+ All Categories
Home > Documents > APA2057A

APA2057A

Date post: 14-Apr-2018
Category:
Upload: amila-lasantha
View: 214 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 7/27/2019 APA2057A

    1/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 1

    ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, andadvise customers to obtain the latest version of relevant information to verify before placing orders.

    2.4W Stereo Audio Power Amplifier (with Gain Setting) & Capfree Headphone Driver

    APA2057A

    The APA2057A is a monolithic integrated circuit, whichcombines a stereo power amplifier and a stereo outputcapacitor-less headphone amplifier. The stereo power amplifier provides 19-steps gain setting for flexibleapplication. The headphone amplifier is ground-refer-ence output, and no need the output capacitors for DCblocking. The advantages of eliminating the output ca-pacitor are saving the cost, PCBs space and componentheight.

    Both the de-pop circuitry and the thermal shutdownprotection circuitry are integrated in the APA2057A,which reduces pops and clicks noise during power on/off and in shutdown mode. Thermal shutdown protectsthe chip from being destroyed by over-temperaturefail ure. To simpl ify the audio system design in notebookcomputer applications, the APA2057A provides the in-ternal gain setting, and these features can minimizecomponents and PCB area.

    The APA2057A is avai lable in both TSSOP-28P andTQFN5x5-28 packages. Both packages are character-

    ized by space saving and thermal efficiency.

    Features General Description

    Applications

    Note book PCs LCD monitor

    Operating Voltage HV DD= 3.0~3.6V

    V DD= 4.5~5.5V

    No Output Capacitor at Headphone Amplifier Required

    Meeting VISTA Requirement Low Distortion

    AMP mode THD+N=56dB, at V DD = 5V, R L = 4 , P O=1.5W THD+N=64dB, at V DD = 5V, R L = 8 , P O=0.9W

    HP mode THD+N=73dB, at HV DD=3.3V, R L=16 P O=125mW

    THD+N=77dB, at HV DD=3.3V, R L=32 ,P O=88mW

    THD+N=85dB, at HV DD=3.3V, R L=10k , VO=1.7Vrms

    Output Power at 1% THD+N 1.9W, at V DD = 5V, AMP mode, R L = 4 1.2W, at V DD = 5V, AMP mode, R L = 8

    at 10% THD+N 2.4W at V DD = 5V, AMP mode, R L = 4 1.5W at V DD = 5V, AMP mode, R L = 8

    Depop Circuitry Integrated Internal 19-steps Gain Setting for Flexible Applica-

    tion

    Thermal Shutdown Protection and Over CurrentProtection Circuitry

    High Supply Voltage Ripple Rejection Surface-Mount Packaging

    TSSOP-28P (with enhanced thermal pad) TQFN5x5-28 (with enhanced thermal pad)

    Lead Free Available (RoHS Compliant)

  • 7/27/2019 APA2057A

    2/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 2

    APA2057A

    Ordering and Marking Information

    Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully

    compliant with RoHS and compatible with both SnPb and lead-free soldering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JED EC J STD-020C for MSL classification at lead-free peak reflow temperature.

    Pin Configurations

    Absolute Maximum Ratings (Note 1)

    Symbol Parameter Rating Unit

    VDD Supply Voltage (PVDD, CVDD, VDD) V

    HVDD, Supply Voltage (HVDD)-0.3 to 6

    VSS Supply Voltage (VSS) +0.3 to -6 V

    VSET , V AMP_EN , VHP_EN Input Voltage 0 to V DD+0.3V

    T A Operating Ambient Temperature Range -40 to 85 CTJ Maximum Junction Temperature 150 C

    (Over operating free-air temperature range unless otherwise noted.)

    APA2057A

    Handling Code

    Temperature Range

    Package Code

    Package CodeR : TSSOP-28P QB : TQFN5x5-28

    Operating Ambient Temperature RangeI : -40 to 85 C

    Handling CodeTR : Tape & Reel

    Lead Free CodeL : Lead Free Device

    APA2057A R : APA2057A

    XXXXX XXXXX - Date Code

    XXXXX - Date Code

    Lead Free Code

    APA2057A QB : APA2057AXXXXX

    = ThermalPad (connected the ThermalPad to GND plane for better heat dissipation)

    INR_A 3

    INR_H 4

    LOUT- 9

    LOUT+ 8

    INL_A 5

    PVDD 10

    CVDD 11

    CGND 13

    APA2057A

    15 CVSS

    16 HVSS

    VDD 1

    GND 2

    17 HP_R

    18 HP_L

    21 ROUT-

    19 HVDD

    20 PVDD

    22 ROUT+

    23 PGND

    24 HP_EN

    25 BIAS

    INL_H 6

    PGND 7

    CP- 14

    CP+ 12

    28 BEEP

    27 AMP_EN

    26 SET

    (Top view)

    (TSSOP-28P)

    (Top view)(TQFN5x5-28)

    APA2057A

    20 HP_EN

    17 ROUT-

    15 HVDD

    16 PVDD

    18 ROUT+

    19 PGND

    21 BIAS

    2 4 B E E P

    2 5 V D D

    2 6 G N D

    2 7 I N R

    _ A

    2 8 I N R

    _ H

    2 2 S E T

    2 3 A M P

    _ E N

    LOUT- 5

    LOUT+ 4

    PGND 3

    INL_A 1

    PVDD6

    CVDD 7

    INL_H 2

    C P -

    1 0

    C G N D 9

    C P + 8

    C V S S 1 1

    H V S S 1 2

    H P

    _ R 1 3

    H P

    _ L 1 4

  • 7/27/2019 APA2057A

    3/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 3

    APA2057A

    Absolute Maximum Ratings (Cont.) (Note 1)

    Symbol Parameter Rating Unit

    TSTG Storage Temperature Range -65 to +150 CTSDR Maximum Lead Soldering Temperature 260, 10 seconds CP D Power Dissipation Internally Limited W

    (Over operating free-air temperature range unless otherwise noted.)

    Note 1 : Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute maximum ratingconditions for extended periods may affect device reliability.

    Recommended Operating Conditions

    Thermal Characteristics (Note 2)Symbol Parameter Value Unit

    JA Thermal Resistance - Junction to Ambient (Note 2)

    TSSOP-28PTQFN5x5-28

    4543

    oC/W

    Note 2 : 3.42 in 2 printed circuit board with 2OZ trace and copper through 10 vias of 15mil diameter vias. The thermal pad on the TSSOP-28P & TQFN-28packages with solder on the printed circuit board.

    Min. Max. Unit

    Supply voltage, V DD 4.5 5.5 V

    Supply voltage, HV DD 3.0 3.6 VHigh level threshold voltage, V IH AMP_EN, HP_EN 2 V

    Low level threshold voltage, V IL AMP_EN, HP_EN 0.8 V

    for Amplifier V DD-1 VCommon mode input voltage, Vicm

    for Headphone Amplifier HV DD-1 V

    Shutdown 0.8

    Gain Setting 2 4.2 VInput Voltage (V SET )

    Fix Gain 4.5 V

    Electrical Characteristics

    APA2057A Symbol Parameter Test Condition

    Min. Typ. Max. Unit

    VDD Supply Voltage 4.5 5.5 V

    HVDD Headphone Amplifier supply voltage 3.0 3.6 V

    IVDD VDD Supply Current 17.5 29

    IHVDD HVDD Supply Current

    Only Speaker mode,

    AMP_EN = HP_EN = 0V 0.15 1

    IVDD VDD Supply Current 12 20

    IHVDD HVDD Supply Current

    Only Headphone mode,

    HP_EN = AMP_EN = 5V 3 5

    IVDD VDD Supply Current 20 35

    IHVDD HVDD Supply Current

    All Enable, HP_EN=5V and AMP_EN = 0V

    3 5

    mA

    VDD = 5V, HV DD = 3.3V, GND = PGND = CPGND = 0V, T A= 25 C (unless otherwise noted).

  • 7/27/2019 APA2057A

    4/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 4

    APA2057A

    Electrical Characteristics (Cont.)

    APA2057ASymbol Parameter Test Condition

    Min. Typ. Max. Unit

    ISD(HVDD) HVDD Shutdown Current 50 90

    ISD(VDD) VDD Shutdown CurrentSET = 0V

    1 10 A

    I AMP_EN Input current AMP_EN 1 AIHP_EN Input current HP_EN, 10 15 A

    Speaker mode

    THD+N =1%, F in =1KHzRL =4 RL =8 1.0

    1.91.2

    P O Output Power THD+N =10%, F in =1KHzRL =4 RL =8 1.3

    2.41.5

    W

    VOS Output Offset Voltage RL =8 , Gain =10.5dB 10 mV

    THD+N Total Harmonic Distortionplus Noise

    F in =1KHzP O = 1.5W, R L =4 P O = 0.9W, R L =8

    0.150.06

    %

    F in =1KHz, C B=2.2 F, R L=8 , P O=0.92W 80Xtalk Channel Separation

    F in =1KHz, C B=2.2 F, R L =4 , P O=1.5W 83dB

    PSRR Power Supply RejectionRatio CB =2.2 F, R L =8 , F in =120Hz 70 dB

    S/N P O =0.8W, R L =8 , A-weighted Filter 90 dB

    Vn Noise Output Voltage Gain =10.5dB, R L =8 , C B =2.2 F 80 V(rms)Headphone mode

    THD+N = 1%, F in =1KHzRL = 16 RL = 32 100

    160120

    Po Output Power THD+N = 10%, F in =1KHzRL =16 RL =32 150

    200165

    mW

    THD+N=10% 2.9Vo Output Voltage Swing RL =10K

    THD+N=1% 2.4 Vrms

    Vos Output Offset Voltage RL =32 -10 +10 mV

    THD+N Total Harmonic Distortionplus Noise

    F in = 1KHzP O = 125mW, R L =16 P O = 88mW, R L =32 VO=1.7Vrms, R L=10k

    0.020.02

    0.005

    %

    F in =1KHz, R L =16 , P O =125mW 80F in =1KHz, R L =32 , P O =88mW 85Xtalk Channel Separation

    F in =1KHz, R L=10K , VO =1.7Vrms 105dB

    PSRR Power Supply RejectionRatio CB = 2.2 F, R L=32 ,F in =120Hz 80 dB

    VDD = 5V, HV DD = 3.3V, GND = PGND = CPGND = 0V, T A= 25 C (unless otherwise noted).

  • 7/27/2019 APA2057A

    5/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 5

    APA2057A

    Electrical Characteristics (Cont.)

    APA2057ASymbol Parameter Test Condition

    Min. Typ. Max. Unit

    Headphone mode (Cont.)

    S/N

    With A-weighted Filter

    P O = 70mW, R L =32 VO =1.2Vrms, R L=10k

    95

    92

    dB

    Vn Noise OutputVoltage C B =2.2 F 30V

    (rms)

    Rf Input FeedbackResistance 38 40 42 k

    Charge Pump

    Fosc Switching frequency 460 540 620 KHz

    CVSS Charge DumpOutput Voltage(CVSS)

    No load -0.98VDD V

    ReqCharge pumprequirementresistance

    9 12

    Beep

    Vbeep Beep trigger level 3 V PP

    TRES Beep response time 4 ms

    Attenuation

    R L = 32 , VO = 1.1Vrms, F in = 1KHz 115 dB Att(HP_EN)

    HP disableattenuation R L = 10K , VO = 1.1Vrms, F in = 1KHz 85 dB

    R L = 8 , VO = 2Vrms, F in = 1KHz 112 dB Att(AMP_EN)

    AMP disableattenuation R L = 4 , VO = 2Vrms, F in = 1KHz 112 dB

    Att_SD(HP_EN) Shutdown activeR L = 10K on the Headphone Mode,VO = 1.1Vrms, F in = 1KHz

    90 dB

    Att_SD(AMP_EN) Shutdown activeR L = 8 on the AMP Mode, V O = 1Vrms,F in = 1KHz

    100 dB

    Headphone to Speaker Crosstalk

    AMP_EN = 0V, R L = 8 Xtalk Channel Separation HP_EN = 5V, R L = 16 , F in = 1KHz,

    P O = 125mW

    85 dB

    Speaker to Headphone Crosstalk

    HP_EN = 5V, R L = 10K Xtalk Channel Separation AMP_EN = 0V, R L = 4 , F in = 1KHz,

    P O = 1.5W

    80 dB

    Amplifier Start up Time

    Tstart-up Start up time 120 msec

    VDD = 5V, HV DD = 3.3V, GND = PGND = CPGND = 0V, T A= 25 C (unless otherwise noted).

  • 7/27/2019 APA2057A

    6/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 6

    APA2057A

    Gain Setting Table _AMP Mode

    Input Voltage (V SE T )Gain (dB)Low (V) High (V)

    Hysteresis (mV) Recommended Voltage(V )

    -70 0 2.00 SD 0.00

    -7 2.04 2.12 47 2.08

    -5 2.15 2.24 36 2.20

    -3 2.28 2.35 41 2.31

    -1 2.39 2.47 41 2.43

    1 2.51 2.58 35 2.54

    3 2.62 2.70 41 2.66

    4 2.74 2.81 48 2.78

    5 2.86 2.92 43 2.89

    6 2.97 3.04 47 3.01

    7 3.09 3.15 45 3.12

    8 3.21 3.27 54 3.24

    9 3.33 3.39 59 3.36

    10 3.45 3.51 64 3.48

    11 3.56 3.62 53 3.59

    12 3.68 3.73 59 3.70

    13 3.80 3.85 66 3.82

    14 3.92 3.96 69 3.94

    15 4.02 4.07 64 4.05

    16 4.15 4.17 76 4.16

    10.5 4.26 5.00 94 5.00

    Gain (dB) R1 (1%) R# (1%)

    -70 10K 0

    -7 18K 13K

    -5 20K 16K

    -3 18K 16K

    -1 16K 15K

    1 15K 16K

    3 13K 15K

    4 24K 30K

    5 13K 18K

    6 13K 20K

    7 13K 22K

    8 16K 30K

    9 13K 27K

    10 13K 30K

    11 15K 39k

    12 13K 39K

    13 13K 43K

    14 13K 50K

    15 15K 68K

    16 13K 68K

    10.5 10K >90K

    (VDD=5V)

    Recommend Resistances Value for Gain Setting

  • 7/27/2019 APA2057A

    7/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 7

    APA2057A

    T H D + N ( % )

    Output Power (W) Output Power (W)

    T H D + N ( % )

    C r o s s

    t a l k ( d B )

    T H D + N ( % )

    THD+N vs. Output Power

    Frequency (Hz) Frequency (Hz)

    THD+N vs. Output Power

    THD+N vs. Frequency Crosstalk vs. Frequency

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V r m s )

    Frequency (Hz)

    Output Noise Voltage vs. Frequency

    G a i n

    ( d B )

    Frequency Response

    P h a s e

    ( d e g

    )

    Frequency (Hz)

    Typical Operating Characteristics

    0.05

    10

    0.1

    1

    0 30.5 1 1.5 2 2.5

    VDD =5VF in=1KHzC in=2.2 FBW

  • 7/27/2019 APA2057A

    8/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 8

    APA2057A

    T H D + N ( % )

    Output Power (W) Frequency (Hz)

    T H D + N ( % )

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V r m s )

    C r o s s

    t a l k ( d B )

    THD+N vs. Output Power

    Frequency (Hz) Frequency (Hz)

    THD+N vs. Frequency

    Crosstalk vs. Frequency Output Noise Voltage vs. Frequency

    G a i n

    ( d B )

    Frequency (Hz)

    Frequency Response

    C r o s s

    t a l k ( d B )

    Crosstalk vs. Frequency

    Frequency (Hz)

    P h a s e

    ( d e g

    )

    Typical Operating Characteristics (Cont.)

    0.05

    10

    0.1

    1

    0.01 50.1 1

    VDD =5VR L=8 C in=2.2 FBW

  • 7/27/2019 APA2057A

    9/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 9

    APA2057A

    A M P A t t e n u a t

    i o n

    ( d B )

    Frequency (Hz) Frequency (Hz)

    A M P A t t e n u a t

    i o n

    ( d B )

    S h u t d o w n A

    t t e n u a t

    i o n

    ( d B )

    S h u t d o w n A

    t t e n u a t

    i o n

    ( d B )

    AMP Attenuation vs. Frequency

    Frequency (Hz) Frequency (Hz)

    AMP Attenuation vs. Frequency

    Shutdown Attenuation vs. Frequency Shutdown Attenuation vs. Frequency

    O u t p u

    t V o l

    t a g e

    ( V r m s )

    Input Voltage (Vrms)

    Input Voltage vs. Output Voltage

    O u t p u

    t V o l

    t a g e

    ( V r m s )

    Input Voltage vs. Output Voltage

    Input Voltage (Vrms)

    Typical Operating Characteristics (Cont.)

    -120

    +0

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VRL=4 C in=2.2 FVO=2Vrms(F in=1KHz, AMP enable)

    AMP mode (disable)

    -120

    +0

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VRL=8 C in=2.2 FVO=2Vrms(F in=1KHz,AMP enable)

    AMP mode (disable)

    -120

    +0

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VRL=4 C in=2.2 FVO=1Vrms(F in=1KHz)Shutdown active

    AMP mode

    -120

    -110

    -100

    20 20k100 1k 10k

    VDD =5VRL=8 C in=2.2 FVO=1Vrms(F in=1KHz)Shutdown active

    AMP mode

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    3.5

    0.5

    1

    1.5

    2

    2.5

    3

    0 1.50.3 0.6 0.9 1.2

    VDD =5VRL=4C in=2.2 FF in=1KHz

    AMP mode

    0

    4

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    1.50.3 0.6 0.9 1.2

    VDD =5VR L=8C in=2.2 FF

    in=1KHz

    AMP mode

  • 7/27/2019 APA2057A

    10/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 10

    APA2057A

    T H D + N ( % )

    Output Voltage (Volt) Output Power (W)

    T H D + N ( % )

    T H D + N ( % )

    T H D + N ( % )

    THD+N vs. Output Voltage

    Output Power (W) Frequency (Hz)

    THD+N vs. Output Power

    THD+N vs. Output Power THD+N vs. Frequency

    C r o s s

    t a l k ( d B )

    Frequency (Hz)

    Crosstalk vs. Frequenc y

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V

    r m s )

    Output Noise Voltage vs. Frequency

    Frequency (Hz)

    Typical Operating Characteristics (Cont.)

    0.001

    10

    0.01

    0.1

    1

    30.5 1 1.5 2 2.50

    TT

    RL=10K

    RL=300

    RL=32

    RL=16

    VDD =5VHVDD=3.3VF in=1KHzC in=3.3 FBW

  • 7/27/2019 APA2057A

    11/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 11

    APA2057A

    G a i n (

    d B )

    Frequency (Hz) Output Power (W)

    T H D + N ( % )

    T H D + N ( % )

    T H D + N ( % )

    Frequency Response

    Output Power (W) Frequency (Hz)

    THD+N vs. Output Power

    THD+N vs. Output Power THD+N vs. Frequency

    C r o s s

    t a l k ( d B )

    Frequency (Hz)

    Crosstalk vs. Frequency

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V )

    Output Noise Voltage vs. Frequency

    Frequency (Hz)

    P h a s e

    ( d e g

    )

    Typical Operating Characteristics (Cont.)

    +170

    +190

    +175

    +180

    +185

    -0.2

    +0.2

    -0.1

    -0

    +0.1

    10 200k100 1k 10k 100k

    Gain

    Phase

    VDD=5VHVDD=3.3VRL=16 R in=39K C in=3.3 FP O=28mWHP mode

    0.01

    10

    0.1

    1

    1m 200m10m 100m

    F in=20KHz

    F in=20Hz

    F in=1KHz

    VDD=5VHVDD=3.3VRL=32 R in=39K C in=3.3 FBW

  • 7/27/2019 APA2057A

    12/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 12

    APA2057A

    G a i n

    ( d B )

    Frequency (Hz) Output Voltage (Vrms)

    T H D + N ( % )

    C r o s s

    t a l k ( d B )

    T H D + N ( % )

    Frequency Response

    Frequency (Hz) Frequency (Hz)

    THD+N vs. Output Voltage

    THD+N vs. Frequency Crosstalk vs. Frequency

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V r m s )

    Frequency (Hz)

    Output Noise Voltage vs. Frequency

    G a i n

    ( d B )

    Frequency Response

    Frequency (Hz)

    P h a s e

    ( d e g

    )

    P h a s e

    ( d e g

    )

    Typical Operating Characteristics (Cont.)

    +170

    +190

    +175

    +180

    +185

    -0.2

    +0.2

    -0.1

    -0

    +0.1

    10 200k100 1k 10k 100k

    VDD =5VHVDD=3.3VRL=32 R in=39K C in=3.3 FP O=13mWHP mode

    Gain

    Phase

    0.001

    10

    0.01

    0.1

    1

    0 30.5 1 1.5 2 2.5

    F in=20Hz

    F in=20KHz

    F in=1KHz

    VDD=5VHVDD=3.3VRL=300 R in=39K C in=3.3 FBW

  • 7/27/2019 APA2057A

    13/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 13

    APA2057A

    T H D + N ( % )

    Output Voltage (Volt) Frequency (Hz)

    T H D + N ( % )

    O u t p u

    t N o i s e

    V o l

    t a g e

    ( V r m s )

    C r o s s

    t a l k ( d B )

    THD+N vs. Output Voltage

    Frequency (Hz) Frequency (Hz)

    THD+N vs. Frequency

    Crosstalk vs. Frequency Output Noise Voltage vs. Frequency

    G a i n

    ( d B )

    Frequency (Hz)

    Frequency Response

    C r o s s

    t a l k ( d B )

    Crosstalk vs. Frequency

    Frequency (Hz)

    Typical Operating Characteristics (Cont.)

    P h a s e

    ( d e g

    )

    0.001

    10

    0.01

    0.1

    1

    0 30.5 1 1.5 2 2.5

    F in=20Hz

    F in=20KHz

    F in=1KHz

    VDD =5VHVDD=3.3VRL=10K R in=39K C in=3.3 FBW

  • 7/27/2019 APA2057A

    14/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 14

    APA2057A

    H P a t

    t e n u a t

    i o n

    ( d B )

    Frequency (Hz) Frequency (Hz)

    H P a t

    t e n u a t

    i o n

    ( d B )

    S h u t d o w n a t

    t e n u a t

    i o n

    ( d B )

    S h u t d o w n a

    t t e n u a t

    i o n

    ( d B )

    HP attenuation vs. Frequency

    Frequency (Hz) Frequency (Hz)

    HP attenuation vs. Frequency

    Shutdown attenuation vs. Frequency Shutdown attenuation vs. Frequency

    O u t p u

    t V o l

    t a g e

    ( V r m s

    )

    Input Voltage (Vrms)

    Input Voltage vs. Output Voltage

    O u t p u

    t V o l

    t a g e

    ( V r m s

    )

    Input Voltage vs. Output Voltage

    Input Voltage (Vrms)

    Typical Operating Characteristics (Cont.)

    -120

    +0

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VHVDD=3.3VRL=32 C in=3.3 FVO=1Vrms(F in=1KHz HP enable)HP mode (disable)

    Right channel

    Left channel

    -100

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VHVDD=3.3VRL=10K C in=3.3 FVO=1Vrms(F in=1KHz HP enable)HP mode (disable)

    Left channelRight channel

    -140

    +0

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VHVDD=3.3VRL=32 C in=3.3 FVO=1Vrms(F in=1KHz)Shutdown activeHP mode

    Left channel

    Right channel-130

    +0

    -120

    -110

    -100

    -90

    -80-70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VHVDD=3.3VRL=10K C in=3.3 FVO=1Vrms(F in=1KHz)Shutdown activeHP mode

    Left channel

    Right channel

    0

    2.5

    0.5

    1

    1.5

    2

    0 2.50.5 1 1.5 2

    Stereo, inphase

    Mono

    VDD =5VHVDD=3.3VRL=16

    R in=39K C in=3 FF in=1KHzHP mode

    0

    3

    0.5

    1

    1.5

    2

    2.5

    0 30.5 1 1.5 2 2.5

    VDD =5VHVDD=3.3VRL=32

    R in=39K C in=3 FF in=1KHzHP mode Stereo, in

    phase

    Mono

  • 7/27/2019 APA2057A

    15/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 15

    APA2057A

    O u t p u

    t V o l

    t a g e

    ( V r m s )

    Input Voltage (Vrms) Input Voltage (Vrms)

    O u t p u

    t V o l

    t a g e

    ( V r m s )

    Input Voltage vs. Output Voltage Input Voltage vs. Output Voltage

    PSRR vs. Frequency PSRR vs. Frequency

    P S R R ( d B )

    Frequency (Hz)

    PSRR vs. Frequency

    P S R R ( d B )

    PSRR vs. Frequency

    Frequency (Hz)

    P S R R

    ( d B )

    P S R R

    ( d B )

    Frequency (Hz) Frequency (Hz)

    Typical Operating Characteristics (Cont.)

    0

    3

    0.5

    1

    1.5

    2

    2.5

    0 30.5 1 1.5 2 2.5

    Mono &Stereo, in phase

    VDD =5VHVDD=3.3VRL=10K R in=39K C in=3 FF in=1KHzHP mode

    -100

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    Right channel

    Left channel

    VDD=5VRL=4C in=2.2 FVrr=200mVrms

    AMP mode

    Vrr: Ripple Voltage on V DD

    20 20k100 1k 10k

    VDD =5VRL=8 C in=2.2 FVrr=200mVrms

    AMP mode

    Right channel

    Left channel

    -100

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    Vrr: Ripple Voltage on V DD

    -100

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30-20

    -10

    20 20k100 1k 10k

    Left channel

    Right channel

    VDD =5VHVDD=3.3VRL=32 R

    in=39K

    C in=3.3 FVrr=200mVrmsHP mode

    Vrr: Ripple Voltage on HV DD-100

    +0

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    20 20k100 1k 10k

    VDD =5VHVDD=3.3VRL=10K

    R in=39K C in=3.3 FVrr=200mVrmsHP mode

    Left channel

    Right channel Vrr: Ripple Voltage on HV DD

    0

    3

    0.5

    1

    1.5

    2

    2.5

    0 30.5 1 1.5 2 2.5

    Stereo,in phase

    Mono

    VDD =5VHVDD=3.3VRL=300 R in=39K C in=3 FF in=1KHzHP mode

  • 7/27/2019 APA2057A

    16/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 16

    APA2057A

    S u p p l y

    C u r r e n t

    ( m A )

    Supply Voltage (Volt) Supply Voltage (Volt)

    S h u t d o w n

    C u r r e n t

    ( A )

    Supply Current vs. Supply Voltage Shutdown Current vs. Supply Voltage

    Power Dissipation vs. Output Power Power Dissipation vs. Output Power

    Output Power vs Load ResistanceOutput Power vs Load Resistance &

    Charge Pump Capacitance

    P o w e r

    D i s s

    i p a t

    i o n

    ( W )

    P o w e r

    D i s s i p a t

    i o n

    ( m W )

    Output Power (W) Output Power (mW)

    O u t p u

    t P o w e r

    ( m W )

    O u t p u

    t P o w e r

    ( m W )

    Load Resistance ( ) Load Resistance ( )

    Typical Operating Characteristics (Cont.)

    24

    6

    8

    10

    12

    14

    16

    18

    20

    3.0 3.5 4.0 4.5 5.0 5.5

    No Load

    HP Mode

    AMP Mode

    *HP Mode disableHVDD=3.3VIHVDD=0.15mA

    **AMP Mode disableVDD=5VIVDD=12mA

    0

    10

    20

    30

    40

    50

    3.0 3.5 4.0 4.5 5.0 5.5

    Amp modeHP modeNo Load

    ISD(VDD)

    ISD(HVDD)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    0.0 0.5 1.0 1.5 2.0

    VDD =5VTHD+N

  • 7/27/2019 APA2057A

    17/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 17

    APA2057A

    Output Transient at Turn Off

    Output transient at Shutdown ReleaseOutput Transient at Turn On

    Output transient at Shutdown Active

    Operating Waveforms

    AMP_Out

    ((Out+)-(Out-))

    VDD

    HP_Out

    5V/div

    10mV/div

    20mV/div

    SD

    HP_Out

    AMP_Out

    ((Out+)-(Out-))

    5V/div

    10mV/div

    20mV/div

    VDD

    HP_Out

    AMP_Out

    ((Out+)-(Out-))

    5V/div

    10mV/div

    20mV/div AMP_Out

    ((Out+)-(Out-))

    HP_Out

    5V/div

    10mV/div

    20mV/div

    SD

    20ms/div

    200ms/div

    20ms/div

    20ms/div

  • 7/27/2019 APA2057A

    18/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 18

    APA2057A

    TSSOP-28 TQFN-28

    NO. NO.Name Function Description

    1 25 VDD Power supply for control section

    2 26 GND Ground

    3 27 INR_A Right channel input terminal for speaker amplifier

    4 28 INR_H Right channel input terminal for headphone driver

    5 1 INL_A Left channel input terminal for speaker amplifier

    6 2 INL_H Left channel input terminal for headphone driver

    7,23 3,19 PGND Power ground

    8 4 LOUT+ Left channel positive output for speaker

    9 5 LOUT- Left channel negative output for speaker

    10,20 6,16 PVDD Power amplifier power supply11 7 CVDD Charge pump power supply

    12 8 CP+ Charge pump flying capacitor positive connection

    13 9 CGND Charge pump ground

    14 10 CP- Charge pump flying capacitor negative connection

    15 11 CVSS Charge pump output, connect to the HVSS

    16 12 HVSS Headphone amplifier negative power supply

    17 13 HP_R Right channel output for headphone

    18 14 HP_L Left channel output for headphone

    19 15 HV DD Headphone amplifier positive power supply

    21 17 ROUT- Right channel negative output for speaker

    22 18 ROUT+ Right channel positive output for speaker 24 20 HP_EN Headphone driver enable pin, pull high to enable headphone mode

    25 21 BIAS Bias voltage generator

    26 22 SETIt has 19 steps gain setting control from 2.0~4.2V; pull high to 5V is 10.5dB fixgain and pull low to 0V, the APA2057A enter shutdown mode. I SD = 80 A

    27 23 AMP_EN Speaker driver enable pin, pull low to enable speaker mode

    28 24 BEEP PC BEEP Trigger signal input

    Pin Descriptions

  • 7/27/2019 APA2057A

    19/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 19

    APA2057A

    Block Diagram

    ChargePump

    SPK EN

    HP EN

    INR_A

    INL_A

    INR_H

    INL_H

    SET

    BIAS

    CP+

    CP-

    CVSS

    HP_R

    HP_L

    AMP_EN

    HP_EN

    SET

    HVSS

    *40k

    *40k

    HVDD

    Power Mamagement PVDD

    VDD

    CVDD

    Internal gainsetting

    CGND

    PGND GND

    ROUT-

    ROUT+

    LOUT-

    LOUT+

    * The internal Rf's value has10% variation by process

    R f(HP_R)

    R f(HP_L)

  • 7/27/2019 APA2057A

    20/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 20

    APA2057A

    Typical Application Circuit

    R#: For the gain setting of speaker driver thatyou need, refer to the Gain Setting Tablesrecommended voltage, and setting this voltageat SET pins voltage =5R #/(R #+10K).

    Ring

    Headphone Jack

    Sleeve

    Tip

    R_CH

    R_ch

    for AMP

    L_ch

    for AMP

    R_ch

    for HP

    39K

    2.2 F

    2.2 F

    4

    ChargePump

    SPK EN

    HP EN

    INR_A

    INL_A

    INR_H

    INL_H

    SET

    BIAS

    CP+

    CP-

    CVSS

    HP_R

    HP_L

    AMP_EN

    HP_EN

    SET

    HVSS

    *40K

    *40K

    HVDD

    Power Management PVDD

    VDD

    CVDD

    Internalgain

    setting

    CGND

    PGND GND

    ROUT-

    ROUT+

    2.2 F

    3.3 F

    L_ch

    for HP

    39K 3.3 F

    1F

    1F

    L_CH

    4

    LOUT-

    LOUT+

    1F

    0.1 F

    0.1 F

    10 F

    0.1 F

    C i(AMP_R)

    C i(AMP_L)

    C i(HP_R)

    C i(HP_L)

    R i(HP_R)

    R i(HP_L)

    R f(HP_R)

    R f(HP_L)

    CCPB CCPF

    CCPO

    10nF

    VDD(5V)

    10K

    R#Shutdown

    VDD(5V)

    VDD(5V) HVDD(3.3V)

    VSS

    51k

    4.7nF

    Recommended for de-pop

    C B

    SET Pull-high HP_EN to enableheadohone driver

    R1

    CS(VDD)

    CS(PVDD) CS(HVDD)

    CVDD

  • 7/27/2019 APA2057A

    21/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 21

    APA2057A

    Amplifier Mode OperationThe APA2057A has two pairs of operational amplifiersinternally, which allows different amplifier configurations.

    Figure 1: APA2057A internal configuration(each channel)

    The OP1 and OP2 are all differential drive configurations.The differential drive configurations doubling the voltageswing on the load. Compare with the single-endingconfiguration, the differential gain for each channel is 2X

    (Gain of SE mode).

    By driving the load differentially through outputs OUT+and OUT-, an amplifier configuration commonly referredto all differential mode is established. All differential modeoperation is different from the classical single-ended SEamplifier configuration where one side of its load is con-nected to ground.

    A differential ampli fier design has a few distinct advan-tages over the SE configuration, as it provides differentialdrive to the load, thus it is doubling the output swingfor a specified supply voltage. The output power can be4 times greater than the SE amplifier working under thesame condition. A differential configuration, similar as theone used in APA2057A, also creates a second advantageover SE amplifiers. Since the differential outputs, ROUT+,ROUT-, LOUT+, and LOUT-, are biased at half-supply,there is no need for DC voltage across the load. Thiseliminates the need for an output coupling capacitor whichis required in a single supply, SE configuration.

    The APA2057As headphone amplifiers uses a chargepump to invert the positive power supply (CV DD) to negativepower supply (CV SS ), see Figure2. The headphone am-plifiers operate at this bipolar power supply (HV DD & VSS ),and the outputs reference refers to the ground. This fea-ture eliminates the output capacitor that is using in con-ventional single-ended headphone amplifier. The head-phone amplifier internal supply voltage comes from HV DDand V SS . For good AC performance, the HV DD connected to3.3V is recommended. It can avoid the output over volt-age for line out application.

    Charge Pump Flying Capacitor The flying capacitor (C CPF ) affects the load transient of thecharge pump. If the capacitors value is too small, thenthat will degrade the charge pumps current driver capa-bility and the performance of headphone amplifier.

    Increasing the flying capacitors value will improve theload transient of charge pump. It is recommend to usethe low ESR ceramic capacitors (X7R type is recommended)above 1 f.

    Figure 2: Cap-free Operation

    Pre-amplifier Output signal

    Vbias

    OP1

    OP2

    -

    +

    -

    +OUT+

    OUT-DIFF_AMP_CONFIG

    Headphone Mode Operation

    Application Information

    HVDD

    HVDD/2

    GND

    VOUT

    HVDD

    VSS

    GNDVOUT

    Conventional Headphone amplifier

    Cap-free Headphone amplifier

  • 7/27/2019 APA2057A

    22/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 22

    APA2057A

    The HP_EN will detect the voltage. If the voltage isless than 0.8V, the headphone amplifiers will be disabled;if greater than 2V, then the headphone amplifier will beenabled.

    In Figure 3, phone-jack with the control pin is used andconnected to HP_EN input from control pin. When aheadphone plug is inserted, the HP_EN will pull highinternally which enables headphone amplifiers; with-out headphone plug, the HP_EN is pulled to GND.

    Operation Mode

    The APA2057A amplifier has two pairs of independentamplifier. One for stereo speaker is BTL structure, andthe other for headphone is cap-less structure. Each pair has independent input pin; INR_A and INA_L are for ste-reo speaker drivers, and INR_H and INL_H are for stereo headphone drivers.

    Amplif ier mode operat ion: Pull low the AMP_ENcontrol pin can enable the stereo speaker driver.

    Headphone mode operation: Pull high the HP_ENcontrol pin can enable the cap-less headphone

    drive.

    Both amplifier and headphone ON mode: Pull lowthe AMP_EN and pull high the HP_EN control pins,then turn on both speaker drivers and headphonedrivers

    Both amplifier and headphone OFF mode: Pullhigh the AMP_EN and pull low the HP_EN controlpins, then turn off both speaker drivers and head-phone drivers

    If the AMP_EN and HP_EN are connected together, thenthis pin will be connected to headphone jacks controlpin (Figure 3), the APA2057A is switchable between Am-plifier mode (Headphone mute), or Headphone mode(Amplifier mute).

    Gain Setting

    The gain for speaker drivers can be adjustable by apply-ing DC voltage to SET pin. The APA2057A control con-sists 19 step gain settings from 2.0V~ 4.2V, and the gainis from -7dB to 16dB. Each gain step corresponds to aspecific input voltage range, as shown in Gain SettingTable . To minimize the effect of noise on the gain settingcontrol, which can affect the selected gain level, hyster-

    esis and clock delay are implemented. For the highestaccuracy, the voltage shown in the recommended volt-age column of the table is used to select a desired gain.This recommended voltage is exactly halfway betweenthe two nearest transitions. The amount of hysteresiscorresponds to half of the step width, as shown in Fig-ure 4. Apply 0V to SET pin will place the APA2057A intoshutdown mode, and when SD =5V, it allows the speaker driver at a fixed gain (A V=10.5dB).

    Figure 3 HPD configurations

    Charge Pump Output Capacitor

    The output capacitor (C CPO )s value affects the power ripple directly at CV SS (VSS ). Increasing the value of outputcapacitor reduces the power ripple. The ESR of outputcapacitor affects the load transient of CV SS (VSS ). Lower ESR and greater than 1 f ceramic capaci tor (X7R typeis recommended) is recommendation.

    Charge Pump Bypass Capacitor

    The bypass capacitor (C CPB ) relates with the charge pumpswitching transient. The capacitors value is same asflying capacitor (1 f). Place it close to the CV DD and PGND.

    Headphone Detection Input

    Application Information (Cont.)

    Figure 4: APA2057A Gain setting vs. SET pin Voltage

    DC Volume (V)

    G a i n

    ( d B )

    0.0 1.0 2.0 3.0 4.0 5.0-70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    Forward

    Backward

    Ring

    Headphone Jack with swich

    Sleeve

    Control pin

    Tip

    HP_ENHPD_Switch

    HP_L

    HP_R

    1K

    1K

    Headphone Detection

  • 7/27/2019 APA2057A

    23/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 23

    APA2057A

    HP Mode Gain Setting Table for ReferenceR i(HP) ,external

    (k)*Rf(HP) ,internal

    (k) HP OUT (V/V) HP Gain(dB)

    62 40 0.65 -3.850 40 0.80 -1.939 40 1.03 0.2

    30 40 1.33 2.524 40 1.67 4.420 40 2.00 6.0

    *The internal Rf's value has 10% variation by process.

    Consider to input resistance variation, the C i is 1.6 F, so

    one would likely choose a value in the range of 2.2 Fto 3.3 F. A further consideration for this capacitor isthe leakage path from the input source through the inputnetwork (R i+R f , C i) to the load. This leakage currentcreates a DC offset voltage at the input to the amplifier that reduces useful headroom, especially in high gainapplications. For this reason, a low-leakage tantalum or ceramic capacitor is the best choice. When polarizedcapacitors are used, the positive side of the capaci tor should face the amplifier input. As the DC level is heldat V DD/2, which is likely higher than the source DC level.

    (2)

    Please note that it is important to confirm the capaci-tor polarity in the application.

    Note: The headphone dirvers input is ground reference,so please check the C

    i(HP)s polarized at design.

    Effective Bias Capacitor, C B

    As with any power amplifier, proper supply bypassing iscritical for low noise performance and high power supplyrejection.

    The capacitor location on both the bypass and power supply pins should be as close to the device as possible.

    The effect of a larger bypass capacitor is improved PSRRdue to increased 1.8V bias voltage stability. Typicalapplications employ a 5V regulator with 2.2 F and a0.1 F bypass capacitor, which aids in supply filtering.This does not eliminate the need for bypassing thesupply nodes of the APA2057A. The selection of by-pass capacitors, especia lly C B, is thus dependent upondesired PSRR requirements and click-and-popperformance.

    Power Supply Decoupling, C s

    The APA2057A is a high-performance CMOS audio amplifier that requires adequate power supply decoupling toensure the output tot al harmonic distortion (THD+N)is as low as possible. Power supply decoupling al soprevents the oscillations causing by long lead lengthbetween the amplifier and the speaker. The optimumdecoupling is achieved by using two different typesof capaci tor that target on different types of noise on thepower supply leads. For higher frequency transients,spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR) ceramic capacitor, typically0.1 F, is placed as close as possible to the device V DDlead works best (the pin1 (V

    DD) and pin2 (GND)s capaci-

    tor must short less than 1cm). For filtering lower-frequencynoise signals, a large aluminum electrolytic capacitor of 10 F or greater is placed near the audio power amplifier is recommended.

    Shutdown Function

    In order to reduce power consumption while not in use,the APA2057A contains a shutdown pin to externally turnoff the amplifier bias circuitry. This shutdown featureturns the amplifier off when a logic low is placed on the

    Application Information (Cont.)

    Input Capacitor, C i

    In the typical application, an input capacitor, C i, is requiredto allow the amplifier to bias the input signal to the proper DC level for optimum operation. In this case, C i and theminimum input impedance Ri from a high-pass filter withthe corner frequency are determined by the following

    equation:

    The value of Ci is important to consider as it directlyaffects the low frequency performance of the circuit.Consider the example where R i is 10k and thespecification calls for a flat bass response down to10Hz. Equation is reconfigured as below:

    For headphone driver, the internal feedback resistor is40k (R f(HP) external, 10% variation by process), so theheadphone drivers gain is set by the input resistor (R i(HP)external), the Table 1 lists the reference gain settingswith external resistor for headphone driver (HP Mode).

    Table 1: Gain Setting Table for Reference

    Gain Setting (Cont.)

    )CR(21

    =(highpass)Fii(MIN)

    C

    (1)

    Fc)R(21

    =Ci

    i

  • 7/27/2019 APA2057A

    24/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 24

    APA2057A

    (5)

    (7)

    (6)

    Shutdown Function (Cont.)

    (4)

    Table 1 calculates efficiencies for four different output

    PsupPOEfficiency = (3)

    4V R

    R

    2V*V/

    2R )V*(V

    PsupP

    DD

    L

    L

    PDD

    L

    PPO =

    =

    L

    PP

    L

    OOO 2R

    )V*(VR

    rmsV*rmsVP ==

    Where:

    2

    VrmsV PO =

    R2V

    *V=(AVG)I*V=PsupL

    PDDDDDD

    Efficiency of a Differential configuration:Since the APA2057A is a dual channel power amplifier,the maximum internal power dissipation is 2 times thatboth of equations depending on the mode of operation.Even with this substantial increasing in power dissipation,the APA2057A does not require extra heatsink. The

    A final point to remember about linear amplifiers is howto manipulate the terms in the efficiency equation toutmost advantage when possible. Note that in equation,VDD is in the denominator. This indicates that as V DD goesdown, efficiency goes up. In other words, using the effi-ciency analysis to choose the correct supply voltageand speaker impedance for the application.

    Power Dissipation

    Whether the power amplifier is operated in BTL or SEmodes, power dissipation is a major concern. Equation 8states the maximum power dissipation point for a SEmode operating at a given supply voltage and driving aspecified load.

    SE mode:

    In BTL mode operation, the output voltage swing isdoubled as in SE mode. Thus the maximum power dissipation point for a BTL mode operating at the samegiven conditions is 4 times as in SE mode.

    BTL mode:

    R2V

    =PL

    2DD

    MAXD, (8)

    Rp24V

    =PL

    2

    2DD

    MAXD,(9)

    Application Information (Cont.)

    SET pin. The trigger point between a logic high and logiclow level is typically 2.0V. It is the best to switch be-tween ground and the supply V DD to provide maximumdevice performance.

    By switching the SET pin to low, the amplifier enters alow-current consumption state, I DD

  • 7/27/2019 APA2057A

    25/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 25

    APA2057A

    Thermal Considerations

    Linear power amplifiers dissipate a significant amountof heat in the package under normal operating conditions.

    In the Power Dissipation vs. Output Power graph, the APA2057A is operating at a 5V supply and a 4 speaker that 2W output power peaks are available. The verticalaxis gives the information of power dissipation (P D) inthe IC with respect to each output driving power (P O) onthe horizontal axis.

    This is valuable information when attempting to estimatethe heat dissipation of the IC requirements for theamplifier system.

    Using the power dissipation curves for a 5V/4 system,the internal dissipation in the APA2057A and maximumambient temperatures is shown in Table 3.

    Application Information (Cont.)

    For TSSOP-28 package with thermal pad, the thermalresistance ( JA) is equal to 45 oC/W.

    Since the maximum junction temperature (T J,MAX) of APA2057A is 150 C and the ambient temperature (T A) isdefined by the power system design, the maximum power

    dissipation that the IC package is able to handle can beobtained from equation10. Once the power dissipation isgreater than the maximum limit (P D,MAX), either the supplyvoltage (V DD) must be decreased, the load impedance(R L) must be increased or the ambient temperatureshould be reduced.

    Thermal Pad Considerations

    The thermal pad must be connected to ground. Thepackage with thermal pad of the APA2057A requiresspecial attention on thermal de sign. If t he thermal de-

    sign issues are not properly addressed, the APA2057A4 will go into thermal shutdown when driving a 4 load.The thermal pad on the bottom of the APA2057A shouldbe soldered down to a copper pad on the circuit board.Heat can be conducted away from the thermal pad throughthe copper plane to ambient. If the copper plane is not onthe top surface of the circuit board, 8 to 10 vias of 15 mil or smaller in diameter should be used to thermally couplethe thermal pad to the bottom plane. For good thermalconduction, the vias must be plated through and solder filled. The copper plane used to conduct heat away from

    the thermal pad should be as large as practical.If the ambient temperature is higher than 25 C, a larger copper plane or forced-air cooling will be required to keepthe APA2057A junction temperature below the thermalshutdown temperature (150 C).

    In higher ambient temperature, higher airflow rate and/or larger copper area will be required to keep the IC out of thermal shutdown. See Demo Board Circuit Layout asan example for PCB layout.

    power dissipation from equation 9, assuming a 5V-power supply and an 8 load, must not be greater thanthe power dissipation that results from the equation 9:

    (10)JA

    AMAXJ,MAXD,

    T-T =P

    Power Dissipation (Cont.)

    15 mil

    12mil

    Via diameter

    =25mil X4Via diameter =15mil X10

    Ground plane for ThermalPAD

    70 mil 70 mil180 mil120 mil

    2 4 0 m

    i l

    Exposed for thermalPAD connected

    Figure 5: TSSOP-28P layout recommendation

    Max. T A (C)Peak outputpower (W)

    Averageoutput

    power (W)

    Power dissipation(W/channel) With thermal pad

    2 1.95 1.25 37

    2 1.17 1.25 37

    2 0.74 1.19 43

    2 0.43 1.05 55

    2 0.19 0.8 78

    Table 3: APA2057A Power information, 5V/4 , Stereo, Differential mode

  • 7/27/2019 APA2057A

    26/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 26

    APA2057A

    Thermal Considerations (Cont.)

    Table 3 shows that for some applications, no airflow isrequired to keep junction temperatures in the specifiedrange. The APA2057A is designed with a thermal shut-down protection that turns the device off when the junctiontemperature surpasses 150 C to prevent IC from

    damage. The information in table 3 was calculated for maximum listen volume with limited distortion. Whenthe output level is reduced, the numbers in the tablechange significantly. Also, using 8 speakers will dra-matically increase the thermal performance by increasingamplifier efficiency.

    Application Information (Cont.)

    150 - 45(0.8*2) = 78 C (with thermal pad)NOTE: Internal dissipation of 0.8W is estimated for a 2W system

    with 15-dB headroom per channel.

    P-T=T DJAMaxJ,Max A, (11)

    This parameter is measured with the recommendedcopper heat sink pattern on a 2-layer PCB, 23cm 2

    in 5.7mm *4mm in PCB, 2oz. Copper, 100mm 2

    coverage. Airflow 0 CFM the maximum ambient tem-perature depends on the heat sink ability of the PCBsystem.

    To calculate maximum ambient temperatures, firstconsiderati on is that the numbers from the dissipationgraphs are per channel values, so the dissipation of theIC heat needs to be doubled for two-channel operation.

    Given JA , the maximum allowable junction temperature(TJ,Max ), and the total intemal dissipation (P D), the maximumambient temperature can be calculated with the followingequation. The maximum recommended junctiontemperature for the APA2057A is 150 C. The internaldissipation figures are taken from the Power Dissipation

    vs. Output Power graph.

    Package JA

    TSSOP-28 45 C/WTQFN -28 43 C/W

    Table 4: Thermal resistance Table

  • 7/27/2019 APA2057A

    27/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 27

    APA2057A

    Package Information

    TSSOP-28P

    Note : 1. Followed from JEDEC MO-153 AET.2. Dimension "D" does not include mold flash, protrusions

    or gate burrs. Mold flash, protrusion or gate burrs shall notexceed 6 mil per side.

    3. Dimension "E1" does not include inter-lead flash or protrusions.Inter-lead flash and protrusions shall not exceed 10 mil per side.

    S YMB

    OL MIN. MAX.

    1.20

    0.05

    0.09 0.20

    9.60 9.80

    0.15

    A

    A1

    c

    D

    E

    e

    L

    MILLIMETERS

    b 0.19 0.30

    0.65 BSC

    TSSOP-28P

    0.45 0.75

    0.026 BSC

    MIN. MAX.

    INCHES

    0.047

    0.002

    0.007 0.012

    0.004 0.008

    0.378 0.386

    0.169 0.177

    0.018 0.030

    0

    0.006

    A2 0.80 1.05

    4.30 4.50E1

    6.40 BSC 0.252 BSC

    0.031 0.041

    3.30D1 0.130

    E2 1.50 0.059

    7.00

    4.00

    0.276

    0.157

    INCHES

    8 0 80

    0VIEW A

    0 . 2 5

    SEATING PLANEGAUGE PLANE

    SEE VIEW A

    E 1

    E

    b c

    A 2 A

    e

    A 1 L

    E 2EXPOS

    ED PAD

    D1

    D

  • 7/27/2019 APA2057A

    28/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 28

    APA2057A

    Package Information

    TQFN5x5-28

    AD

    E

    A1

    A3

    Pin 1Corner

    E 2

    L

    D2

    e

    b

    S YMBOL MIN. MAX.

    0.80

    0.00

    0.18 0.30

    3.50 3.80

    0.05

    3.50

    A

    A1

    b

    D

    D2

    E

    E2

    e

    L

    MILLIMETERS

    A3 0.20 REF

    TQFN5x5-28

    0.35 0.45

    3.80

    0.008 REF

    MIN. MAX.

    INCHES

    0.031

    0.000

    0.007 0.012

    0.138 0.150

    0.138

    0.014 0.018

    0.70

    0.150

    0.028

    0.002

    5.00 BSC 0.197 BSC

    5.00 BSC 0.197 BSC

    0.50 BSC 0.020 BSC

  • 7/27/2019 APA2057A

    29/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 29

    APA2057A

    Application A H T1 C d D W E1 F

    330.0 2.00 50 MIN. 16.4+2.00-0.0013.0+0.50

    -0.20 1.5 MIN. 20.2 MIN. 16.0 0.30 1.75 0.10 7.5 0.10

    P0 P1 P2 D0 D1 T A0 B0 K0TSSOP-28P

    4.0 0.10 8.0 0.10 2.0 0.10 1.5+0.10-0.00 1.5 MIN.0.6+0.00

    -0.406.90 0.20 10.2 0.20 1.50 0.20

    Application A H T1 C d D W E1 F

    330.0 2.00 50 MIN. 16.4+2.00-0.0013.0+0.50

    -0.20 1.5 MIN. 20.2 MIN. 12.0 0.30 1.75 0.10 5.5 0.10

    P0 P1 P2 D0 D1 T A0 B0 K0TQFN5x5-28

    4.0 0.10 12.0 0.10 2.0 0.10 1.5+0.10-0.00 1.5 MIN.0.6+0.00

    -0.405.30 0.20 5.30 0.20 1.30 0.20

    (mm)

    Carrier Tape & Reel Dimensions

    Package Type Unit QuantityTSSOP- 28P Tape & Reel 2000TQFN5x5-28 Tape & Reel 2500

    Devices Per Unit

    A

    E 1

    AB

    W

    F

    T

    P0OD0

    B A0

    P2

    K0

    B 0

    SECTION B-B

    SECTION A-A

    OD1

    P1

    H

    T1

    A

    d

  • 7/27/2019 APA2057A

    30/31

    Copyright ANPEC Electronics Corp.Rev. A.1 - Aug., 2007

    www.anpec.com.tw 30

    APA2057A

    Test item Method DescriptionSOLDERABILITY MIL-STD-883D-2003 245 C, 5 secHOLT MIL-STD-883D-1005.7 1000 Hrs Bias @125 CPCT JESD-22-B,A102 168 Hrs, 100 %RH, 121 CTST MIL-STD-883D-1011.9 -65 C~150 C, 200 CyclesESD MIL-STD-883D-3015.7 VHBM > 2KV, VMM > 200VLatch-Up JESD 78 10ms, 1 tr > 100mA

    Reflow Condition (IR/Convection or VPR Reflow)

    Classification Reflow ProfilesProfile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly

    Average ramp-up rate(TL to T P)

    3C/second max. 3 C/second max.Preheat

    - Temperature Min (Tsmin)- Temperature Max (Tsmax)- Time (min to max) (ts)

    100 C150 C

    60-120 seconds

    150 C200 C

    60-180 seconds

    Time maintained above:- Temperature (T L)- Time (t L)

    183 C60-150 seconds

    217 C60-150 seconds

    Peak/Classification Temperature (Tp) See table 1 See table 2Time within 5 C of actualPeak Temperature (tp) 10-30 seconds 20-40 seconds

    Ramp-down Rate 6C/second max. 6 C/second max.Time 25 C to Peak Temperature 6 minutes max. 8 minutes max.

    Notes: All temperatures refer to topside of the package. Measured on the body surface.

    t 25 C to Peak

    tp

    Ramp-up

    tL

    Ramp-down

    tsPreheat

    Tsmax

    Tsmin

    TL

    TP

    25

    T e m p e r a t u r e

    Time

    Critical ZoneTL to T P

    Reliability Test Program

  • 7/27/2019 APA2057A

    31/31

    Copyright ANPEC Electronics Corp.R A 1 A 2007

    www.anpec.com.tw 31

    APA2057A

    Table 2. Pb-free Process Package Classification Reflow Temperatures

    Package ThicknessVolume mm 3

    2000