+ All Categories
Home > Documents > Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation...

Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation...

Date post: 29-Sep-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
122
26/06/2016 1 Antonio Molinaro Department of Chemical Sciences University of Naples Federico II [email protected] NMR of oligosaccharides and protein oligosaccharide complex Glycomics Hits the Big Time Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease Cell, 2010
Transcript
Page 1: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

1

Antonio Molinaro

Department of Chemical SciencesUniversity of Naples Federico II

[email protected]

NMR of oligosaccharides and protein oligosaccharide complex

Glycomics Hits the Big TimeCells run on carbohydrates. Glycans, sequences of carbohydratesconjugated to proteins and lipids, are arguably the most abundantand structurally diverse class of molecules in nature. Recentadvances in glycomics reveal the scope and scale of their functionalroles and their impact on human disease

Cell, 2010

Page 2: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

2

Carbohydrate complexity

Not always linear polymers but frequently branched

7.602.176 tetrasaccharides4 D-aldohexoses

4 L-aminoacids 256 tetra-peptides

Not to speak about conformation !

Cellulose vs. Amylose

cellulose

amylose

Page 3: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

3

Mediators of microbial social life

Major Glycan Classes in Vertebrate Cells

Page 4: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

4

The plant cell wall

Structure determination of a glycan chain: the stepsDe Castro et al., Meth. Enzymol., 2010; glycopedia.eu

Quali-quantitative analysis (GC-MS, NMR)

Absolute configuration (GC-MS, NMR)

Size of the ring (GC-MS, NMR)

Anomeric configuration (NMR)

Linkage analysis (GC-MS, NMR)

Monosaccharides sequence (MALDI-MS,2D NMR)

Determination of non-carbohydrate appendages (GC-MS,MALDI-MS, 2D NMR)

Page 5: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

5

Quali-quantitative analysis

(GC-MS)

The major approach to the determination of chemical composition is full solvolytic depolymerization of

polysaccharides followed by identification of monomers

O

O

O

O

R R

O

O OOH

-H+

-H+H

+:

+ HOR+

H2O

-HBB

HB

H+

Page 6: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

6

Advantages of acid hydrolysis:

• hydrolysis is simple to handle

• it is easy to vary conditions of hydrolysis

Disadvantages of acid hydrolysis:

• some monosaccharides are too unstable

• some glycosidic linkages are too stable

• many non-sugar substituents are eliminated

Different conditions for the hydrolysis may be used for analysis of different monosaccharides

Col (colitose)

GalNO

NH2

OH

HO

OH

CH2OH

2)--Colp-(14)--GlcpNAc-(14)--GlcpA-(13)--GalpNAc-(1

-Col -(12)--Gal-(12)

O-polysaccharide of Pseudoalteromonas tetraodonis

OOH

HO

HOCH3

0.5 M CF3COOH, 100°, 1 h2 M CF3COOH, 120°, 3 h

Page 7: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

7

Acid-labile monosaccharides may be stabilized using methanolysis, giving methyl derivatives

Neu5Ac

O

OH

OMe

COOMeAcNH

HOCH2

HO

OH

O-polysaccharide ofSalmonella arizonae

0.5 M HCl/MeOH, 85°

GalNAcA

O

NHAc

OMe

HO

OH

COOMe

O-polysaccharide ofShigella dysenteriae

1. 1 M HCl/MeOH, 100°2. Ac2O

Solvolysis with anhydrous hydrogen fluoride ortrifluoromethanesulfonic acid enable isolation of

complex monosaccharide amide derivatives

serogroup O4

Isolated components of Proteus O-polysaccharides

serogroup O15 serogroup O13

NHAcO

O

CH2OH

H3C

O

O

OH

OH CNH

CH3

OH

NHCH3C

O

O

CH3

OH OH

OH

COOH

COOHNH

HOOH

CONHH3C

COOH

OH OH

Page 8: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

8

Solvolysis with trifluoromethanesulfonic acid, but not with hydrogen fluoride, enables isolation of

phosphorylated monosacharide derivatives

O-polysaccharide of Proteus mirabilis O38

CH2O

O

NHAc

COOH

OH OH

HONHC

O NH2

O

PO

OH

CF3SO3H

CH2OH

O

COOH

OH OH

HONHC

O NH2

HF

Identification of monosaccharides

Chromatography, including liquid chromatography and gas-liquid chromatography.

Determination of optical rotation and circular dichroism for enantiomeric differentiation.

Mass spectrometry, including combined gas-liquid chromatography/mass spectrometry.

NMR spectroscopy.

Page 9: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

9

Gas-liquid chromatography requires derivatization of monosaccharides, usually to alditol derivatives

NaBH4O

OH

OH

CH2OH

HO

OH OH

CH2OH

HO

OH

CH2OH

HO

RO

RO

RO

RO

RO

RO

CH2

CH2

Derivatization

R = Ac CF3CO Me3Si

1. NaBH4

2. MeI/NaOHO

HNAc

OH

CH3

OH

AcNH

MeOCH2

CH3

Me O

Me O

MeN

MeN

Ac

Ac

CH2

CH3

AcOAc

AcO

OAc

O

OAc

EI MS is commonly used for identification of alditol derivatives in sugar and methylation analyses

CH2

CH3

OAc

AcO

MeO

O

OAc

Me

O

HO

HOCH3

O

O

HO

HOCH3

OH

OH

O O

MeO

MeOCH3

O HO

CH3 OH

MeO

MeO

Page 10: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

10

EI MS fragmentation of the fully acetylated 6-deoxy alditol in sugar analysis

CH2

CH3

AcOAc

AcO

OAc

O

OAcm/z 145

m/z 231

+

CH3

AcOAc

AcO

O

CH2

OAc

OAc+

CH2

AcO

OAc

OAc

+

m/z 217

+

CH3

OAcAcO

m/z 159

CH2OAc

+

OAc

OAc

AcO

m/z 289

C1-C2

C1-C3

C1-C4

C4-C6C3-C6

GLC separation of sugar alditol acetates

Page 11: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

11

Glycosides obtained by methanolysis are usefulfor identification of sialic and uronic acids

O

OH

OMe

COOMeAcNH

HOCH2

HO

OH

O

OH

OMe

HO

OH

COOMe

Me3SiClO

OMe3Si

OSiMe3

OMe3Si

OSiMe3

OMe

COOMeAcNH

CH2

Ac2O OOAc

OAc

OAc OMe

COOMe

Absolute configuration determination

(GC-MS)

Page 12: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

12

Glycosides with chiral alcohols are used forenantiomeric differentiation of sugars

O

OH

HO

OH

CH3

OH

1. (-)-2-Butanol/HCl2. Ac2O

OOAc

OAc

OAc O

CH3CH3

CH3

OHO

HOOH

CH3OH

1. (-)-2-Butanol/HCl2. Ac2O

O

OAc

OAc

OAc

OCH3

CH3

CH3

D-Fuc

L-Fuc

Linkage analysis, size of ring

(methylation analysis)

(GC-MS)

Page 13: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

13

Methylation is the most widely used chemical approach to linkage analysis

3)--Rhap-(13)--Rhap-(12)--Rhap-(1

-Fucf-(14)

1. MeI/NaOH2. CF3COOH

O

OMe

MeO

OH

CH3OH

O

CH3

MeO

MeO

MeO

OH

O

MeO

MeO

OH

CH3OH

OMeO

OH

CH3OH

HO

Terminal fucofuranose

3-Substitutedrhamnopyranose

2-Substitutedrhamnopyranose

3,4-Disubstitutedrhamnopyranose

Partially methylated monosaccharides are identified by GLC/MS of the acetylated alditols

O

OMe

MeO

OH

CH3OH

O

CH3

MeO

MeO

MeO

OH

O

MeO

MeO

OH

CH3OH

OMeO

OH

CH3OH

HO

1. NaBH4

2. Ac2O

CH2

CH3

O

AcO

MeO

MeO

Ac

OAc CH2

CH3

O

AcO

Me

O

MeO

Ac

OAc CH2

CH3

O

AcO

O

MeO

Ac

OAc

Ac

CH2

CH3

OAc

O

MeO

Me

O

OAc

Me

Page 14: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

14

Deuterium-labeling helps to identify symmetrically methylated sugars

+

CH2OAc

OAc

O

O

Me

Ac

m/z 190

m/z 261

CHD

Me

OAc

O+

OAc

CHD

CH2OAc

O

Ac O

OAc

OAc

OAc

Me

O

Me OH

CH2OH

OH

HO

O

1. NaBD4

2. Ac2O

CHD

CH2OAc

Ac O

OAc

O

OAc

MeAcO

OMe

OH

CH2OH

OH

HO

O 1. NaBD4

2. Ac2O

+

CH2OAc

OO

MeAc

m/z 189

CHDOAc

OAc

MeO+

AcO

m/z 262

1

1

1

1

1

1

3

3

3

3

4

4

4

6

4

6

6

6

6

6

AAPM

Page 15: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

15

2‐Rha Fragmentation pattern

Nuclear Magnetic Resonance: key sequences to structure/sequence determination of

carbohydrate containing molecules

Page 16: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

16

Nuclear Magnetic Resonance - NMR

- Measures the absorption of electromagnetic radiation in the radio-frequency region (~4-900 MHz)

- sample needs to be placed in magnetic field to cause different energy states

NMR is routinely and widely used as the preferred technique to rapidly elucidate the chemical structure of most organic compounds.

Anatomy of a 2D NMR Experiment

Preparation Evolution Mixing Detection

relax.

x90

t1

x90

t2

Page 17: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

17

2D NMR - The Interferogram

f2

f1

f2

f12D plot of data

Contour plot.

A 2D data set can be thought of as a series of 1D .

Each 1D file is different from the next by a change in t1.

Fourier transformation of each 1D in the t2 domain creates an

interferogram.f2

t1

Interferogram

Two Dimensional NMR

A 2D data set can be thought of as a series of 1D experiments collected with different timing.

Fourier transformation of each 1D in the t2 domain creates an interferogram.

The t1 domain is then Fourier transformed resulting in a 2D file with the frequency in each dimension.

This 2D file will provide a map of all spin-to-spin correlations

Each 2D experiment can provide either through bond (COSY type) or through space (NOESY type) correlation

Page 18: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

18

COrrelation SpectroscopY (COSY)

In a 2D COSY spectrum, cross-peaks will exist where there is spin-spin coupling between nuclei.

Used to identify spins which are coupled to each other.

Cross peaks

2D Experiments – COSY 2D Experiments – COSY

Cross peaks due togeminal and vicinal

coupling

CH3-CH2-OH

CH3CH2 OH

Page 19: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

19

The Power of 2D NMR:Resolving Overlapping Signals

1D

2D

2 signalsoverlapped

2 cross peaksresolved

2D Experiments – COSY 2D Experiments – COSY

COSY of sucrose

Page 20: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

20

TOtal Correlation SpectroscopY (TOCSY) experiment

Spin-Lock Pulse (~14ms)

COSY TOCSY

TOCSY

•cross peaks are generated between all members of a coupled spin network• NMR resonances for the complete side-chain spin systems is obtained• coherence transfer period occurs during a multi-pulse spin-lock period;•length of spin-lock determines how far the spin coupling network will be

probed

Page 21: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

21

H3

H2

H1

H1 H3

H2

H3

H2

H1

H1 H3

H2

COSY TOCSY

H1 H2 H3

3J 3J

4J

COSY and TOCSY

In Glucose, H1 and H2 protons are scalarlycoupled, H2 and H3 not, Through COSY, H1

andH2 correlations are observed ; Thought TOCSY, correlation between H1 and

H3 are observed

O

H

HO

H

HO

H

H

OHHOH

OH

1

2

3

4

5

1

5

34

2

TOCSY

1

5

34

2

COSY

COSY and TOCSY

H1-H2

H1-H3

Page 22: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

22

TOCSY

TOCSY of sucrose

Page 23: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

23

HSQC: Heteronuclear Single-Quantum Correlation

HSQC experiment: one axis for 1H and the other for a

heteronucleus

The spectrum contains a peak for each unique proton attached to the heteronucleus being considered.

The 2D HSQC experiment permits to obtain a 2D heteronuclear chemical shift correlation map between directly-bonded 1H and X-heteronuclei (an atomic nucleus

other than a proton), often 13C or 15N.

Sucrose HSQC

123

4 5

6

1’

2’3’

4’

5’

The HSQC-TOCSY is a 2D TOCSY that has been resolved into the carbon dimension. Especially useful in case of huge overlap in the proton spectrum

HSQC-TOCSY

Sucrose

Page 24: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

24

2D HMBC (Heteronuclear Multiple Bond Correlation) experiment correlates chemical shifts of two types of nuclei separated from each other

with two or more chemical bonds.

HMBC (Heteronuclear Multiple Bond Correlation)

HMBC of Sucrose

Page 25: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

25

Nuclear Overhauser Effect (NOE) Spectroscopy

The 2D spectrum will have chemical shifts in f1 and f2.

The cross peaks are for nuclei that are dipolar coupled.

H1

H2

H3H4

H2

H1H3

H4

H2

H4

H1

H3

CH2OHHO

HO

HH

O

O

OH

H

-linkage: H1/H2

CH2OHHO

HO H

H O

O

OH

H

-linkage: H1/H3, H1/H5

CH2OHHO

H

OH

HH

O

O

OH

-linkage: no contact

CH2OHHO

H

OH

H

H O

O

OH

-linkage: H1/H2, H1/H3, H1/H5

Intra-residue NOE contacts in monosaccharides: relative configuration of sugar residues

gluco, galacto configuration manno configuration

Page 26: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

26

CH2OHHO

O

H

O

O

OH

CH2OH

HO

HO

O

OH

-(1-3 )linkage

Inter-residue NOE contacts in saccharides

CH2OHHO

OH

OO

OH

CH2OHHO

HOH

OO

H

-(1-3) linkage

NOE H1’-H3’ NOE H1’-H40 250 500 750 1000 1250 1500

0,0

0,5

1,0

1,5

2,0

2,5

NO

E(%

)

MIXING (ms)

O

HOHO

HO

OH

OO

OHHO

HH H

OH

OH

NOE and DistancesIsolated spin pair aproximation (ISPA)

ab rab-6

rac = rab * ( ab / ac ) -1/6

ac rac-6

ab rab-6

rac = rab * ( ab / ac ) -1/6

ac rac-6

NOE build up curves

rIS-6

mix

NOE

Page 27: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

27

Application of various NMR techniques to carbohydrates

•HOMONUCLEAR (1H-1H)

•HETERONUCLEAR (1H-13C)

H

HH

H

OHOH

H

O

OOH

OH

H

HH

H

OH

H

O

OHOH

OH

HOMONUCLEAR 1H-1HCOSY

TOCSYNOESY/ROESY

HETERONUCLEAR 1H-13CHMQC/HSQC

HMBC

Application of various NMR techniques to carbohydrates

Page 28: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

28

Fig. 1 Flowchart comparing a generalized approach for solution structural determination of biomolecules. Dashed squares identify aspects in the structural determination of glycans that need improvement or are underutilized.

1H and 13C typical regions of carbohydrates:

The 1H NMR Spectra can be roughly divided into the following regions:

Anomeric and Acylated Protons : 5.5-4.5 ppm.Ring Protons : 4.5-3 ppm

Acetyl Groups, Methylene Protons: 3-2 ppmMethyl Groups: 0.8-2.0 ppm

The 13C NMR Spectra can be roughly divided into the following regions :

Anomeric Carbons Resonate Between 90-105 ppmRing Carbons Between 52-78 ppm

Nitrogen Bearing Carbons (In Amino Sugar) 50-60 ppmAcetyl Groups XXX ppm

Methylene Protons: XXX ppmMethyl Groups: XXX ppm

Page 29: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

29

O-chain isolated from Rhodopseudomonas palustris sp. BIS A53

A: 2-O-Metil-3-deossi-3-Metil-4-ammino-4-deossi-chinovosioB: 3-deoxy-D-lyxo-2-heptulosaric acid (DHA)

C: Rhamnose (Rha)

1.02.03.04.05.0 ppm

A1C1 + B6

B4 + B5

A5A4

C2

C3

C5 + A2

C4 + OCH3

N-Ac

B3axB3eq

A2CH3

C6 A6

A

B

C

1.01.52.02.53.03.54.04.55.0 ppm

20

30

40

50

60

70

80

90

100

A1C1

B5

B6

B4

A5

C2C3

A2

C4

C5

A4AOCH3

B3

ACH3CO

ACH3 A6

C6

A

B

C

HSQC spectrum of the O-chain isolated from Rhodopseudomonas palustris sp. BIS A53

Page 30: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

30

Anomeric configuration

(NMR)

1H NMR spectrum contains information on the configuration of glycosidic linkages

NHAc

O

O

CH2

H3C

OO

CH2OH

NHAc

HO

OH

CH3

HOOC

HO

O

O

OH

A B C

A1

C1B1

CH2

HO H

O

H

O

OHNAc

A

-linkage: J1,2 > 6 Hz

CH2OH

O

HNAcHO

H

H

OO

C

-linkage: J1,2 < 4 Hz

HO OCH3

O

O

OH

H

H

B

-linkage: J1,2 < 2 Hz

HO

O

CH3

O

O

OH

H

H

-linkage: J1,2 < 2 Hz

Page 31: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

31

Monosaccharide Sequence

NOE contact

Glycosylation shift (HSQC spectrum)

Inter-residual long range correlation (HMBC spectrum)

NOE in disaccharides may occur not only at the linkage protonsbut also at the neighbouring protons

CH2OHHO

O

OO

OH

HO

COHO

H

O

OHH

HH

H

6

4

….Saccharide conformation…

Page 32: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

32

Characteristic chemical shifts in 1H and 13C NMR spectra of polysaccharides

Component Group H С

3-Deoxy sugar CH2 1.9-2.6 30-42

6-Deoxy sugar CH3 1.1-1.4 15-21

Uronic acid COOH 173-178

Amino sugar CHN 44-59

O-acetyl CH3 2.1-2.3 21-22

CO 174-176

N-acetyl CH3 1.8-2.1 23-24

CO 174-176

N-formyl HCO 8.0-8.1 164.5-165.5

1-carboxyethyl CH3 1.4-1.6 18-20

COOH 175-179

ethanolamine CH2N 3.25-3.30 40-42

CH2O 4.0-4.2 62-64

NOE in disaccharides may occur not only at the linkage protons but also at the neighbouring protons

CH2OHHO

O

OO

OH

HO

COHO

H

O

OHH

HH

H

6

4

Page 33: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

33

NMR as a tool for studying protein‐ligand interactions"

Which NMR methods are useful to look at the interactionbetween a small thing and a large entity? 

Rules of Engagement” of Protein–Glycoconjugate Interactions: AMolecular View Achievable by using NMR Spectroscopy andMolecular Modeling

Roberta Marchetti, Serge Perez, Ana Arda, Anne Imberty, JesusJimenez-Barbero, Alba Silipo, Antonio Molinaro

Page 34: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

34

Protein – carbohydrate interactions exhibitlow‐medium affinity  

Systems in fast exchange

Time scale in NMR Dynamics

LRLIGAND‐RECEPTOR INTERACTIONS

B

DJ

F

K

C

H

BG

IDENTIFICATIONSTRUCTURE

? R

DETECTION

RL

Ligand

Receptor

RL

BINDING

L + R LR

Kd = = 1/Ka[L]*[R][LR]

Page 35: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

35

Ligand‐ based NMR techniques

• Transferred Noe (trNOE)

• Saturation Transfer Difference (STD NMR)

‐ Small amount of protein

‐ Study of the interaction in solution

‐Non destructive technique

‐15N, 13C labeling not required

Angewandte Chemie International Edition ,2003,  vol. 8, pages 864‐89

MOLECULAR INTERACTIONS BY NMR

Ligand observation

FAST EXCHANGE

kon = >107 (s-1M-1)

koff = >102 (s-1)

RLobs = Lf*RLf + Lb* RLb

R= Lb* (RLb – RLf)

Experimental procedure: L0>>R0 ;

L0/R0>10 – 100.... Lf >>>Lb

Necessary condition: |(RLb - RLf )|>>0

RLb Strong dependency on molecular size

NMR observable parameter R : NOE; Diffusion; Line Shape

Two states equilibriumLfree Lbound Molar fractions

L + R LRkoff

kon

Kd= koff

kon diffusion controled

Page 36: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

36

‐RELAXATION IS PERTURBED

LARGESMALL

LIGAND OBSERVED

Information on the ligand bioactive conformation

Important notes

The mixing time must be short enough so that the contribution of the free

ligand is negligible and long enough to allow visualization of the signal in the

spectrum.

The molar ratio of ligand to receptor. It should be emphasized that the

trNOESY experiment works well for ligands that have KD in the range 10‐3 –

10‐6 M / mM‐ mM range

Small amount of purified receptor

Routinely used to probe ligand‐receptor interaction

Ligand‐protein 1:5

During the mixing time inter and intra‐molecular NOE effects build up Inter‐molecular tr‐NOE effects are visible, intermolecular trNOEs are usually much largerthan intramolecular effects

TRANSFERRED NOE

Page 37: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

37

1

3

2

4

H

12

3 4

1

2

4

3

1

43

NOESY

1

4

2

3

1 2 3

TR‐NOESY

H

H

H

H

H

HH

HReceptor Receptor

The bioactive conformation: Transfer NOESY

Is There Any Binding? 

Which Is The Ligand Bioactive Conformation? 

Chem Soc Rev 27 (1998) 133; Methods Enzymol (2003) 417; Curr Opin Struct Biol (1999) 549 , ibid (2003) 646

THE BIOACTIVE CONFORMATION

FREE BOUND

A

B

OHO

HO

OH

O

OH

O

HO

HO

OH

OH

NOESY on free state ligand

tr‐NOESY on bound state ligand

Crosspeaks with opposite sign of the diagonal

Crosspeaks with same sign of the diagonal

MBL ‐ DISACCHARIDE

R. Marchetti, R. Lanzetta, I.C. Michelow, A. Molinaro, A. Silipo, Eur. J. Org. Chem., 2012, 27, 5275–5281

Page 38: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

38

DistanceExperimentalFree state

ExperimentalBound state

CalculatedΦ= ‐33°Ψ0 57°

CalculatedΦ= ‐50°Ψ= ‐23°

A1‐B2 2.3 2.35 2.4 2.5A1‐B1 nd nd 2.7 4.3B1‐A5 2.6 2.5 2.7 2.4B1‐A6 nd 3.3 3.4 4.9

Φ= -50°Ψ= -23°

Φ= -33°Ψ= 57°

Zoom of NOESY

MBL ‐ DISACCHARIDEConformational selection upon binding

Zoom of tr-NOESY B2-B1

A2-A1

B2-A1

A6-B1A5-B1

3.43.63.84.04.24.44.64.85.05.25.4 ppm

4.8

5.2

B2 -B1

A2 -A1

B2 -A1

A5 -B1

3.43.63.84.04.24.44.64.85.05.25.4 ppm

4.8

5.2

R. Marchetti, R. Lanzetta, I.C. Michelow, A. Molinaro, A. Silipo, Eur. J. Org. Chem., 2012, 27, 5275–5281

Saturation Transfer Difference NMR Spectroscopy – STD NMR

IRRADIATION at the aromatic or aliphatic NMR regions

At long irradiation times, the saturation is transferred to the bound ligand, firstto the protons belonging to the ligand epitope, then to the rest of the ligand

Single Compound orLibrary

(Meyer and Mayer, Peters, 1999, 2000)

IS THERE ANY BINDING FOR ANY GIVEN COMPOUND?WHICH IS THE BINDING EPITOPE?

Page 39: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

39

or

r.f.

r.f.

Saturation time tsat

H

HH

HHor

H

HH

HH

Kon

Relaxation H

HHHH

Koff

H

HHHH

H far from receptor

H close to receptor

H furthest away from receptor

Residence time

On-resonance

Off-resonance

r.f.

H

HH

HH

STD (Meyer and Mayer, Peters, 1999, 2000)

Key elements of protein-substrate binding

SATURATION TRANSFER DIFFERENCE

In order to determine the magnitude of the STD effects, the intensity of the signal in the STD NMR spectrumare compared with the signal intensities of a reference spectrum (off-resonance).The STD signal with the highest intensity is set to 100% and the others arenormalized to this signal.

STD effect: (I0 - Isat)/I0

Page 40: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

40

symbiotic commensal pathogenic

microbe-microbeinteractions

BclA lectin – heptoses(Glycobiology, 2012)

B. subtilis PrkC – PGN(Biochem. J., 2011; JACS, 2011)

human-pathogeninteractions

mAb 5D8 – B. anthina LPS(ChemBiochem , 2013)

rhMBL – mannosides(Eur. J. Org. Chem., 2012)

C. japonicus Xyl31A – xyloglucans(Chemistry, 2012) plant-microbe

interactions Plant LysM – chitooligosaccharides(PNAS, under second revision, 2013)

Host-microbeinteractions

GLYCOSIDE HYDROLASE (GH) – XYLOGLUCAN

Xyl31A: α-xylosidase from Cellvibrio japonicus

J. Larsbrink, A. Izumi, F. Ibatullin, A. Nakhai, H.J. Gilbert, G.J. Davies, H. Brumer, Biochem. J., 2011

Xyloglucan

cell strength and shape

defensive barrier

carbohydrate store

ubiquitous plant polysaccharides

OOHO

OHOH

OH

OOHO

OH

O

OOHO

OH

O

OHO

HOOH

OH

OHO

HOOH

OHO

HOOH

OOHO

OHOH

OH

OOHO

OH

O

OOHO

OH

O

OHO

HOOH

O

OHO

HOOH

OHO

HOOH

H

OHO

HOOH

HO

OHO

HOOH

Xyl31A

member of glycoside hydrolase family 31

exo-active enzyme

Preference for long substrates (appended PA14 domain)

Page 41: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

41

STD NMR of the hexa‐saccharide to the Xyl31A from Cellvibrio japonicus

2.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.9 ppm

1H NMR

D

F/G

DB C A

1D STD

A2

A3 A4

A5A6a

A1

A6b

O

O

HO

OH

OH

OH

O

O

HOOH

O

O

O

HO

OH

O

O

HO

HO

OH

OH

O

HO

HO

OH

O

HO

HO

OH

A B C D

F G

The most prominent STD belongs to A residue that is, therefore, in more intimate contact with the enzyme binding site

Chem.-Eur. J, 2012

TOCSYSTD TOCSY

3.13.33.53.73.94.14.3 ppm

3.0

3.4

3.8

4.2

4.6

5.0

ppm2.93.33.74.14.54.9

60

65

70

75

80

85

90

95

100

Identification of the STD signals through 2D experiments

STD‐HSQCHSQC

Chem.-Eur. J, 2012

Page 42: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

42

GLYCOSIDE HYDROLASE (GH) – XYLOGLUCAN

DOCKIN

G

PA14 domain

Catalytic site

Loop

O

HOOH

O

HOOH

O

O

HOOH

O

HOOH

OO

OHOHO

OOH

OH

O

O

HO

O

HOOH

HO

OHOHO

OH

OH

O

HOOH

O

HOOH

O

O

HOOH

O

HOOH

OO

OH

OH

O

O

HO

O

HOOH

HO

OHOHO

OH

OH

B

A C

D

E

F

G

B

A C

D

F

G

Cellv ibrio japonicus-xylosidase 31A

OH

OHOHO

OH

-D-xylopyranoside

+

STD signal

81-100%

61-80%

41-60%

21-40%

0-20%

Peculiaractive‐sitearchitecture

STD‐derived epitope mapping  Chem.-Eur. J, 2012

To sleep or not to sleep: Elucidating dormancy genes in Burkholderia cenocepacia

Miguel A. Valvano

Questions?

Page 43: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

43

Optional material

Gas Chromatography-Mass Spectrometry (GC-MS)

power and limits(for carbohydrates)

Page 44: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

44

Gas Chromatography –Mass Spectrometry

• Components (EI GC-MS)

• Monosaccharide analysis as:– Acetylated Alditols

– Partially Methylated Acetylated Alditols

– Acetylated Methylglycosides

– Acetylated Octyl Glycosides

Function

• Separation of volatile organic compounds

• Volatile – when heated, VOCs undergo a phase transition into intact gas-phase species

• Separation occurs as a result of unique equilibriaestablished between the solutes and the stationary phase (the GC column)

• An inert carrier gas carries the solutes through the column

Page 45: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

45

Components

• Carrier Gas, N2 or He, 1-2 mL/min

• Injector

• Oven

• Column

• Detector

Gas tank

Oven

Column

Injector

Syringe

Detector

Page 46: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

46

Injector

• A GC syringe penetrates a septum to inject sample into the vaporization camber

• Instant vaporization of the sample, 280 C

• Carrier gas transports the sample into the head of the column

• Purge valve controls the fraction of sample that enters the column

Gas tank

Oven

Column

Injector

Syringe

Detector

Splitless (100:90) vs. Split (100:1)

Injector

Syringe

Injector

Syringe

Purge valveopen

Purge valveclosed

GC column GC column

HeHe

Page 47: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

47

0.32 mm ID

Liquid Stationary phase

Mobile phase (Helium) flowing at 1 mL/min

Open Tubular Capillary Column

15-60 m in length

0.1-5 m

Fused Silica Open Tubular(FSOT) columns

• Coated with polymer, crosslinked– Polydimethyl siloxane (non-polar)

– Poly(phenylmethyldimethyl) siloxane (10% phenyl)

– Poly(phenylmethyl) siloxane (50% phenyl)

– Polyethylene glycol (polar)

– Poly(dicyanoallyldimethyl) siloxane

– Ploy(trifluoropropyldimethyl) siloxane

Page 48: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

48

Polar vs. nonpolar

• Separation is based on the vapor pressure and polarity of the components.

• Within a homologous series (alkanes, alcohol, olefins, fatty acids) retention time increases with chain length (or molecular weight)

• Polar columns retain polar compounds to a greater extent than non-polar– C18 saturated vs. C18 saturated methyl ester

C16:0

C18:0

C18:1C18:2

C16:1

C16:0

C18:0

C18:1

C18:2

C16:1

RT (min)

RT (min)

Polar column

Non-polar column

Page 49: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

49

Oven• Programmable

• Isothermal- run at one constant temperature

• Temperature programming - Start at low temperature and gradually ramp to higher temperature– More constant peak width– Better sensitivity for components

that are retained longer– Much better chromatographic

resolution– Peak refocusing at head of column

Gas tank

Oven

Column

Injector

Syringe

Detector

Typical Temperature Program

Time (min)0 60

50C

220C

160C

Page 50: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

50

Detectors

• Flame Ionization Detectors (FID)

• Electron Capture Detectors (ECD)

• Electron impact/chemical ionization (EI/CI) Mass spectrometry

What kind of info can mass spec give you?

• Molecular weight

• Elemental composition (low MW with high resolution instrument)

• Structural info (hard ionization or CID)

Page 51: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

51

How does it work?

• Gas-phase ions are separated according to mass/charge ratio and sequentially detected

Parts of a Mass Spec

• Sample introduction

• Source (ion formation)

• Mass analyzer (ion sep.) - high vac

• Detector (electron multiplier tube)

Page 52: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

52

EI, CI• EI (hard ionization)

– Gas-phase molecules enter source through heated probe or GC column

– 70 eV electrons bombard molecules forming M+* ions that fragment in unique reproducible way to form a collection of fragment ions

– EI spectra can be matched to library stds

• CI (soft ionization)– Higher pressure of methane leaked into the source (mtorr)– Reagent ions transfer proton to analyte

To massanalyzer

filament

70 eV e-

anoderepeller Acceleration

slits

GC column

EI SourceUnder high vacuum

Sample introductionSource

Page 53: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

53

EI process

M + e- M+*

f1 f2 f3 f4

This is a remarkably reproducible process. M will fragment in the same pattern every time using a 70 eV electron beam

GC-MS chromatogramM+*

f1 f2 f3 f4

M + e-

13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 15.60

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

Time-->

Abundance TIC: CY.D

13.29

13.84

13.97

14.14

14.23

15.12

TIC: Total Ion Chromatography

Abundance = fi+

Page 54: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

54

GC-MS chromatogram

13.00 13.20 13.40 13.60 13.80 14.00 14.20 14.40 14.60 14.80 15.00 15.20 15.40 15.60

500010000150002000025000300003500040000450005000055000

Time-->

Abundance TIC: CY.D

13.29

13.84

13.97

14.14

14.23

15.12

40 60 80 100 120 140 160 180 200 220 240 2600

100020003000400050006000700080009000

1000011000120001300014000

m/z-->

Abundance

Scan 503 (14.131 min): CY.D43

101

5914382

13011270 184 244156 199170 211 272

Mass Analyzers• Low resolution

– Quadrupole– Ion trap

• High resolution– TOF time of flight– Sector instruments (magnet)

• Ultra high resolution– ICR ion cyclotron resonance

Page 55: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

55

Gas Chromatography –Mass Spectrometry

• Monosaccharide composition as:– Acetylated Alditols

– Acetylated Methyl glycosides

• Additional info– Partially Methylated Acetylated Alditols

– Acetylated Octyl Glycosides

– N.B.: amount of sample required 0.2 mg

Monosaccharide diversity

Pentose Hexose

Uronic Acids 2-Aminosugars

Deoxysugars DideoxysugarsAminodeoxysugarsBranched sugars…..

Ulosonic acids

2-Aminuronic acids

Heptose

O

H

HO

H

HO

H

H

OHH

H

OH

O

H

HO

H

HO

H

H

OHHOH

OH

O

H

HO

H

HO

H

H

OHH

HOOC

OH

O

H

HO

H

HO

H

H

NHAcH

OH

OH

O

H

HO

H

HO

H

H

NHAcH

HOOC

OH

O

H

HO

H

HO

H

H

OHH

H 3C

OH

O

H

HO

H

HO

H

H

OHH

CHOH

OH

CH2OH

8 16

1616

16 32

16

KdoSialic acidLegionamminic acid….

Page 56: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

56

Acetylated Alditols

, H+

O

H

O

H

HO

H

H

OHH

OH

O

OH

H

H

O

H

OHHH

OH

O

H

O

H

HO

H

O

OHH

H

H

GlcGal

Xyl

O

H

HO

H

HO

H

OH

OHH

H

H

O

OH

H

H

HO

H

OH

OHHH

OH

O

H

HO

H

HO

H

OH

OHHH

OH

Glc

Gal

Xyl

[H]

CH2OH

OHH

HHO

OHH

CH2OH

CH2OH

OHH

HHO

HHO

OHH

CH2OH

CH2OH

OHH

HHO

OHH

OHH

CH2OH

CH2OAc

OAcH

HAcO

OAcH

CH2OAc

CH2OAc

OAcH

HAcO

HAcO

OAcH

CH2OAc

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

Pyr/Ac2O

CHO

OHH

HHO

HHO

OHH

CH2OH

CHO

OHH

HHO

OHH

OHH

CH2OH

CHO

OHH

HHO

OHH

CH2OH

Page 57: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

57

Acetylated Alditols: advantages and limits

• Advantages:

• one residue one peak … except for ketoses

• No special reaction conditions setup required

• Suitable for neutral sugars (aldose and ketoses) and aminosugars

2,3-

diO

Me-

Rh

a

Rh

aF

uc

Ara

Xyl

Man G

lc

Gal

12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

5000

10000

15000

20000

25000

30000

35000

40000

Time

Abundance

Acetylated alditols, example …

2,3-

diO

Me-

Rh

a

Rh

aF

uc

Ara

Xyl

Man G

lcG

al

12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

5000

10000

15000

20000

25000

30000

35000

40000

Time

Abundance

1 sugar 1 peak,…

except for ketoses

H+

O

H

O

OH

H

OH

OH

HH

H

CH2O

Fructose

O

H

HO

OH

H

OH

OH

HH

H

CH2OH

CH2OH

O

HHO

OHH

OHH

CH2OH

[H]

CH2OH

HHO

HHO

OHH

OHH

CH2OH

+

CH2OH

OHH

HHO

OHH

OHH

CH2OH

Ac2O, Pyr

Man-ol Glc-ol

Page 58: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

58

Acetylated Alditols: advantages and limits

• Limits:

• Free emiacetals degrade during hydrolysis

• Care needed for hydrolysis conditions selection

• Ideal conditions: 100% hydrolysis – 0% degradation

• Ketoses linkages are more labile than those of hexoses

• Aminosugars linkages are very strong

• Sugars carrying an aminosugar or an uronic acid are understimated

• Acidic monosaccharides are not detected even if their hydrolysis occurs

Solution: other types of derivatives

Acetylated Methyl glycosides

Page 59: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

59

O

H

O

H

HO

H

H

NHAcH

OH

O

OH

H

H

O

H

OHHH

OH

O

H

O

OH

H

H

H

OHH

HO

H

O

H

HO

H

H

OHH

HOOC

O

1 M HCl/CH3OH80°C, O.N.

GlcNAc Gal

O

H

HO

H

HO

H

H

NHAcH

OH

O

OH

H

H

HO

H

OHHH

OH

OCH3

OCH3

Rib GlcA

Ac2O, Pyr

O

H

AcO

H

AcO

H

H

NHAcH

OAc

O

OAc

H

H

AcO

H

OAcHH

OAc

OCH3

OCH3

O

H

HO

OH

H

H

H

OHH

H O

H

HO

H

HO

H

H

OHH

MeOOC

OCH3

OCH3

O

H

AcO

OAc

H

H

H

OAcH

HO

H

AcO

H

AcO

H

H

OAcH

MeOOC

OCH3OCH3

• Advantages:

• Less reactions’ step compared to Acetylated Alditols

• O.N. reaction yields to almost complete methanolysis of the product

• No free aldehyde group is produced during methanolysis

monosaccharide degradation is minimized

• Suitable for most type of sugars

• Hexoses

• Aminosugars

• Uronic acid

• Ulosonic acids

• ……

Acetylated Methyl glycosides

Page 60: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

60

• Limits:

• One sugar more peaks

• Respect anhydrous conditions during methanolysis

• Ketose residues are lost

O

OH

H

H

HO

H

OHHH

OH

OCH3

Galactose

Acetylated Methyl glycosides

Acetylated Methyl glycosides

O

OH

H

H

HO

H

OHHH

OH

OCH3

O

OH

H

H

HO

H

OHHH

OH

OCH3

O

OH

H

H

HO

H

OHHOCH3

OH

H

OCH3

HH

H OH

HO H

O

HOHO

H

H

OCH3H

H OH

HO H

O

HOHO

H

O

OAc

H

H

AcO

H

OAcHH

OAc

OCH3

O

OAc

H

H

AcO

H

OAcHOCH3

OAc

H

OCH3

HH

H OAc

AcO H

O

AcOAcO

H

H

OCH3H

H OAc

AcO H

O

AcOAcO

H

Galactose

-Galp

-Galp

-Galf

-Galf

One sugar … 4 signals!!

Page 61: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

61

Acetylated Methyl glycosides

1 sugar more peaks

An advantage or a limit?

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

Time-->

Abundance

TIC: B.D

9.21

10.13

14.38

15.93

17.67

23.35

Rib

Rib

Rib

GlcA

GlcA

Gal

GlcN

GlcN

GC-MS not only composition but also for

other info

– Partially Methylated Acetylated Alditols Substitution Pattern

– Acetylated Octyl Glycosides Absolute Configuration

Page 62: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

62

O

H

O

H

AcHN

H

H

OHH

H3C

O

O

H

H

HO

H

O

OHH

O

OH

H

H

H

O

NHAcH

H

OHOH

HH

HOH2C

O OH

H H

O

H

Partially Methylated Acetylated Alditols

-D-Quip3NAc

-D-Ribf -D-Galp -D-GalpNAc

Exhaustive polysaccharide methylation

O-antigen from E. coli O5:K4:H4

O

H

O

H

AcMeN

H

H

OMeH

H3C

O

O

H

H

MeO

H

O

OMeH

O

MeO

H

H

H

O

NMeAcH

H

MeOOMe

HH

MeOH2C

O OMe

H H

O

H

Partially Methylated Acetylated Alditols

[H+, ]

All free –OH are transformed in methyl-ethers

Hydrolysis frees those –OH groups previously engaged in a linkage

-D-Quip3NAc

-D-Ribf -D-Galp -D-GalpNAc

O

H

O

H

AcMeN

H

H

OMeH

H3C

O

O

H

H

MeO

H

O

OMeH

O

MeO

H

H

H

O

NMeAcH

H

MeOOMe

HH

MeOH2C

O OMe

H H

O

H

O

H

HO

H

AcMeN

H

H

OMeH

H3C

HH

MeOH2C

HO OMe

H H

O

OH

OH

O

OH

H

H

MeO

H

HO

OMeH

O

OMe

H

H

H

NMeAcH

H

OMeOMe

H

OH

OH

Page 63: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

63

Partially Methylated Acetylated Alditols

D-Qui3NAc D-Rib D-Gal D-GalNAc

[H]Reduction usually performed with deuterated hydride

CHDOH

OMeH

OHH

OHH

CH2 OMe

CHDOH

OMeH

HAcMeN

OHH

OHH

CH3

CHDOH

OMeH

HMeO

HHO

OHH

CH2OMe

O

H

HO

H

AcMeN

H

H

OMeH

H3C

HH

MeOH2C

HO OMe

H H

O

OH

OH

O

OH

H

H

MeO

H

HO

OMeH

O

OMe

H

H

H

NMeAcH

H

OMeOMe

H

OH

OH

CHDOH

NMeAcH

HHO

HMeO

OHH

CH2OMe

Anomeric position is marked with a deuterium

Ac2O, Pyr

Partially Methylated Acetylated Alditols

4-D-Quip3NAc

3-D-Ribf4-D-Galp

3-D-GalNAc

CHDOAc

OMeH

HAcMeN

OAcH

OAcH

CH3

CHDOAc

OMeH

OAcH

OAcH

CH2OMe

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

Features of each sugar derivative: 3-linked GalNAc as example

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

Each PMAA must have:

•One CHDOAc group deriving from the anomeric carbon

•One H-C-Oac deriving from OH- group involved in sugar cyclization

Aside from the two “musts”

•Each H-C-OMe indicates a free OH- group in the polysaccharide

•Each H-C-OAc (if present) indicates a substituted OH- group

Page 64: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

64

Partially Methylated Acetylated Alditols

4-D-Quip3NAc

3-D-Ribf4-D-Galp

3-D-GalNAc

CHDOAc

OMeH

HAcMeN

OAcH

OAcH

CH3

CHDOAc

OMeH

OAcH

OAcH

CH2OMe

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

4000

8000

12000

16000

20000

24000

28000

32000

Time-->

Abundance

TIC: F8-18PM2.D

11.27

12.4512.63

16.8321.42

21.68

22.85

24.01 25.32

26.55

27.15

27.59

3-D

-Rib

f

4-D

-Qu

ip3

NA

c

4-D

-Ga

lp

3-D-GalNAc

Partially Methylated Acetylated Alditols

Advantages:

•Interpretation rules easy and clear

•One analysis determines the substitution pattern of the residues in the

polysaccharides

•Analysis almost mandatory to understand complex poly/oligosaccharide

Limits:

•Polysaccharide undermethylation yields to false results

•Procedure needs to be adapted for uronic acids detection

•Even if interpretation of PMAA is clear, it may be not conclusive in few cases

Page 65: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

65

Partially Methylated Acetylated Alditols

4-D-Quip3NAcor

5-D-Quif3NAc

3-D-Ribf

4-D-Galpor

5-D-Galf

3-D-GalNAc

CHDOAc

OMeH

HAcMeN

OAcH

OAcH

CH3

CHDOAc

OMeH

OAcH

OAcH

CH2OMe

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

4000

8000

12000

16000

20000

24000

28000

32000

Time-->

Abundance

TIC: F8-18PM2.D

11.27

12.4512.63

16.8321.42

21.68

22.85

24.01 25.32

26.55

27.15

27.59

3-D

-Rib

f

4-D

-Qu

ip3

NA

c

4-D

-Ga

lp

3-D-GalNAc

Partially Methylated Acetylated Alditols•Even if interpretation of PMAA is clear, it

may be not conclusive in few cases

O

O

H

H

HO

H

O

OHH

OH

H

O

O

H

H

H3CO

H

O

OCH3H

OCH3

H

H

OH

H OH

HO H

O

HOO

H

H

OH

H OCH3

OCH3 H

O

H3COO

H

4-D-Galp 5-D-Galf

Permethylation

CHDOAc

OCH3H

HH3CO

HAcO

OAcH

CH2OCH3

Hydrolysis, reduction, acetylation

Page 66: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

66

Acetylated Octyl Glycosides(Absolute configuration determination)

Many sugars exist in both configuration: es. D-Rha and L-Rha

O

H

HO

H

HO

OH

OH

HH

H3C

H

O

H

OH

H

OH

OH

OH

H H

CH3

H

Problem: acetylated methyl glycosides or acetylated alditols do not discriminate among the two forms; the MGA (or AA) are still enantiomers

enantiomers

Solution: derivation of enantiomeric sugars in diastereoisomers, as 2-octylglycosides

O

H

HO

H

HO

OH

OH

HH

H3C

H

O

H

HO

H

HO

OH

OH

HH

H3C

H

Acetylated Octyl Glycosides

enantiomers

D-Rha

L-Rha

(R)-(-)-2-octanol

CH3

HO

(CH2)5

H

CH3

O

H

HO

H

HO

OH

O

HH

H3C

H

CH3

(CH2)5

H

CH3

O

H

HO

H

HO

OH

O

HH

H3C

H

CH3

(CH2)5

H

CH3

H+,

D-Rha-(-)-oct

L-Rha-(-)-oct

diastereoisomers

Ac2O, Pyr GC-MS

D-Rha-(-)-oct L-Rha-(-)-oct

Page 67: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

67

Acetylated Octyl Glycosides

Standard Preparation

• Many sugar configurations are rare and the corresponding monosaccharide

are not commercially available

• Standards are prepared using one sugar configuration and a combination of

enantiomeric pure and racemic 2-octanol

D-Glc

D-Glc

2-()-ott., Ac2O Pyr D-Glc-(+)-oct.

D-Glc-(-)-ott.2-(+)-ott., Ac2O Pyr

D-Glc-(+)-oct.

?-Glc 2-(+)-oct., Ac2O Pyr ?-Glc-(+)-oct.

L-Glc-(-)-oct.

L-Glc-(+)-ott.

L-Glc-(-)-oct.

D-(+) L-(+)

Interpretation of GC-MS carbohydrate spectra

Refer to:Lonngren, J. and S. Svensson, MASS SPECTROMETRY IN STRUCTURAL ANALYSIS OF NATURAL CARBOHYDRATES. Advances in Carbohydrate Chemistry and Biochemistry, 1974. 29: p. 41-106.

Page 68: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

68

Acetylated Alditols

O

H

O

H

HO

H

H

OHH

OH

O

OH

H

H

O

H

OHHH

OH

O

H

O

H

HO

H

O

OHH

H

HGlc Gal

Xyl

CH2OAc

OAcH

HAcO

OAcH

CH2OAc

CH2OAc

OAcH

HAcO

HAcO

OAcH

CH2OAc

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

• Acid hydrolysis

• Reduction

• Acetylation

Peracetylatedglucitol

Peracetylatedxylitol

Peracetylatedgalactitol

Acetylated Alditols:

2,3-

diO

Me-

Rh

a

Rh

aF

uc

Ara

Xyl

Man G

lc

Gal

12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00

5000

10000

15000

20000

25000

30000

35000

40000

Time

Abundance

Elution time is important

Page 69: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

69

Acetylated Alditols:

Fragmentation pattern, few rules to understand part/most of the fragments:

• Mass spectra of stereoisomers (as Glc and Gal) are very similar

• Molecular ion is never detected

• Primary ions are formed by

• Elimination of an acetoxyl group (CH3COO )

• from alditol backbone rupture

• Intensity of the primary fragments decreases with increasing molecular weight

• Primary ion further loose neutral molecules:

• AcOH (m/z 60), Ac2O (m/z 102) or CH2=C=O (m/z 42)

e-

+CH2OAc

OAcH

HAcO

OAcH

CH2OAc

CH2OAc

OH

HAcO

OAcH

CH2OAc

O

CH3

m/z 145

CH2OAc

OH

HAcO

OAcH

CH2OAc

O

CH3

Acetylated Alditols: hexitol

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

m/z-->

Abundance

172361272 331 375

43

115139

187157 2179773 259 28924258 315

M = m/z 434

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

73

145

217

289

361

361

289

217

145

73

M – CH3COO

-CH3COOm/z 375

-CH3COOHm/z 315

- Ac2Om/z 259

- Ac2O m/z 187

- Ac2O m/z 115

Acetyl

- 2 x AcOHm/z 139

- AcOH m/z 157 - AcOH m/z 97

- CH2C=Om/z 103

Page 70: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

70

Acetylated Alditols: hexitol vs pentitol

40 60 80 100 120 140 160 180 200 220 240 260 280 300

10000

20000

30000

40000

50000

60000

m/z-->

Abundance 43

115145103 18785 217127 15873 20017561 289242 303229 259

CH2OAc

OAcH

HAcO

OAcH

CH2OAc

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

m/z-->

Abundance

172361272 331 375

43

115139

187157 2179773 259 28924258 315

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

•Very similar EI-MS

spectra

•Low m/z almost identical

•High m/z values

discriminate among the

two alditols but …

•High m/z values are less

abundant fragment and

might be undetected

m/z = 434

m/z = 362

- 59

- 59

Acetylated Alditols: hex vs d-hex

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

m/z-->

Abundance

172361272 331 375

43

115139

187157 2179773 259 28924258 315

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

•Different fragment pattern

of the EI-MS spectra

•Differences related to the

occurrence of the methyl

group of the 6-deoxysugar

(rhamnose)

m/z = 434

- 59

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

5000

10000

15000

20000

25000

30000

35000

40000

m/z-->

Abundance

43

17012811599 15714569 86 187 23121720157 303289 317259 275

CH2OAc

HAcO

HAcO

OAcH

OAcH

CH3

m/z = 376

- 59

73

145

217

289

361

231

159

87

303

Page 71: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

71

Acetylated Alditols: hex-ol vs HexN-ol

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

m/z-->

Abundance

172361272 331 375

43

115139

187157 2179773 259 28924258 315

CH2OAc

OAcH

HAcO

OAcH

OAcH

CH2OAc

•Very different EI-MS

spectra

•Fragmentation containig

NHAc are more important

than others

•Superior ability of nitrogen

with respect to oxygen to

stabilize the intermediate

cation

m/z = 434

- 59

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

44000

m/z-->

Abundance 43

84

14410260

128 318186170 259212 276230 360300 332

CH2OAc

NHAcH

HAcO

OAcH

OAcH

CH2OAc

73

144

216

288

360

289

217

145

73

360-42

-60

-42

-60

102

84

318

300

AcOH2C

N

H

O

CH3

H

Partially Methylated and Acetylated Alditols:

PMAA

Page 72: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

72

O

H

O

H

AcHN

H

H

OHH

H3C

O

O

H

H

HO

H

O

OHH

O

OH

H

H

H

O

NHAcH

H

OHOH

HH

HOH2C

O OH

H H

O

H

Partially Methylated Acetylated Alditols

-D-Quip3NAc

-D-Ribf -D-Galp -D-GalpNAc

MethylationHydrolysis Reductionacetylation

O-antigen from E. coli O5:K4:H4

CHDOAc

OMeH

HAcMeN

OAcH

OAcH

CH3

CHDOAc

OMeH

OAcH

OAcH

CH2OMe

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

Partially Methylated Acetylated AlditolsFeatures of each sugar derivative: 4-linked Gal as example

Each PMAA must have:

•One CHDOAc group deriving from the anomeric carbon

•One H-C-OAc deriving from OH- group involved in sugar cyclization

Aside from the two “musts”

•Each H-C-OMe indicates a free OH- group in the polysaccharide

•Each H-C-OAc (if present) indicates a substituted OH- group

Interpretation rules follow those from Acetylated Alditols

Some few integration are necessary

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

Page 73: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

73

Partially Methylated Acetylated Alditols

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

PMAA fragmentation pattern, extension of AA rules

• Mass spectra of stereoisomers (as Glc and Gal) are very similar

• Molecular ion is never detected

• Primary ions are formed by from alditol backbone rupture

• Backbone rupture is governed by the stability of the fragment formed

• Fission among two methoxyl-bearing carbons is preferred with

respect that among one methoxyl and one acetoxyl.

• Fission among two acetoxyl bearing carbons is neglectable

• The charged fragment is always that with the methoxy group

• Intensity of the primary fragments decreases with increasing molecular

weight

• Primary ion further loose neutral molecules:

• AcOH (m/z 60), Ac2O (m/z 102) or CH2=C=O (m/z 42)

• But also CH3OH (m/z 32), CH2O (m/z 30)

Partially Methylated Acetylated AlditolsRemember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

CHDOAc

OMeH

HMeO

HAcO

OAcH

CH2OMe

(74)

118

162

(234)

(306)

277

233

(189)

(117)

45

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

m/z-->

Abundance 43

118

1028723313159 71 162 173142

173, 131

102

45

N.B.: fragmentation containing C-1 are even, fragmentation from the “tail” are odd

Page 74: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

74

Partially Methylated Acetylated Alditols

118

233

45

173

CHDOAc

OMeH

OAcH

OAcH

CH2OMe

45

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

200400600800

1000120014001600180020002200240026002800

m/z-->

Abundance 43

118

8759 99 12974 160 233202173142

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

Partially Methylated Acetylated Alditols

118

203

288

244

45

142, 184

161

CHDOAc

OMeH

HAcMeN

OAcH

OAcH

CH3

40 60 80 100 120 140 160 180 200 220 240 260

200400600800

100012001400160018002000220024002600

m/z-->

Abundance 43

142

101 244

1188772 18456 203129 161 256215 271

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

Page 75: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

75

Partially Methylated Acetylated Alditols

159

275

318

45

276, 258

117, 75

CHDOAc

NMeAcH

HAcO

HMeO

OAcH

CH2OMe

161

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

500

1000150020002500

30003500400045005000

55006000

m/z-->

Abundance 43

117

159

75

129

10187 14258 171 273 318197 231 286243215 258184 301

45

215

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

Acetylated Methyl glycosides

Page 76: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

76

O

H

O

H

HO

H

H

NHAcH

OH

O

OH

H

H

O

H

OHHH

OH

O

H

O

OH

H

H

H

OHH

HO

H

O

H

HO

H

H

OHH

HOOC

O

1 M HCl/CH3OH80°C, O.N.

GlcNAc Gal

O

H

HO

H

HO

H

H

NHAcH

OH

O

OH

H

H

HO

H

OHHH

OH

OCH3

OCH3

Rib GlcA

Ac2O, Pyr

O

H

AcO

H

AcO

H

H

NHAcH

OAc

O

OAc

H

H

AcO

H

OAcHH

OAc

OCH3

OCH3

O

H

HO

OH

H

H

H

OHH

H O

H

HO

H

HO

H

H

OHH

MeOOC

OCH3

OCH3

O

H

AcO

OAc

H

H

H

OAcH

HO

H

AcO

H

AcO

H

H

OAcH

MeOOC

OCH3OCH3

Acetylated Methyl glycosidesFragmentation rules

Fragmentation rules:

• The most stable ions will be observed in the EI-MS spectrum

• Isomeric sugars (as Glc and Gal) give the same EI-MS spectrum

• The radical cation of the methylglycosides undergoes several pathways:

• A, B, C, D, E, F, H, J, and K (example given for an hexose)

• Fragments gives a series of daughter ions by loss of neutral molecules (AcOH,

Ac2O, AcO, CH2=C=O)

• Occurrence of acetamido, or deoxy groups, change the preferential

fragmentation pathway

• Along with the ions from the fragmentation pathways, triacetoxonium and

diacetoxonium ions maybe observed.

O

O O

CH3H3C

OH3C

OH

O O

CH3H3C

m/z 103m/z 145

Page 77: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

77

Acetylated Methyl glycosidesFragmentation pathway (hexose)

O

AcOOAc

CH2OAc

H

OCH3

AcO O

AcOOAc

CH2OAc

H

AcOO

AcOOAc

H

OCH3

AcO AEm/z 331m/z 289

A1

OCH2OAc

H

OCH3

AcO

CHOAc

OAcAcO

OAcH

OCH3

AcO

AcO

OAcAcO

OAcH

OCH3

AcO

or

B

B1F

F12

m/z 157 m/z 260

12

3

4

5

6

12

3

4

1

4

5

6

2

3

3

42

Acetylated Methyl glycosidesFragmentation pathway (hexose)

O

AcOOAc

CH2OAc

H

OCH3

AcO O

AcOOAc

CH2OAc

H

AcOO

AcOOAc

H

OCH3

AcO AEm/z 331m/z 289

CD

D1C1m/z 103

m/z 205J1

A1

Unstable, gives

further fragments

O

AcOOAc

CH2OAc

H

OCH3

AcOOCH2OAc

H

OCH3

AcO

AcOOAc

CH2OAcAcO

CHOAc

OAc

OCH2OAc

H

OCH3

AcOH

OCH3

AcO

12

3

4

5

6

12

3

4

5

6

23

4

5

6

15

6

13

4

5

6

2

(3)

1

(3)

Page 78: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

78

Acetylated Methyl glycosidesFragmentation pathway (hexose)

O

AcOOAc

CH2OAc

H

OCH3

AcO

AcO

OAc

AcO

OCH3

AcO

OAc

AcO

CH2OAc

H

HH

K

K1

H11H1

3

H12

12

3

4

5

6

12

23

3

4

4

5

6

m/z 144

m/z 158

+

+

+

+

Acetylated Methyl glycosides

40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

5000

10000

15000

20000

25000

30000

35000

40000

m/z-->

Abundance 43

8198 115 145 169 20061 243129 183 331215 229 289

O

OAc

H

H

AcO

H

OAcHH

OAc

OCH3

M (m/z 362)- 31

m/z 331- 102

m/z 229

- 42m/z 200- 120

Galactose

m/z 289- 73

- 60m/z 169

F12

- 42

B1

- 60

145 = triacetoxonium

K1

-60

Page 79: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

79

Acetylated Methyl glycosides

40 60 80 100 120 140 160 180 200 220 240 260

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

m/z-->

Abundance 43

12869115 17086 157102

13957 259187 217

O

H

AcO

OAc

H

H

H

OAcH

H

OCH3

m/z 290

Ribose

- 31m/z 259

- 42m/z 217

m/z 170- 42

m/z 128- 120

F12

- 42

A1

- 42

M-

120

m/z 139- 120

K1

Acetylated Methyl glycosides

O

H

AcO

H

AcO

H

H

NHAcH

OAc

OCH3

Glucosamine

m/z 361- 31

m/z 330- 42

m/z 288

- 60m/z 242- 59

m/z 288- 73 - 60m/z 228

m/z 302- 102 - 60 m/z 199

- 120 m/z 181- 60

- 60m/z 228

40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

2000

4000

6000

8000

10000

12000

14000

16000

18000

m/z-->

Abundance 43

101

59 14311484 156 242181 199127 302228 288 330

H12

F12

- 42

Page 80: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

80

Acetylated Methyl glycosides

10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

Time-->

Abundance

TIC: B.D

9.21

10.13

14.38

15.93

17.67

23.35

Rib

Rib

Rib

GlcA-1

GlcA-2

Gal

GlcN

GlcN

Glucuronic acid: sometimes knowledge of sugar chemistry is important to

understand their fragmentation

Glucuronic acid

40 60 80 100 120 140 160 180 200 220 240 260 2800

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

m/z-->

AbundanceGlcA peak 2

43

127

115 169157103 144 186877459 229197 215 257 289

O

H

AcO

H

AcO

H

H

OAcHOCH3

O OCH3

m/z 348- 31

(m/z 317)- 60

m/z 257

- 60 m/z 229- 59 m/z 289

- 102 - 60 m/z 186

- 60m/z 197

- 60 m/z 169 - 42 m/z 127

- 42 m/z 144

Page 81: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

81

Glucuronic acid

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

500

1500

2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

m/z-->

Abundance43

12886

1152327155 96 155141 183173 243201

40 60 80 100 120 140 160 180 200 220 240 260 2800

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

m/z-->

AbundanceGlcA peak 2

43

127

115 169157103 144 186877459 229197 215 257 289

GlcA peak 1

Acetylated Methyl glycosides

m/z 274- 31

m/z 243- 60

m/z 183

m/z 232- 42

m/z 141- 102

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

500

1500

2500

3500

4500

5500

6500

7500

8500

9500

10500

11500

m/z-->

Abundance43

12886

1152327155 96 155141 183173 243201

OCH3

H

H

H OAc

O HO

OAcH

O

Glucuronolacton

Page 82: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

82

Acetylated Methyl glycosides

m/z 434- 31

m/z 403

m/z 375- 59

3-keto-2-deoxy-D-manno-octulosonic acid

Ulosonic acids are detected, as Kdo

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

5000100001500020000250003000035000400004500050000550006000065000700007500080000850009000095000

m/z-->

Abundance 43

153

375181115 2139959 25581 273131 231 300197 403333316

O

OAc

H

H

AcOH

OCH3

HHCOOCH3

CH2OAc

OAcH

- 42m/z 333

- 60m/z 273

- 60

m/z 213

m/z 231

- 42

- 32 - 102 m/z 300

m/z 255- 120

m/z 213- 42

- 60

m/z 153

Acetylated Methyl glycosidesUlosonic acids are detected, as Sialic acid

m/z 505- 31

m/z 474

m/z 446- 59 - 42m/z 404

- 42m/z 362

- 60

m/z 284

m/z 302

m/z 386- 60

m/z 266 - 120

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

500

1500

2500

3500

4500

5500

6500

7500

8500

9500

10500

m/z-->

Abundance43

101143

44619983124 266 325165 224 284 34361 242 414386302 362

O

COOCH3

OCH3

H

H

H

AcO

H

AcHN

AcOH2C

HH

OAcH

AcO

Sialic or neuraminic acid

- 42 - 60

404

- 60m/z 414

- 60

m/z 242

m/z 224

H14

- 42

Page 83: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

83

Acetylated Methyl glycosidesUlosonic acids are detected, as Legionaminic acid

Legionaminic acid

m/z 446- 31

m/z 415

m/z 387- 59 - 42m/z 345

- 120m/z 225

m/z 327- 60

m/z 285 - 42

- 60m/z 355

O

COOCH3

OCH3

AcO

AcHN

H3C

AcHN

AcO

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

100

300

500

700

900

1100

1300

1500

1700

1900

m/z-->

Abundance43

98

267

208143126 38716674

225 359289 327184

241 311

m/z 267- 60

m/z 359- CH3CHOAc

359

- 60 m/z 225

Acetylated Methyl glycosidesOther rare sugars

Muramic acid

m/z 405 m/z 346- 59 - 60m/z 286

- 60m/z 226

m/z 304- 42 m/z 244- 60

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

200400600800

1000120014001600180020002200240026002800

m/z-->

Abundance 187

43

88 145

213

58 113286

15873 126 302226 346244 259171

O

H

AcOO

OCH3

NHAc

CH2OAc

HH3COOC

H3C

H12

-42

m/z 302- lactic

m/z 88 = McLafferty rearrangement from lactic residue

Page 84: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

84

Acetylated Methyl glycosidesOther rare sugars

Aminouronic acid

m/z 347 m/z 288- 59 - 60m/z 228

m/z 316- 31

m/z 185

40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

200

400

600

800

1000

1200

1400

1600

1800

m/z-->

Abundance 101

43

143

114169 22859 126

18515684 28872

213200 316

OAcO

AcO

NHAc

OCH3

MeOOC

H12

- 42

- 60- 102

F12

Acetylated Methyl glycosidesFragmentation pattern diagnostic for related isomeric sugars

O

OAc

H

H

AcO

H

OCH3

NHAcH

H3C

H

40 60 80 100 120 140 160 180 200 220 240 260

2000400060008000

100001200014000

m/z-->

Abundance 43

101

59 14382 13011270 184 244156 199170 211 272

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240400800

120016002000240028003200

m/z-->

Abundance 43

101

2005970 14086 112 184128 149 243167158

O

H

AcO

H

AcHN

H

OCH3

OAcH

H3C

H

40 60 80 100 120 140 160 180 200 220 240 260

500

1500

2500

3500

4500

5500

6500

m/z-->

Abundance 43

10174 18457 15787 114 129 144 199 212170 272230

O

H

AcHN

H

AcO

AcO

OCH3

HH

H3C

H

Page 85: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

85

Acetylated Octylglycosides …

an extension of the previous rules.

Acetylated Octyl Glycosides

40 60 80 100 120 140 160 180 200 220 240 260 280 300 3200

5000

10000

15000

20000

25000

30000

35000

40000

m/z-->

Abundance 43

81 98 115 145 169 20061 243129 183 331215 229 289

F12

- 42

K1

-60

O

OH

H

H

HO

H

OHHH

OH

OCH3

Galactose

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

5000

10000

15000

20000

25000

30000

35000

40000

m/z-->

Abundance 43

11598 1575771 140 200 33185 242182 215 229 289271

O

AcOOAc

CH2OAc

O

AcO CH3H2C

H

H2C

H2C

H2C

H2C CH3

m/z 460

Page 86: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

86

Acetylated Octyl Glycosides

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

5000

10000

15000

20000

25000

30000

35000

40000

m/z-->

Abundance 43

11598 1575771 140 200 33185 242182 215 229 289271

O

AcOOAc

CH2OAc

O

AcO CH3H2C

H

H2C

H2C

H2C

H2C CH3

m/z 460

• Octyl or methylglycosides give almost the same EI-MS spectra

• Small contribute from the lipophilic tail of octanol

• Main diffence among these derivatives is their column retention time

Partially Methylated Acetylated Alditols

HANDS ON …..

Page 87: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

87

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 2400

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

m/z-->

Abundance

Scan 725 (10.729 min): 30F432.D43

118

131

89 101

2347259

202187160 173142 247

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 2400

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

m/z-->

Abundance

Scan 725 (10.729 min): 30F432.D43

118

131

89 101

2347259

202187160 173142 247

118

234131

247

CHDOAc

OMeH

HAcO

OMeH

OAcH

CH3

Page 88: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

88

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 2600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

m/z-->

Abundance

Scan 1387 (16.804 min): 30F432.D43

130

190113

23388 99

7417315855 143 274214201

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 2600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

m/z-->

Abundance

Scan 1387 (16.804 min): 30F432.D43

130

190113

23388 99

7417315855 143 274214201

190233

CHDOAc

OAcH

HMeO

OAcH

OAcH

CH2OMe

Page 89: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

89

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

2000

4000

6000

8000

10000

12000

14000

m/z-->

Abundance Scan 1779 (20.402 min): 30F432.D

243

117

43

159

14312975

205

87100

58171 273217 258187 290230 317305

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

2000

4000

6000

8000

10000

12000

14000

m/z-->

Abundance Scan 1779 (20.402 min): 30F432.D

243

117

43

159

14312975

205

87100

58171 273217 258187 290230 317305

CHDOAc

NMeAcH

HMeO

OMeH

OAcH

CH2OMe

159290

203161

205

Page 90: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

90

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 100 110 120 130 140 150 160 170 1800

5000

10000

15000

20000

25000

30000

m/z-->

Abundance

Scan 316 (7.976 min): BRT14APM.D43

10213111889

7216259

17514582 11051

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 100 110 120 130 140 150 160 170 1800

5000

10000

15000

20000

25000

30000

m/z-->

Abundance

Scan 316 (7.976 min): BRT14APM.D43

10213111889

7216259

17514582 11051

118

162131

175

CHDOAc

OMeH

HMeO

OMeH

OAcH

CH3

Page 91: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

91

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

2000400060008000

100001200014000160001800020000220002400026000280003000032000340003600038000400004200044000460004800050000

m/z-->

Abundance

Scan 872 (13.078 min): BRT14APM.D43

130

143

88101

190

20374 117

59 160 171 232

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

2000400060008000

100001200014000160001800020000220002400026000280003000032000340003600038000400004200044000460004800050000

m/z-->

Abundance

Scan 872 (13.078 min): BRT14APM.D43

130

143

88101

190

20374 117

59 160 171 232

190203

CHDOAc

OAcH

HMeO

OAcH

OAcH

CH3

Page 92: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

92

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 260 2800

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

m/z-->

Abundance

Scan 1050 (14.711 min): BRT14APM.D43

118

129

101

161

8774 23459202143 217174 190 277245

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 260 2800

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

m/z-->

Abundance

Scan 1050 (14.711 min): BRT14APM.D43

118

129

101

161

8774 23459202143 217174 190 277245

118

161

CHDOAc

OMeH

HAcO

OMeH

OAcH

CH2OMe

234

277

Page 93: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

93

40 50 60 70 80 90 1001101201301401501601701801902002100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

m/z-->

Abundance

Scan 1984 (13.515 min): MB-AAPM.D43

102

118 129

145

87 16271

59 205

175

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 1001101201301401501601701801902002100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

m/z-->

Abundance

Scan 1984 (13.515 min): MB-AAPM.D43

102

118 129

145

87 16271

59 205

175

118

161206

249

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

CHDOAc

OMeH

HMeO

OMeH

OAcH

CH2OMe

162205

Page 94: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

94

40 50 60 70 80 90 1001101201301401501601701801902002102202300

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

m/z-->

Abundance

Scan 2555 (16.231 min): MB-AAPM.D43

130

88161

190101

74145

59 113205 234174

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 1001101201301401501601701801902002102202300

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

m/z-->

Abundance

Scan 2555 (16.231 min): MB-AAPM.D43

130

88161

190101

74145

59 113205 234174

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

190161

234

205

CHDOAc

OAcH

HMeO

OMeH

OAcH

CH2OMe

Page 95: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

95

40 50 60 70 80 90 1001101201301401501601701801902002102202300

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

m/z-->

Abundance

Scan 2618 (16.530 min): MB-AAPM.D43

118

10287

233129

7159 173162143 203

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 1001101201301401501601701801902002102202300

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10000

10500

m/z-->

Abundance

Scan 2618 (16.530 min): MB-AAPM.D43

118

10287

233129

7159 173162143 203

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15118

162233

CHDOAc

OMeH

HMeO

OAcH

OAcH

CH2OMe

Page 96: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

96

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 1900

200

400

600

800

1000

1200

1400

1600

1800

m/z-->

Abundance

Scan 2781 (17.305 min): MB-AAPM.D43

102 118

12987

1627159 189

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 1900

200

400

600

800

1000

1200

1400

1600

1800

m/z-->

Abundance

Scan 2781 (17.305 min): MB-AAPM.D43

102 118

12987

1627159 189

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

118

162189

CHDOAc

OMeH

HMeO

OMeH

OAcH

CH2OAc

(233)

Page 97: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

97

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 2600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

m/z-->

Abundance

Scan 3372 (20.116 min): MB-AAPM.D43

118

10285

7459 261142 159129 201187

Remember:

CHDOAc = 74

H-C-OMe = 44

H-C-OAc = 72

CH2OAc = 73

CH2OMe = 45

H-C-NMeAc = 85

CH3 = 15

40 60 80 100 120 140 160 180 200 220 240 2600

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

m/z-->

Abundance

Scan 3372 (20.116 min): MB-AAPM.D43

118

10285

7459 261142 159129 201187

118

162261

CHDOAc

OMeH

HMeO

OAcH

OAcH

CH2OAc

Page 98: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

98

NMR spectra assignment of carbohydrate containing 

molecules

NMR tube

Sample preparation

Page 99: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

99

t

A

T2

AFT

time domain (FID)

frequency domain (spectrum)

1

T2

1

Data analysis ‐ Analysis of FIDs

NMR Data Processing

The ADC (analog‐to‐digital converter) converts the FID into a series of points

SWDW

2

1

SW

TDTDDWAQ

2

AQTD

SW

SI

SWDR

12

DW is dwell (time between digital points)AQ is the acquisition time (time the FID is sampled)TD is the number of points collected in the FIDDR is the digital resolutionSI is the number of points in the frequency spectrumTD and SI are base 2 numbers (2, 4, 8, …,1024, 2048,…) to make FFT work

Digital Resolution: is equal to (acquisition time)‐1

NMR Data Processing

Page 100: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

100

Want to maximize digital resolution, number of data points in each dimension

Digitalization: Convert FID (Volt/Time) in Digital form

NMR Data Processing

Data Manipulations

The optimal spectrum can almost never be obtained by Fourier transformation of the data directly from the spectrometer.

At least three manipulations are generally required:

• Zero Filling• Apodization• Phasing

NMR Data Processing

Page 101: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

101

Zero filling

0 0.20 0.40 0.60 0.80 1.00 1.2 1.4 1.6 1.8 2.0 2.2t1 sec

8K data 8K zero‐fill

Collect data until FID goes to zero.  However, you still may not be able to define the top of the peak.    Then zero fill.  

4K data points 8K data points

NMR Data Processing

Zero‐filling is simply adding data points with zero intensity to the end of the FID. 

Zero filling

frequency

frequency

Points from zero filling fall between the real points and improve digital resolution.

TD: Size of FID SI: Size of real spectrum (after zero filling)

NMR Data Processing

Page 102: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

102

Phase correction

Phase errors arise because detection of an NMR signal (FID) can begin at any point in an oscillation, depending on the instrumental and experimental parameters. Phase of the peak is determined by the relative phase of the pulse and the receiverThey appear as twists in the baseline of the Fourier‐transformed spectrum, and are corrected automatically by the spectrometer's computer or manually by trial‐and‐error. 

Phasing:  ph0 is constant rotation to make the real signal absortive and the 

imaginary signal dispersive

NMR Data Processing

Processing of NMR signals

FID(time domain)

spectrum ‐ unphased(frequency domain)

FT

spectrum ‐ phased(frequency domain)

NMR Data Processing

Page 103: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

103

Apodization ‐Window functions

0 0.10 0.20 0.30 0.40 0.50t1 sec

Mostly signal Mostly noise

NMR Data Processing

Exponential Gaussian

Exponential functions and Line broadening

lb (line broadening factor) > 0

Improved S/N, worstresolution

Multiplying the FID by an exponential curve should result in improved S/N.

0 0.10 0.20 0.30 0.40 0.50t1 sec

Page 104: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

104

Apodization can also be used to improve resolution by emphasizing the tail of the FID.

Gaussian functions and resolution

This function emphasizes the middle and end of the FID 

The price to pay for this apodization is a significant 

decrease in S/N;

lb (line broadening factor) < 0

0 0.10 0.20 0.30 0.40 0.50t1 sec

Other windows functions

tacq

Page 105: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

105

…………Bruker command:

voltagetime

timevoltage

We can also matematicallypredict the FID…

Linear prediction

Page 106: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

106

time

Windows function

Acquired

Predictedzero filling

NMR solvents D2O

Page 107: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

107

213

OOO

CH2OH

HOHO

OH

CH3

OH

OH

H

H

H

H

H

H

HHH

HO

H

OOO

CH2OD

DODO

OD

CH3

OD

OD

H

H

H

H

H

H

HHH

DO

H

Sample dissolved in D2O

Deuterated solvent gives no signal

Chapter 13 214

Hydrogen and Carbon Chemical Shifts

=>

Page 108: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

108

Parameters in NMR

2. Coupling constant (J) Hz

Structural and Conformational information

3. Area of peaks

Relative proportion of nuclei

4. Distance between nuclei

Information is contained in relaxation and NOE

5. Molecular Motion

Information is contained in relaxation, NOE and  Variable Temperature

What is the NMR Assignment Issue?• Each observable NMR resonance needs to be assigned or associated 

with the atom in the protein structure.

NMR Assignments  

Page 109: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

109

Sugar complexity

1H and 13C typical regions of carbohydrates:

The 1H NMR Spectra can be roughly divided into the following regions:

Anomeric and Acylated Protons : 5.5‐4.5 ppm.Ring Protons : 4.5‐3 ppm

Acetyl Groups, Methylene Protons: 3‐2 ppmMethyl Groups: 0.8‐2.0 ppm

The 13C NMR Spectra can be roughly divided into the following regions :

Anomeric Carbons Resonate Between 90‐105 ppmRing Carbons Between 52‐78 ppm

Nitrogen Bearing Carbons (In Amino Sugar) 50‐60 ppmAcetyl Groups  XXX ppm

Methylene Protons: XXX ppmMethyl Groups: XXX ppm

Page 110: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

110

Application of various NMR techniques to carbohydrates

•HOMONUCLEAR (1H‐1H)

•HETERONUCLEAR (1H‐13C)

H

HH

H

OHOH

H

O

OOH

OH

H

HH

H

OH

H

O

OHOH

OH

HOMONUCLEAR 1H‐1HCOSYTOCSYNOESY/ROESY HETERONUCLEAR 1H‐13CHMQC/HSQCHMBC

Assignment of sugar  residues

Page 111: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

111

1H NMR spectrum of the O‐polysaccharide of Providencia alcalifaciensO16

A1

CH

(NAc)

CH3

C1B1

B6

CH3

(lactic)

(lactic)

5.5 4.5 3.5 2.5 1.5 ppm

HO

OH

CH3

HOOC

HONHAc

O

O

CH2

OH3C

O

O

O

CH2OH

OH

NHAc

A B

C

13C NMR spectrum of the O‐polysaccharide of ProvidenciaalcalifaciensO16

A1COOH(NAc)CO

(NAc)CH3C1

B1

B6

CH3

(lactic)

C6C2

A2

(lactic)

HO

OH

CH3

HOOC

HONHAc

O

O

CH2

OH3C

O

O

O

CH2OH

OH

NHAc

A B

C

Page 112: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

112

1-21-31-4

H1

H1

H1

H1H1

1-21-3 1-4 1-51-6b

1-2 1-31-4

1-21-31-4,5

1-2 1-31-4

OO

OH

OHO

CO-Ala

O

HOHNAc

OHOH

O

OH

O

O

OH

O

O

HNAc

OH

-D-GlcpA (Ala) -D-GalpNAc

-D-GalpNAc

-D-Glcp

OOH

OHO

OH

HO

-D-Galp

H1 1-2

H1

H1

H1H1

1-2

1-2

1-21-2

2D TOCSY

O-polysaccharide of Proteus vulgaris O44

2D COSY

O

O

HO

O

HOOC

COOH

OAcHN

CH3

OO

H3C

H3C

O

HOO

OHH3C

H

H

H

H

H

H

H

H

H

H

H

H

C

B

A

O‐chain from Rhodopseudomonas palustris strain BisA53

1.02.03.04.05.0 ppm

A1

C1 + B6

B4 + B5

A5A4

C2

C3

C5 + A2

C4 + OCH3

N-Ac

B3axB3eq

A2CH3

C6 A6

1H NMR

Page 113: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

113

3.43.63.84.04.24.44.64.85.0 ppm

1.0

2.0

3.0

4.0

5.0

A1-B5

A1-A2

A1-A2OCH3

C1-A2

C1-C2

B6-B5

A1-B5

C1-C2 C1-A2

C1-A2OCH3

C1-A2OCH3

A1-A2OCH3

A2-A4

B3-B4eq

A5-A3CH3A2-A3CH3C1-A3CH3

C5-C6A5-A6 A5-A6

B6-B5

O‐chain from Rhodopseudomonas palustris strain BisA53

NOESY and TOCSY

A1-A3

3.33.53.73.94.14.34.54.74.9ppm

20

30

40

50

60

70

80

90

100

1.01.21.41.61.82.02.2 ppm

20

30

40

50

60

70

80

90

100

A1-A5

A1-B5

A1-A2

C1-C2

C1-C5

C1-A3

A1-B5B2-C3

A2-OCH3

A1

C1

A2

B5

A6C6A3CH3

A3CH3 – A4 A6 – A4

A6 – A5

C6 –C5

C6 –C4

A3CH3 – A3

A3CH3 – A2

B3ax –B4

B3ax –B2

O‐chain from Rhodopseudomonas palustris strain BisA53

HSQC and HMBC

Page 114: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

114

•Anomeric configuration

1H NMR spectrum contains informationon the configuration of glycosidic linkages

A1

C1B1

CH2

HO H

O

H

O

OHNAc

A

‐linkage:  J1,2 > 6 Hz

CH2OH

O

HNAcHO

H

H

OO

C

‐linkage:  J1,2 < 4 Hz

HO OCH3

O

O

OH

H

H

B

‐linkage:  J1,2 < 2 Hz

HO

O

CH3

O

O

OH

H

H

‐linkage:  J1,2 < 2 Hz

HO

OH

CH3

HOOC

HONHAc

O

O

CH2

OH3C

O

O

O

CH2OH

OH

NHAc

A B

C

Page 115: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

115

CH2OHHO

HO

HH

O

O

OH

H

‐linkage:  H1‐H2

CH2OHHO

HO H

H O

O

OH

H

‐linkage:  H1‐H3, H1‐H5

CH2OHHO

H

OH

HH

O

O

OH

‐linkage:  no contact

CH2OHHO

H

OH

H

H O

O

OH

‐linkage:  H1‐H2, H1‐H3, H1‐H5

Intra‐residue NOE contacts in monosaccharides

gluco, galacto configuration manno configuration

Monosaccharide Sequence

•Inter-residual NOE contact

•Glycosylation shift

•Long range inter-residual correlation in the HMBC spectra

Page 116: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

116

H

HH

H

OHOH

H

O

OOH

OH

H

HH

H

OH

H

O

OHOH

OH

HOMONUCLEAR 1H‐1HCOSYTOCSYNOESY/ROESY HETERONUCLEAR 1H‐13CHMQC/HSQCHMBC

Monosaccharide Sequence

•Inter-residual NOE contact

CH2OHHO

O

H

O

O

OH

CH2OH

HO

HO

O

OH

‐linkage

Inter‐residue NOE contacts in saccharides

CH2OHHO

OH

OO

OH

CH2OHHO

HOH

OO

H

‐linkage

Monosaccharide Sequence

Page 117: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

117

NOE in disaccharides may occur not only at thelinkage protons but also at the neighbouringprotons

CH2OHHO

O

OO

OH

HO

COHO

H

O

OHH

HH

H

6

4

Monosaccharide Sequence

OO

OH

OHO

CO-Ala

O

HOHNAc

OHOH

O

OH

O

O

OH

O

O

HNAc

OH

-D-GlcpA(Ala) -D-GalpNAc

-D-GalpNAc

-D-Glcp

OOH

OHO

OH

HO

-D-Galp

2D NOESY spectrum of the O-polysaccharide of

Proteus vulgaris O44

H1

1-4

1-6b 1-6a

H1

H1

1-4 1-3 1-3 1-5

1-51-4

H1H1

1-31-5 1-3

1-5 1-4

1-2

Monosaccharide Sequence

Page 118: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

118

2D NOESY spectrum of the dephosphorylated O-polysaccharide of Proteus

mirabilis O33

O

O

OH

OHO

OH

O

HONHAc

OH

OH

O

OH

OO

OH

O

ONHAc

OH

OH

-D-Galp -D-GlcpNAc

-D-GlcpNAc-D-Glcp

Monosaccharide Sequence

OO

OH

OHO

CO-Ala

O

HOHNAc

OHOH

O

OH

O

O

OH

O

O

HNAc

OH

-D-GlcpA(Ala) -D-GalpNAc

-D-GalpNAc

-D-Glcp

O

OH

OHO

OH

HO

-D-Galp

2D ROESY spectrum of the O-polysaccharideof Proteus vulgaris O44

H11-4

1-6b1-6a

H1

H1

1-4 1-3 1-3 1-5

1-51-4

H1H1

1-31-5

1-3

1-5 1-4

1-2

Monosaccharide Sequence

Page 119: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

119

3.43.63.84.04.24.44.64.85.0 ppm

1.0

2.0

3.0

4.0

5.0

A1-B5

A1-A2

A1-A2OCH3

C1-A2

C1-C2

B6-B5

A1-B5

C1-C2 C1-A2

C1-A2OCH3

C1-A2OCH3

A1-A2OCH3

A2-A4

B3-B4eq

A5-A3CH3A2-A3CH3C1-A3CH3

C5-C6A5-A6 A5-A6

B6-B5

O‐chain from Rhodopseudomonas palustris strain BisA53

NOESY and TOCSY

O

O

HO

O

HOOC

COOH

OAcHN

CH3

OO

H3C

H3C

O

HOO

OHH3C

H

H

H

H

H

H

H

H

H

H

H

H

C

B

A

Glycosylation shift: downfield shift of carbon resonances at glycosilated position present in the HSQC spectrum 

A1

A

A1

A5

A4

A2

A3

A6

A1

A5

A4

A2

A3

A6

O

H

H

H O

HO H

O

HOHO

H

[      2)‐‐D‐Galf‐(1      ] 

Monosaccharide Sequence

(13C resonating at above 75 ppm)

Page 120: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

120

OO

OH

OHO

CO-Ala

O

HOHNAc

OHOH

O

OH

O

O

OH

O

O

HNAc

OH

-D-GlcpA(Ala) -D-GalpNAc

-D-GalpNAc

-D-Glcp

O

OH

OHO

OH

HO

-D-Galp

1H,13C HSQC spectrum of the O-polysaccharideof Proteusvulgaris O44

H1 H1 H1H1

H1

C1 C1C1C1

C1 111 1

1

Ala 2 2 2

6 6 6 6

33 4

4 4C3C4C3

C4 C4

Glycosylation shift

Monosaccharide Sequence

1.01.52.02.53.03.54.04.55.0 ppm

20

30

40

50

60

70

80

90

100

A1C1

B5

B6

B4

A5

C2C3

A2

C4

C5

A4AOCH3

B3

ACH3CO

ACH3 A6

C6

HSQC spectrum of the  O‐chain isolated from Rhodopseudomonas palustris sp. BIS A53

O

O

HO

O

HOOC

COOH

O

AcHN

CH3

OO

H3C

H3C

O

HO

O

OHH3C

A

B

C

Page 121: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

121

H

HH

H

OHOH

H

O

OOH

OH

H

HH

H

OH

H

O

OHOH

OH

HOMONUCLEAR 1H‐1HCOSYTOCSYNOESY/ROESY HETERONUCLEAR 1H‐13CHMQC/HSQCHMBC

Monosaccharide Sequence

Long range inter‐residual correlations in the HMBC spectrum

CH2OHHO

O

H

O

O

OH

CH2OH

HO

HO

O

OH

‐linkage

Long range inter‐residual correlations in the HMBC spectrum

CH2OHHO

OH

OO

OH

CH2OHHO

HOH

OO

H

‐linkage

Monosaccharide Sequence

Page 122: Antonio Molinaro - Glycopediaglycopedia.eu/IMG/pdf/grenoble2016_molinaro.pdf · TOtalCorrelation SpectroscopY (TOCSY) experiment Spin-Lock Pulse (~14ms) COSY TOCSY TOCSY •cross

26/06/2016

122

A1-A3

3.33.53.73.94.14.34.54.74.9ppm

20

30

40

50

60

70

80

90

100

1.01.21.41.61.82.02.2 ppm

20

30

40

50

60

70

80

90

100

A1-A5

A1-B5

A1-A2

C1-C2

C1-C5

C1-A3

A1-B5B2-C3

A2-OCH3

A1

C1

A2

B5

A6C6A3CH3

A3CH3 – A4 A6 – A4

A6 – A5

C6 –C5

C6 –C4

A3CH3 – A3

A3CH3 – A2

B3ax –B4

B3ax –B2

O‐chain from Rhodopseudomonas palustris strain BisA53

HSQC and HMBC

O

O

HO

O

HOOC

COOH

OAcHN

CH3

OO

H3C

H3C

O

HOO

OHH3C

H

H

H

H

H

H

H

H

H

H

H

H

C

B

A


Recommended