+ All Categories
Home > Documents > AP Electrostatic & Equipotential Sample Problems

AP Electrostatic & Equipotential Sample Problems

Date post: 25-May-2015
Category:
Upload: cpphysicsdc
View: 460 times
Download: 4 times
Share this document with a friend
Popular Tags:
22
Electrostati cs & Electric Potential 5 Sample Problems
Transcript
Page 1: AP Electrostatic & Equipotential Sample Problems

Electrostatics &

Electric Potential

5 Sample Problems

Page 2: AP Electrostatic & Equipotential Sample Problems

1. Point Chargesβ€’ Find the Electric Field @ point P

caused by a bunch of individual charges.

E is a vector, so direction is important! Break the E’s into components if necessary.

+

+-

P

β€’ Find the Electric Potential @ point P caused by a bunch of individual charges.

VV is a scalar, so direction isn’t important; however, it is possible to have a negative value, so don’t ignore the sign.

Page 3: AP Electrostatic & Equipotential Sample Problems
Page 4: AP Electrostatic & Equipotential Sample Problems

2. Rod (E)β€’ Find the Electric Field

@ point P.

1. 2. π‘‘π‘ž=πœ†π‘‘π‘₯

3.𝐸=∫ π‘˜πœ†π‘‘π‘₯π‘₯2 =π‘˜ πœ†βˆ«

π‘Ž

π‘Ž+𝐿

π‘₯βˆ’2𝑑π‘₯

P a

L

1. Equation

2. Since r and q change together, we need an equation that relates the two.Charge Density. The density stays constant whether over the total charge or parts of the rods.

3. Solve for dq and substitute it in. Pull your constants out of the integral.Determine the range and place it on the integral.

Page 5: AP Electrostatic & Equipotential Sample Problems

2. Rod (E)β€’ Find the Electric Field

@ point P.

P a

L

4 .𝐸=π‘˜ πœ† (βˆ’1 )π‘₯βˆ’1

a

a+L

6.

4. Integrate.

6. Plug in the ranges and simplify.

5 .𝐸=π‘˜π‘„πΏ

(βˆ’1 )π‘₯βˆ’1

a

a+L 5. Substitute in the total charge density.

Page 6: AP Electrostatic & Equipotential Sample Problems

2. Rod (V)β€’ Find the Electric

Potential @ point P.

1. 2. π‘‘π‘ž=πœ†π‘‘π‘₯

3.𝑉=∫ π‘˜ πœ†π‘‘π‘₯π‘₯

=π‘˜ πœ† βˆ«π‘Ž

π‘Ž+𝐿

π‘₯βˆ’1𝑑π‘₯

P a

L

1. Equation

2. Since r and q change together, we need an equation that relates the two.

Charge Density. The density stays constant whether over the total charge or parts of the rods.

3. Solve for dq and substitute it in. Pull your constants out of the integral.

Determine the range and place it on the integral.

Page 7: AP Electrostatic & Equipotential Sample Problems

2. Rod (V)β€’ Find the Electric Field

@ point P.

P a

L

4 .𝑉=π‘˜ πœ†π‘™π‘›π‘₯a

a+L

6.

4. Integrate.

6. Plug in the ranges and simplify.

5 .𝑉=π‘˜π‘„πΏπ‘™π‘›π‘₯

a

a+L 5. Substitute in the total charge density.

Page 8: AP Electrostatic & Equipotential Sample Problems

Notice that the steps for solving were the same in both cases.

In all the different problems, those steps stay the same. The only thing that changes is how you do the step. For instance, how you integrate, or whether you use linear charge density, area charge density, or volume charge density, etc.

Page 9: AP Electrostatic & Equipotential Sample Problems
Page 10: AP Electrostatic & Equipotential Sample Problems

3. Ring (E)β€’ Find the Electric Field

@ point P.

1. 2. 3.𝐸=∫ π‘˜π‘‘π‘ž

(π‘ŽΒΏΒΏ2+π‘₯2)π‘₯

√(π‘Ž2+π‘₯2)

ΒΏ

1. Equation

2. Don’t need charge density because all the charges are equidistant adding the same values to the field.or a & x are constant.

3. Replace dq. Pull out constants. Set Range.

𝐸=π‘˜π‘₯

(π‘ŽΒΏΒΏ 2+π‘₯2)βˆ’ 3

2βˆ«π‘‘π‘ž ΒΏ

x

a P

Page 11: AP Electrostatic & Equipotential Sample Problems

3. Ring (E)β€’ Find the Electric Field

@ point P.

4 .𝐸=π‘˜π‘₯

(π‘ŽΒΏΒΏ2+π‘₯2)βˆ’ 3

2𝑄 ΒΏ4. Integrate.

6. No range since you will probably know the total charge.

5. No charge density to substitute!

x

a P

Page 12: AP Electrostatic & Equipotential Sample Problems

3. Ring (V)β€’ Find the Electric

Potential @ point P.

1. 1. Equation2. a & x are constants!

3.𝑉=π‘˜

(π‘ŽΒΏΒΏ2+π‘₯2)βˆ«π‘‘π‘ž ΒΏ3. Replace dq. Pull out constants. Set Range.

4.𝐸=π‘˜

(π‘ŽΒΏΒΏ2+π‘₯2)𝑄¿

4. Integrate.

6. No range since you will probably know the total charge.

5. No charge density to substitute!

x

a P

Page 13: AP Electrostatic & Equipotential Sample Problems
Page 14: AP Electrostatic & Equipotential Sample Problems

4. Disk (E)β€’ Find the Electric Field

@ point P.

1.

2. 𝑑𝐴=2πœ‹π‘Ÿπ‘‘π‘Ÿ

3.𝐸=∫ π‘˜π‘₯𝜎 𝑑𝐴

(π‘Ÿ ΒΏΒΏ2+π‘₯2)32

=∫ π‘˜πœŽ π‘₯2πœ‹ π‘Ÿπ‘‘π‘Ÿ

(π‘Ÿ ΒΏΒΏ2+π‘₯2)32=π‘˜πœŽ πœ‹ π‘₯∫

0

𝑅2π‘Ÿπ‘‘π‘Ÿ

(π‘Ÿ ΒΏΒΏ2+π‘₯2)32

ΒΏΒΏ ΒΏ

1. Equation

2. Charge Density. Area because we’re moving out concentric circles.

3. Replace dq. Pull out constants. Set Range.

x

r P

Page 15: AP Electrostatic & Equipotential Sample Problems

4. Disk (E)β€’ Find the Electric Field

@ point P.

4. Integrate.

6. Plug in the ranges and simplify.

5 .𝐸=βˆ’2π‘˜πœŽπœ‹ π‘₯1

(π‘Ÿ 2+π‘₯2)12 0

R5. Substitute in the

total charge density.

4.𝐸=π‘˜πœŽπœ‹ π‘₯∫0

π‘…π‘‘π‘ˆ

π‘ˆ32

=π‘˜πœŽπœ‹ π‘₯π‘ˆ

βˆ’ 12

βˆ’12

=π‘˜πœŽπœ‹ π‘₯π‘ˆ

βˆ’ 12

βˆ’12

=βˆ’2π‘˜πœŽπœ‹ π‘₯1

π‘ˆ12

0

R

6 .𝐸=2π‘˜πœŽπœ‹ [1βˆ’ π‘₯

(π‘Ÿ2+π‘₯2)12 ]

x

r P

Page 16: AP Electrostatic & Equipotential Sample Problems

4. Disk (V)β€’ Find the Electric

Potential @ point P.

3.𝑉=∫ π‘˜πœŽ 𝑑𝐴

βˆšπ‘Ÿ2+π‘₯2=∫ π‘˜πœŽ 2πœ‹π‘Ÿπ‘‘π‘Ÿ

βˆšπ‘Ÿ 2+π‘₯2=π‘˜πœŽ2πœ‹βˆ«

0

π‘…π‘Ÿπ‘‘π‘Ÿ

βˆšπ‘Ÿ2+π‘₯2

1. Equation

2. Charge Density: Area Again

1. 2. 𝑑𝐴=2πœ‹π‘Ÿπ‘‘π‘Ÿ

3. Replace dq. Pull out constants. Set Range.

x

r P

Page 17: AP Electrostatic & Equipotential Sample Problems

4. Disk(V)β€’ Find the Electric Field

@ point P.

4. Integrate.

6. Plug in the ranges and simplify.6 .𝑉=2π‘˜πœŽπœ‹ (√(π‘Ÿ 2+π‘₯2)    βˆ’ x  )

4 .𝑉=π‘˜πœŽ 2πœ‹βˆ«0

π‘…π‘Ÿπ‘‘π‘Ÿ

βˆšπ‘Ÿ 2+π‘₯2=π‘˜πœŽ 2πœ‹βˆ«

0

𝑅 π‘Ÿπ‘‘π‘ˆ2π‘Ÿ

π‘ˆ12

=π‘˜πœŽπœ‹βˆ«0

π‘…π‘‘π‘ˆ

π‘ˆ12

=π‘˜πœŽπœ‹π‘ˆ

12

12

0

RΒΏ2π‘˜πœŽπœ‹ √(π‘Ÿ2+π‘₯2)  

x

r P

Page 18: AP Electrostatic & Equipotential Sample Problems
Page 19: AP Electrostatic & Equipotential Sample Problems

5. Arc Length (E)β€’ Find the Electric Field

@ point P.

1.

2. π‘‘π‘ž=πœ†π‘‘π‘™

3.𝐸=∫ π‘˜πœ†π‘‘π‘™π‘Ÿ2 π‘π‘œπ‘ πœƒ=

π‘˜ πœ†π‘Ÿ2 ∫

πœƒ1

πœƒ2

π‘π‘œπ‘ πœƒ 𝑑𝑙

1. Equation (cos because all the y values cancel out.)

2. Charge Density.

𝐸=π‘˜ πœ†π‘Ÿ2 ∫

πœƒ1

πœƒ2

π‘π‘œπ‘ πœƒπ‘Ÿπ‘‘ πœƒ=π‘˜ πœ†π‘Ÿ ∫

πœƒ 1

πœƒ 2

π‘π‘œπ‘ πœƒπ‘‘πœƒ

ΞΈ changes with respect to the arc length!

3. Replace dq. Pull out constants (r is constant!). Set Range.

x

rP𝑙

Page 20: AP Electrostatic & Equipotential Sample Problems

5. Arc Length (E)β€’ Find the Electric Field

@ point P.

6.

4. Integrate.

6. Plug in the ranges and simplify.

5 .𝐸=π‘˜π‘„πΏπ‘ π‘–π‘›πœƒ

πœƒ1

πœƒ2 5. Substitute in the total charge density.

πœƒ1

πœƒ24.𝐸=

π‘˜ πœ†π‘Ÿ

π‘ π‘–π‘›πœƒ

7. 7. The length is the arc length.

x

rP𝑙

Page 21: AP Electrostatic & Equipotential Sample Problems

5. Arc Length (V)β€’ Find the Electric Field

@ point P.

1. 2. π‘‘π‘ž=πœ†π‘‘π‘™

3.𝑉=∫ π‘˜ πœ†π‘‘π‘™π‘Ÿ

=π‘˜ πœ†π‘Ÿ ∫

πœƒ1

πœƒ2

π‘Ÿπ‘‘πœƒ=π‘˜ πœ†βˆ«πœƒ1

πœƒ2

π‘‘πœƒ

1. Equation

2. Charge Density.

3. Replace dq. Pull out constants (r is constant!). Set Range.ΞΈ changes with respect to the arc length! Must be in Radians though (since ΞΈ is not in a function.)

x

rP𝑙

Page 22: AP Electrostatic & Equipotential Sample Problems

5. Arc Length (V)β€’ Find the Electric Field

@ point P.

6.

4. Integrate.

6. Plug in the ranges and simplify.

5 .𝐸=π‘˜π‘„πΏπœƒπœƒ1

πœƒ2 5. Substitute in the total charge density.

πœƒ1

πœƒ24.𝑉=π‘˜ πœ†πœƒ

7. 7. The length is the arc length.

x

rP𝑙


Recommended