

Given:

a 120 mm�

b 240 mm�

c 120 mm�

Solution:

A a b�( )5c 3b c�

yc1A

a b�( )2

25c 2b c

b2������

b cb3������

��

��

� yc 229 mm�

76.

Ans.

Page 77: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 77.

Locate the centroid yc for the strut’scross-sectional area.

Given:

a 40 mm�

b 120 mm�

c 60 mm�

Solution:

A�b2

22a c�

yc1A

�b2

24b3����

���

2a cc2������

��

��

� yc 56.6 mm� Ans.

Page 78: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 79: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–79.

Locate the center of mass of the block. Materials 1, 2, and 3have densities of 2.70 Mg m3, 5.70 Mg m3, and 7.80 Mg m3,respectively.

SOLUTION

Centroid: We have

Ans.

Ans.

Ans. =19.962(10-3)

0.8838= 0.02259 m = 22.6 mm

z =g z

' m

gm=

0.07 c2700a12

(0.03)(0.06)(0.02)b d + 0.04 C5700 A0.04(0.06)(0.02) B D + 0.01 C7800 A0.06(0.06)(0.02) B D2700a1

2 (0.03)(0.06)(0.02)b + 5700 A0.04(0.06)(0.02) B + 7800 A0.06(0.06)(0.02) B

=26.028(10-3)

0.8838= 0.02945 m = 29.5 mm

y =gy

' m

gm=

0.02 c2700a12

(0.03)(0.06)(0.02)b d + 0.03 C5700 A0.04(0.06)(0.02) B D + 0.03 C7800 A0.06(0.06)(0.02) B D2700a1

2 (0.03)(0.06)(0.02)b + 5700 A0.04(0.06)(0.02) B + 7800 A0.06(0.06)(0.02) B

=20.07(10-3)

0.8838= 0.02271 m = 22.7 mm

x =gx

' m

gm=

0.01 c2700a12

(0.03)(0.06)(0.02)b d + 0.01 C5700 A0.04(0.06)(0.02) B D + 0.03 C7800 A0.06(0.06)(0.02) B D2700a1

2 (0.03)(0.06)(0.02)b + 5700 A0.04(0.06)(0.02) B + 7800 A0.06(0.06)(0.02) B

>>>

x

y

z

60 mm20 mm

60 mm

40 mm

30 mm

20 mm

1

2

3

Page 80: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–80.

Locate the centroid of the homogenous solid formed byboring a hemispherical hole into the cylinder that is cappedwith a cone.

SOLUTIONCentroid: Since the solid is made of a homogeneous material, its center of masscoincides with the centroid of its volume.The centroid of each composite segment isshown in Figs. a and b. Since segment (3) is a hole, its volume should be considerednegative. We have

Ans. =2.7422(10-3)p

9(10-3)p= 0.3047 m = 305 mm

z =©z

'V

©V=p(0.2)(0.152)(0.4) +

13

p(0.4 + 0.075)(0.152)(0.3) + a38

(0.15)b a -

23

p(0.153)bp(0.152)(0.4) +

13

p(0.152)(0.3) + a -

23

p(0.153)b

z

y

z

x

150 mm

150 mm

400 mm

300 mm

Page 81: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–81.

Locate the center of mass of the solid formed by boring ahemispherical hole into a cylinder that is capped with a cone.The cone and cylinder are made of materials having densitiesof and , respectively.

SOLUTION

Centroid: The center of mass of each composite segment is shown in Figs. a and b.Since segment (3) is a hole, its mass should be considered negative. We have

Ans. =12.8545p35.775p

= 0.3593 m = 359 mm

z =©z' m©m

=0.2 c2700 cp(0.152)(0.4) d

ad + (0.4 + 0.075)7800 c1

3 p(0.152)(0.3) d + a3

8 (0.15)b c -2700a2

3 p(0.153)b d

2700 cp(0.152)(0.4) d + 7800 c13

p(0.152)(0.3) d + c -2700a23

p(0.153)b d

2.70 Mg>m37.80 Mg>m3

z

y

z

x

150 mm

150 mm

400 mm

300 mm

Page 82: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–82.

Determine the distance h to which a 100-mm diameter holemust be bored into the base of the cone so that the center ofmass of the resulting shape is located at Thematerial has a density of

Choosing the positive root,

Ans.h = 323 mm

h2 - 0.230 h - 0.0300 = 0

0.4313 - 0.2875 h = 0.4688 - 1.25 h2

13 p10.152210.52A0.5

4 B - p10.05221h2Ah2 B13 p10.152210.52 - p10.05221h2 = 0.115

8 Mg>m3.z = 115 mm.

z

y

x

C

150 mm50 mm

h

500 mm

_z

Page 83: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–83.

SOLUTION

Ans.z =©z' V©V

=1.463 (10-3)

0.01139= 0.12845 m = 128 mm

= 0.01139 m3

©V =13p (0.15)2 (0.5) - p (0.05)2 (0.05)

= 1.463(10-3) m4

©z'V =13p (0.15)2 A0.5 B a0.5

4b - p (0.05)2 (0.05) a0.05

2b

Determine the distance to the centroid of the shape whichconsists of a cone with a hole of height bored intoits base.

h = 50 mmz z

y

x

C

150 mm50 mm

h

500 mm

z

Page 84: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Determine the distance to the centroid of thesolid which consists of a cylinder with a hole of length

bored into its base.h = 50 mm

x y

h

120 mm

40 mm

20 mm

9–84.

.

Page 85: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Determine the distance h to which a hole must bebored into the cylinder so that the center of mass of theassembly is located at . The material has adensity of .8 Mg>m3

x = 64 mm

y

x

h

120 mm

40 mm

20 mm

9–85.

..

Page 86: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–86.

Locate the center of mass of the assembly. The assemblyconsists of a cylindrical center core, A, having a density of7.90 Mg/m3, and a cylindrical outer part, B, and a cone cap,C, each having a density of 2.70 Mg m3.

SOLUTION

Center of mass: The assembly is broken into four composite segments, as shown inFigs. a, b, and c. Since segment (3) is a hole to segments (1) and (2), its mass shouldbe considred negative. We have

Ans.=121.58p262.6p

= 0.4630 m = 463 mm

z =gzcm

gm=

2700(0.3) cp(0.32)(0.6) d + 2700(0.6 + 0.2) c13p(0.32)(0.8) d + (0.5) c -2700 cp(0.12)(1) d d + 7900(0.5) cp(0.12)(1) d

2700 cp(0.32)(0.6) d + 2700 c13p(0.32)(0.8) d + c -2700 cp(0.12)(1) d d + 7900 cp(0.12)(1) d

>

z z

x y

600 mm

400 mm

400 mm

100 mm

300 mm

AC

B

Page 87: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 88: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–88.

A hole having a radius r is to be drilled in the center of thehomogeneous block. Determine the depth h of the hole sothat the center of gravity G is as low as possible.

h

a

a2

a2

a2

a2

G

r

SOLUTION

Solving for the smaller root,

Ans.=a3 - a22a2 - pr2

pr2

h =2a3 - 2(2a3)2 - 4(pr2)a4

2(pr2)

pr2h2 - 2a3 h + a4 = 0

dz

dh=

12B (a3 - pr2h)(-2pr2h) - (a4 - pr2h2)(-pr2)

(a3 - pr2h)2 R = 0

z =©zV

©V=

12 (a4 - pr2 h2)

a3 - pr2h=

a4 - pr2h2

2(a3 - pr2h)

©zV = Aa2 Ba3 - Ah2 B Cpr2 h D = 12(a4 - pr2 h2)

©V = a3 - pr2h

Page 89: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–89.

Locate the center of mass of the assembly. The cylinderand the cone are made from materials having densities of

and , respectively.9 Mg>m35 Mg>m3

z

SOLUTIONCenter of mass: The assembly is broken into two composite segments, as shown inFigs. a and b.

Ans.=1060.601407.4

= 0.754 m = 754 mm

z =©z'

m

©m=

5000(0.4) Cp(0.22)(0.8) D + 9000(0.8 + 0.15) c13p(0.42)(0.6) d

5000 Cp(0.22)(0.8) D + 9000 c13p(0.42)(0.6) d

z

x

0.8 m

0.6 m0.4 m

0.2 m

y

Page 90: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The water tank AB has a hemispherical top and isfabricated from thin steel plate. Determine the volumewithin the tank.

1.5 m

1.6 m

0.2 m

B

A

1.6 m

9–90.

Page 91: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The water tank AB has a hemispherical roof and isfabricated from thin steel plate. If a liter of paint can cover

of the tank’s surface, determine how many liters arerequired to coat the surface of the tank from A to B.3 m2

1.5 m

1.6 m

0.2 m

B

A

1.6 m

9–91.

Page 92: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–92.

Determine the outside surface area of the hopper.

SOLUTION

Surface Area: Applying Theorem of Pappus and Guldinus, Eq. 9–9, with , , , and

as indicated in Fig. a,

Ans.= 47.15 m2 = 47.1 m2

A = u©NL = 2p [1.5(4) + 0.8523.13]

N2 =0.2 + 1.5

2= 0.85 m

N1 = 1.5 mL2 = 21.22 + 1.32 = 23.13 mL1 = 4mu = 2p rad

0.2 m

4 m

z

1.2 m

1.5 m

Page 93: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–93.

The hopper is filled to its top with coal. Determine thevolume of coal if the voids (air space) are 30 percent of thevolume of the hopper.

SOLUTION

Ans.V = 22.1 m3

V = © u r~ A = 2p [(0.75)(1.5)(4) + (0.1)(.2)(1.2) + (0.6333)a12b(1.3)(1.2)](0.70)

0.2 m

4 m

z

1.2 m

1.5 m

Page 94: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–94.

SOLUTION

Ans.V = 4.25(106) mm3

V = ©ur'A = 2p(350)(60)(20) + 2p(320)(40)(20)

The rim of a flywheel has the cross section A–A shown.Determine the volume of material needed for its construction.

A

A

60 mm

20 mm

40 mm

20 mm

300 mm

Section A–A

Page 95: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 95.

Determine the surface area of the tank, which consists of a cylinder and hemispherical cap.

Given:

a 4 m�

b 8 m�

Solution:

A 2� a b2a�

�a2

����

���

A 302 m2�

Page 96: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 96.

Determine the volume of the tank, which consists of a cylinder and hemispherical cap.

Given:

a 4 m�

b 8 m�

Solution:

V 2�4a3�

�a2

4

���

���

a2

b a( )���

��

V 536 m3� Ans.

Page 97: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–97.

The process tank is used to store liquids duringmanufacturing. Estimate the outside surface area of thetank. The tank has a flat top and the plates from which thetank is made have negligible thickness.

SOLUTION

Surface Area: Applying Theorem of Pappus and Guldinus, Eq. 9–9 with ,

, , , , and as indicated in Fig. a,

Ans.= 188.49 m2 = 188 m2

A = u©NL = 2p [1.5(3) + 3(6) + 1.5(5)]

N3 = 1.5 mN2 = 3 mN1 = 1.5 mL3 = 232 + 42 = 5 mL2 = 6 mL1 = 3 m

u = 2p

6 m

4 m

3 m 3 m

Page 98: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–98.

The process tank is used to store liquids duringmanufacturinghas a flat top and the plates from which the tank is made have negligible thickness.

. Estimate the volume of the tank. The tank

SOLUTION

Ans.V = 207.3 m3 = 207 m3

V = ©urA = 2pB1 a12b (3) (4) + 1.5(3)(6)

6 m

4 m

3 m 3 m

~ R

Page 99: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The hopper is filled to its top with coal. Estimatethe volume of coal if the voids (air space) are 35 percent ofthe volume of the hopper.

0.2 m

4 m

z

1.2 m

1.5 m

9–99.

.

Page 100: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 101: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–101.

SOLUTION

Ans.

Ans.V = ©urA = 2p(b)(a)2 = 2pba2

A = ©urL = 2p(b)(4a) = 8pba

= 8pba

= 4p cba -a2

2sin 45° + ba +

a2

2sin 45° d

A = ©urL = 2 c2pab -a

2sin 45°b(a) d + 2 c2pab +

a

2sin 45°b(a) d

Determine the surface area and the volume of the ringformed by rotating the square about the vertical axis

Also

.b

a

a

45

~

~

Page 102: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

� �.

Determine the volume of material needed to make the casting.

������

�� ���

�� ��

�� �� ����

���������

� 2 �� 2�4

���

���

� ��2

�4 ���

3 ��

���

���

� 2 ��� 2 ���� ����2

���

���

�� 2�2

���

���

� ��2

� ��4 ���

3 ��

���

���

���

��

���

� 1.40 �3�

40 �

60��

�3(10 )6

Page 103: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Determine the surface area from A to B of the tank.

A

1 m

z

B

1.5 m

3 m

9–103.

.

Page 104: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

Determine the volume within the thin-walled tankfrom A to B.

A

1 m

z

B

1.5 m

3 m

9–104.

Page 105: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 106: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–106.

Determine the volume of an ellipsoid formed by revolvingthe shaded area about the x axis using the second theoremof Pappus–Guldinus. The area and centroid y of the shadedarea should first be obtained by using integration.

SOLUTION

Area and Centroid: The differential element parallel to the x axis is shown shadedin Fig. a. The area of this element is given by

Integrating,

The centroid can be obtained by applying Eq. 9–4 with

Volume: Applying the second theorem of Pappus–Guldinus and using the resultsobtained above, we have

Ans.V = 2pyA = 2pa 4b

3pb apab

4b =

23pab2

y = LAy'

dA

LAdA

= Lb

0y c a

b2b2 - y2 dy dpab

4

=4b

3p

y' = y.y

A = LAdA = L

b

0

a

b2b2 - y2 dy =

pab

4

dA = xdy =a

b2b2 - y2 dy

x

y

b

a

� � 1x2––a2

y2––b2

Page 107: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–107.

Using integration, determine both the area and thecentroidal distance of the shaded area. Then, using thesecond theorem of Pappus–Guldinus, determine thevolume of the solid generated by revolving the area aboutthe y axis.

x

SOLUTION

Ans.

Ans.

Thus,

Ans.V = ur'

A = 2p 0.6 1.333 = 5.03 m3

x' = L

x'

dA

L dA

=0.8

1.333= 0.6 m

L x'

dA = L2

0

y4

8dy = c y5

40d

0

2

= 0.8 m3

A = LdA = L2

0

y2

2dy = cy3

6d

0

2

= 1.333 = 1.33 m2

dA = x dy

y' = y

x' =

x

2

C

y

x

2 m

2 m

_x

y2 = 2x

Page 108: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–108.

SOLUTION

Surface Area: This problem requires that . Applying the theorem of

Pappus and Guldinus, Eq. 9–7, with , ,

and , we have

Ans.h = 106 mm

12

[2p(25)(158.11)] = 2pah

6b ¢210

3h≤

12

(ur1 L1) = ur2L2

r2 =h

6r1 = 25 mmL2 =

Ch2 + a

h

3b

2

=210

3h,

L1 = 2502 + 1502 = 158.11 mmu = 2p

12A1 = A2

Determine the height h to which liquid should be pouredinto the conical paper cup so that it contacts half the surfacearea on the inside of the cup.

100 mm

h

150 mm

Page 109: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 110: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Determine the surface area and the volume of the conical solid.

Solution:

A 2a3

2a2

2��

A 3�a2�

V 212

a2

���

���

32

a���

���

36

a2����

���

V�4

a3�

110.

Ans.

Ans.

Page 111: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–111.

SOLUTION

Ans.h = 29.9 mm

10.77h + 0.2154h2 = 513.5

2pb 5(10) + a10 +h

5bBa

2h5b

2

+ h2 r =12

(2p)(1127.03)

x =20h50

=2h5

= 2p(1127.03) mm2

A = uz rL = 2p{202(20)2 + (50)2 + 5(10)}

Determine the height h to which liquid should be poured intothe cup so that it contacts half the surface area on the insideof the cup. Neglect the cup’s thickness for the calculation.

50 mm

10 mm

h

30 mm

~

Page 112: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–112.

The water tank has a paraboloid-shaped roof. If one liter ofpaint can cover 3 m2 of the tank, determine the number ofliters required to coat the roof.

SOLUTION

Length and Centroid: The length of the differential element shown shaded in Fig. a is

where

Integrating,

The centroid of the line can be obtained by applying Eq. 9–5 with

Surface Area: Applying the first theorem of Pappus and Guldinus and using theresults obtained above with

Thus, the amount of paint required is

Ans.# of liters =459.39

3= 153 liters

A = 2prL = 2p(6.031)(12.124) = 459.39 m2

r = x = 6.031 m, we have

x = LLx~ dL

LLdL

= L12 m

0x c 1

482482 + x2 dx d

12.124=

73.11412.124

= 6.031 m

xc = x.x

L = LLdL = L

12 m

0

1482482 + x2 dx = 12.124 m

dL = B1 + a - 148

xb2

dx = B1 +x2

482 dx =

1482482 + x2 dx

dy

dx= -

148

x. Thus,

dL = 2dx2 + dy2 = A1 + adydxb2

dx

x

y

2.5 m

12 m

y � (144 � x2)1––96

Page 113: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–113.

A steel wheel has a diameter of 840 mm and a cross sectionas shown in the figure. Determine the total mass of thewheel if r = 5 Mg>m3.

30 mm

30 mm

80 mm

Section A–A

100 mm

250 mm420 mm

840 mm

60 mm

A

A

SOLUTION

Volume: Applying the theorem of Pappus and Guldinus, Eq. 9–12, with

evah ew dna

The mass of the wheel is

Ans.= 138 kg

m = rV = 51103238.775110-32p4

= 8.775p110-32m3

V = u©rA = 2p30.09510.0032 + 0.23510.00752 + 0.3910.00624A3 = 10.1210.062 = 0.006 m2,A2 = 0.2510.032 = 0.0075 m2

A1 = 0.110.032 = 0.003 m2,r3 = 0.39 m,r2 = 0.235 m,r1 = 0.095 m,u = 2p,

Page 114: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–114.

Determine the surface area of the roof of the structure if itis formed by rotating the parabola about the y axis.

SOLUTION

Centroid: The length of the differential element is

and its centroid is . Here, . Evaluating the

integrals, we nave

Applying Eq. 9–5, we have

Surface Area: Applying the theorem of Pappus and Guldinus, Eq. 9–7, with ,, , we have

Ans.A = urL = 2p(9.178) (23.663) = 1365 m2

r = x = 9.178L = 23.663 mu = 2p

x = LLx'

dL

LLdL

=217.18123.663

= 9.178 m

LLx' '

dL = L16 m

0x¢C1 +

x2

64≤dx = 217.181 m2

L = L dL = L16 m

0¢C1 +

x2

64≤dx = 23.663 m

dy

dx= -

x

8x = x= ¢C1 + ady

dxb2≤dx

dL = 2dx2 + dy2

16 m

y

x

16 m

y 16 (x2/16)

Page 115: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 116: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–116.

The loading acting on a square plate is represented by aparabolic pressure distribution. Determine the magnitudeof the resultant force and the coordinates of the pointwhere the line of action of the force intersects the plate.Also, what are the reactions at the rollers B and C and theball-and-socket joint A? Neglect the weight of the plate.

1x, y2

SOLUTION

Ans.

Ans.

Ans.

Ans.

Ans.Ay = 17.1 kN

+ c ©F = 0; Ay - 42.67 + 12.8 + 12.8 = 0

By = Cy = 12.8 kN

©Mx = 0; 42.67(2.40) - 2By (4) = 0

©My = 0; By = Cy

FR = 10.67(4) = 42.7 kN

y = Ly dA

L dA=

25.610.67

= 2.40 m

L y'

'

dA = L4

02y3/2 dy = B 4

5y5/2R4

0= 25.6 kN

L dA = L4

02y1/2 dy = B 4

3y3/2R4

0= 10.67 kN/m

x = 0 (Due to symmetry)

dA = p dy

y = y2 m4 m

4 m

x

y

p

p 2y1/2

A

BC

4 kPa

Page 117: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–117.

SOLUTIONResultant Force and its Location: The volume of the differential element is

and its centroid is at and .

Ans.

Ans.

Ans.y = LFRy'

dFR

LFRdFR

=32.024.0

= 1.33 m

x = LFRx'

dFR

LFRdFR

=48.024.0

= 2.00 m

=23B ax2

2b 2 3m

0a2y2 -

y3

3b 2 4 m

0R = 32.0 kN # m

LFR

y'

dFR = L3 m

0

23

(xdx)L4 m

0y(4 - y)dy

=23B ax3

3b 2 3 m

0a4y -

y2

2b 2 4m

0R = 48.0 kN # m

LFR

xdFR = L3 m

0

23

(x2dx)L4 m

0(4 - y)dy

=23B ax2

2b 2 3

0

m a4y -y2

2b 2 4

0

mR = 24.0 kN

FR = LFk

dFR = L3 m

0

23

(xdx)L4 m

0(4 - y)dy

y' = yx

' = xdV = d FR = pdxdy =23

(xdx)[(4 - y)dy]

The load over the plate varies linearly along the sides of theplate such that Determine the resultantforce and its position on the plate.1x, y2

p = 23[x14 - y2] kPa.

p

3 m

4 m

y

x

8 kPa

Page 118: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–118.

The rectangular plate is subjected to a distributed load overits entire . The load is defined by the expression

where represents the pressure acting at the center of the plate. Determine the magnitude and location of the resultant force acting on the plate.

p0

p = p0

sin (px>a)

xb

a

p0

y

p

SOLUTIONResultant Force and its Location: The volume of the differential element is

.

Ans.

Since the loading is symmetric, the location of the resultant force is at the center ofthe plate. Hence,

Ans.x =a

2y =

b

2

=4ab

p2 p0

= p0B a - ap

cos pxab 2 a

0a - bp

cos px

bb 2 b

0R

FR = LFR

dFR = p0La

0asin

pxa

dxbLb

0asin

py

bdyb

dV = dFR = pdxdy = p0 asin pxa

dxb asin

py

bdyb

sin (py>b),surface

Page 119: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

.

.

MN

MN

Page 120: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–120.

The tank is filled with water to a depth of Determine the resultant force the water exerts on side A andside B of the tank. If oil instead of water is placed in the tank,to what depth d should it reach so that it creates the sameresultant forces? and rw = 1000 kg>m3.ro = 900 kg>m3

d = 4 m.

SOLUTION

For water

At side A:

Ans.

At side B:

Ans.

For oil

At side A:

Ans.d = 4.22 m

FRA=

12

(17 658 d)(d) = 156 960 N

= 17 658 d

= 2(900)(9.81)d

wA = b ro g d

FRB=

12

(117 720)(4) = 235 440 N = 235 kN

= 117 720 N>m= 3(1000)(9.81)(4)

wB = b rw g d

FRA=

12

(78 480)(4) = 156 960 N = 157 kN

= 78 480 N/m

= 2(1000)(9.81) (4)

wA = b rw g d

dBA

3 m 2 m

Page 121: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–121.

When the tide water A subsides, the tide gate automaticallyswings open to drain the marsh B. For the condition of hightide shown, determine the horizontal reactions developedat the hinge C and stop block D. The length of the gate is6 m and its height is 4 m. rw = 1.0 Mg/m3.

SOLUTION

Fluid Pressure: The fluid pressure at points D and E can be determined using Eq. 9–13,

Thus,

Resultant Forces:

Equations of Equilibrium:

Ans.

Ans.Cx = 46.6 kN

264.87 - 117.72 - 100.55 - Cx = 0:+ ©Fx = 0;

Dx = 100.55 kN = 101 kN

264.87132 - 117.7213.3332 - Dx 142 = 0a+©MC = 0;

FR2=

121117.722122 = 117.72 kN

FR1=

121176.582132 = 264.87 kN

wE = 29.43162 = 176.58 kN>m

wD = 19.62162 = 117.72 kN>m

pE = 1.01103219.812132 = 29 430 N>m2 = 29.43 kN>m2

pD = 1.01103219.812122 = 19 620 N>m2 = 19.62 kN>m2

p = rgz.

AB

C

D

3 m2 m

4 m

Page 122: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 1

The symmetric concrete “gravity” dam is held in place by its own weight. If the density of concrete is�c and water has a density �w, determine the smallest distance d at its base that will prevent the damfrom overturning about its end A.The dam has a width w.

Units Used:

Mg 103 kg� MN 106 N�

Given:

a 1.5 m� �c 2.5Mg

m3�

b 9 m�

�w 1.0Mg

m3�w 8 m�

Solution:

Guesses

d 3 m� Fh 1 MN�

Fv 1 MN� W 1 MN�

Given

Fvd a

4b w�w g�

Fh12�w g b wb�

W �c g w a bd a

2���

���

b���

��

Wd2

Fv dd a

6��

����

� Fhb3

0�

Fv

Fh

W

d

������

������

Find Fv Fh� W� d�� ��

Fv

Fh

W

�����

�����

0.379

3.178

4.545

����

����

MN� d 3.65 m�

22.

Ans.

Page 123: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–123.

SOLUTION

Ans.

Ans.h =23

(6) = 4 m

F =12

(6)(8)(58 860) = 1.41(106) N = 1.41 MN p = 6(1)(103)(9.81) = 58 860 N/m2

Determine the magnitude of the resultant hydrostaticforce acting on the dam and its location, measured fromthe top surface of the water. The width of the dam is 8 m;rw = 1.0 Mg>m3.

6 m

Page 124: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–124.

The concrete dam in the shape of a quarter circle.Determine the magnitude of the resultant hydrostatic forcethat acts on the dam per meter of length. The density ofwater is

SOLUTION

Loading: The hydrostatic force acting on the circular surface of the dam consists ofthe vertical component and the horizontal component as shown in Fig. a.

Resultant Force Component: The vertical component consists of the weightof water contained in the shaded area shown in Fig. a. For a 1-m length of dam,we have

The horizontal component consists of the horizontal hydrostatic pressure.Since the width of the dam is constant (1 m), this loading can be representedby a triangular distributed loading with an intensity of

at point C, Fig. a.

Thus, the magnitude of the resultant hydrostatic force acting on the dam is

Ans.FR = 3Fh2 + Fv

2 = 344.145

2 + 18.95

2 = 48.0 kN

Fh =12

(29.43)(3) = 44.145 kN

1000(9.81)(3)(1) = 29.43 kN>mwC = rghCb =

Fh

Fv = rgAABCb = (1000)(9.81)B(3)(3) -p

4 (32)R(1) = 18947.20 N = 18.95 kN

Fv

FhFv

rw = 1 Mg>m3.

3 m

Page 125: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

���.

The storage tank contains oil having a specific weight �. If the tank has width w, calculate theresultant force acting on the inclined side BC of the tank, caused by the oil, and specify itslocation along BC, measured from B. Also compute the total resultant force acting on the bottomof the tank.����������

�� 103 ���

������

� 9 �

�3��

� 8���

! 6��� � 4���

" 10��� � 3���

� 2��� # 4���

���������

!$ ! �� ���� !$ 72573�

����#�

� !% ! �� � ��( )��� !% 540 ��

&'� !$ ���� &'�12

!% !$� �� ���� &�� � !� �� ���� &��12�� !� �� ����

The resultant force

&() &'� &'���� &(* &�� &����� &( &()2 &(*

2��� &( 2.77���

The location h measured from point B ����� ' 1#��� �����

&���2� &��

2 ��3

�� &'��2�� &'�

2 ��3

�� &()� '�

�2 �2�

� &(*� '�

�2 �2�

��=

' &��� '( )�� ' 5.22��On the bottom of the tank

&��� � !� #� � �� ��( )��� &��� 3.02���

Ans.

Ans.

Ans.

Page 126: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–126.

The tank is filled to the top with water havinga density of Determine the resultant forceof the water pressure acting on the flat end plate C of thetank, and its location, measured from the top of the tank.

rw = 1.0 Mg/m3.1y = 0.5 m2

0.5 m

x2 + y2 = (0.5)2

x

y

C

SOLUTION

Ans.

Hence, measured from the top of the tank,

Ans.d¿ = 0.5 + 0.125 = 0.625 m

d =-0.481

3.85= -0.125 m

F1-d2 = Ly dF

= -0.481 kN m

y

4C2510.522 - y263 D-0.5

0.5 -10.522

8cy210.522 - y2 + 10.522 sin-1 y

0.5d-0.5

0.5 rLA

y dF = 219.812L0.5

-0.510.5y - y221210.522 - y2dy = 19.62b c - 0.5

32510.522 - y263 d

-0.5

0.5

+

F = 3.85 kN

+219.812

3C2510.522 - y263 D-0.5

0.5

=9.81

2cy210.522 - y2 + 0.52 sin-1 a y

0.5b d

-0.5

0.5

F = 219.812L0.5

-0.510.5 - y21210.522 - y2 dy

dF = p dA = 11219.81210.5 - y2 2x dy

Page 127: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–127.

SOLUTIONFluid Pressure: The fluid pressure at an arbitrary point along y axis can bedetermined using Eq. 9–13, .

Resultant Force and its Location: Here, . The volume of thedifferential element is . the

Evaluating integrals using Simpson’s rule, we have

Ans.

Ans.y =LFRy

'dFR

LFRdFR=

-866.76934.2

= -0.125 m

= -866.7 N # mLFRyd FR = 17658 L

0.5 m

-0.5 my(0.5 - y)(21 - 4y2)dy

= 6934.2 N = 6.93 kN

FR = LFRd FR = 17658 L0.5 m

-0.5 m(0.5 - y)(21 - 4y2)dy

dV = dFR = p(2xdy) = 8829(0.5 - y)[221 - 4y2] dyx = 21 - 4y2

(0.5 - y) = 8829(0.5 - y)p = g(0.5 - y) = 900(9.81)

The tank is filled with a liquid which has a density ofDetermine the resultant force that it exerts on

the elliptical end plate, and the location of the center ofpressure, measured from the x axis.

900 kg>m3.

0.5 m

1 m

0.5 m

1 m

x

y

4 y2 x2 1

Page 128: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

The underwater tunnel in the aquatic center isfabricated from a transparent polycarbonate materialformed in the shape of a parabola. Determine the magnitudeof the hydrostatic force that acts per meter length along thesurface AB of the tunnel. The density of the water is

.rw = 1000 kg/m3

y

x

2 m 2 m

2 m

4 m

y � 4 � x2 A

B

9–128.

Page 129: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–129.

SOLUTION

Ans.F = 391 kN>mF = 9.81112162162 + 211219.812c3132 -

p

41322 d

The semicircular tunnel passes under a river which is 9 m deep.Determine the vertical resultant hydrostatic force acting permeter of length along the length of the tunnel. The tunnel is 6m wide; rw = 1.0 Mg/m3.

6 m

9 m

Page 130: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–130.

The arched surface AB is shaped in the form of a quartercircle. If it is 8 m long, determine the horizontal and verticalcomponents of the resultant force caused by the wateracting on the surface. rw = 1.0 Mg>m3.

SOLUTION

Ans.

Ans.Fy = 470.88 + 67.37 = 538 kN

Fx = 156.96 + 470.88 = 628 kN

w = c(2)2 -14p(2)2 d (8)(1000)(9.81) = 67.37 kN

F1 = 1000(9.81)(2)a12b(2)(8) = 156.96 kN

F2 = 1000(9.81)(3)(2)(8) = 470.88 kN

F3 = 1000(9.81)(3)(2)(8) = 470.88 kN

3 m

2 m

B

A

Page 131: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–131.

A circular V-belt has an inner radius of 600 mm and a cross-sectional area as shown. Determine the volume of materialrequired to make the belt.

SOLUTION

Ans.= 22.7(10)-3 m3

= 2p C0.65(2)a12b (0.025)(0.075) + 0.6375(0.05)(0.075) D

V = ©urA

50 mm25 mm 25 mm

75 mm

600 mm

~

Page 132: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–132.

SOLUTION

Ans.= 1.25 m2

= 2 p[0.6(0.05) + 2(0.6375)(2(0.025)2 + (0.075)2) + 0.675(0.1)]

A = ©urL

A circular V-belt has an inner radius of 600 mm and across-sectional area as shown. Determine the surface areaof the belt.

50 mm25 mm 25 mm

75 mm

600 mm

~

Page 133: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–133.

100 mm

25 mm

25 mm

x

25 mm

y

50 mm 50 mm

y

75 mm75 mm

C

Locate the centroid of the beam’s cross-sectional area.y

SOLUTIONCentroid: The area of each segment and its respective centroid are tabulated below.

Segment A (mm2)1 300(25) 112.5 843 7502 100(50) 50 250 000

12 500 1 093 750

Thus,

Ans.y =©yA

©A=

1 093 75012 500

= 87.5 mm

©

y'

A (mm3)y'

'

(mm)

Page 134: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–134.

SOLUTIONVolume and Moment Arm: The volume of the thin disk differential element is

and its centroid is at .

Centroid: Due to symmetry about the z axis

Ans.

Applying Eq. 9–5 and performing the integration, we have

Ans.=paaaz2

2-z3

6b ` 2a

0

paaaz- z2

4b ` 2a

0

=23a

z' = LV

z'dV

LVdV= L

2a

0z cpaaa- z

2bdz d

L2a

0paaa- z

2bdz

x' = y' = 0

z' = zdV = py2dz = x caaa- z

2b ddz = paaa- z

2bdz

Locate the centroid of the solid. z

xy

a

y2 � a (a �z2)

Page 135: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9 1

Locate the centroid xc of thetriangular area.

Solution:

Ab h2

xc2

b h0

a

xxha

x����

d

a

b

xxh

b ab x( )

����

d����

���

� xca b�

3�

35.

Ans.

Page 136: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

.

Page 137: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Determine the location (xc, yc) of the center of mass of the turbine and compressor assembly. Themass and the center of mass of each of the various components are indicated below.

Given:

a 0.75 m� M1 25 kg�

b 1.25 m� M2 80 kg�

c 0.5 m� M3 30 kg�

d 0.75 m� M4 105 kg�

e 0.85 m�

f 1.30 m�

g 0.95 m�

Solution:

M M1 M2� M3� M4��

xc1M

M2 a M3 a b�( )� M4 a b� c�( )�� �� xc 1.594 m�

yc1M

M1 d M2 e� M3 f� M4 g�� �� yc 0.940 m�

137.

Ans.

Ans.

Page 138: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9

Each of the three homogeneous plates welded to the rod has a density � and a thickness a. Determinethe length l of plate C and the angle of placement, �, so that the center of mass of the assembly lies onthe y axis. Plates A and B lie in the x–y and z–y planes, respectively.

Units Used:

Mg 1000 kg�

Given:

a 10 mm� f 100 mm�

b 200 mm� g 150 mm�

c 250 mm� e 150 mm�

� 6Mg

m3�

Solution: The thickness and density are uniform

Guesses � 10 deg� l 10 mm�

Given

b ff2������

g lg2������

cos �� � 0� c ee2������

g lg2������

sin �� �� 0�

l

����

���

Find l ��� �� l 265 mm� � 70.4 deg�

138.

Ans.

Page 139: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–139.

The gate AB is 5 m wide. Determine the horizontal andvertical components of force acting on the pin at B and thevertical reaction at the smooth support A. rw = 1.0 Mg>m3.

SOLUTIONFluid Pressure: The fluid pressure at points A and B can be determined using Eq. 9–15, .

Thus,

Resultant Forces:

Equations of Equilibrium:

Ans.

Ans.

Ans.By = kN

+ c©Fy = 0; 1 - a35b - 1471.5a3

5b - By = 0

Bx = kN =

:+ ©Fx = 0; 490.5a45b + 1 a 4

5b - Bx = 0

Ay = kN = . MN

+©MB = 0; 1471.5(2.5) + - Ay(3) = 0

FR2=

12

(490.5 - = kN

FR1= = 1471.5 kN

wB = = kN/m

wA = 8. ( ) = . kN/m

PB = 1.0(10 )(9.81)(6)3 = 2 = kN/m2

PA = 1.0(10 )(9.81)(10)3 = 2 = kN/m2

p = rgz4 m

3 m

A

B

98 100 N/m 98.10

58 860 N/m 58.86

9 1 5 490 5

58.86(5) 294.3

294.3(5)

294.3)(5) 490.5

490.5(3.333)

17 2.71 1 77

471.5

1569.6 1.57 MN

771.2 490.5

594

WB = 294.3 kN/m

1471.5 kN

490.5 kN

490.5 kN/m

6 m

Page 140: Ans. · 2020. 12. 7. · 2b4 x dx L b 0 2 h b2 x dx = B h2 10b4 x 5R 0 b B 3b2 3R = 3 10 h y ' = y 2 dA = y dx y. 9–13. Locate the centroid of the shaded area. SOLUTION x = 6.00

9–140.

The pressure loading on the plate is described by the functionDetermine the magnitude

of the resultant force and coordinates of the point where theline of action of the force intersects the plate.

p = 5-240>1x + 12 + 3406 Pa.

SOLUTION

Resultant Force and its Location: The volume of the differential element is

and its centroid in .

Ans.

Ans.

Due to symmetry,

Ans.y = 3.00 m

x =LFRx

'dFR

LFRdFR=

20 880.137619.87

= 2.74 m

= 20880.13 N #m= [-1440[x - In(x + 1)] + 1020x2]|50

m

LFRxd FR = L5 m

06xa -

240x + 1

+ 340b= 7619.87 N = 7.62 kN

= 6[-240 In(x + 1) + 340x2]|50m

FR = LFRdFR = L5 m

06a -

240x + 1

+ 340bdx

x' = xdV = dFR = 6pdx = 6 a -

240x+1

+ 340bdx

p

x

y

6 m

5 m

100 Pa

300 Pa


Recommended