+ All Categories
Home > Documents > APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

Date post: 16-Jan-2017
Category:
Upload: steve-mappus
View: 597 times
Download: 0 times
Share this document with a friend
48
www.fairchildsemi .com Designing AC-DC Power Supplies for High Efficiency
Transcript
Page 1: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com

Designing AC-DC Power Supplies for High Efficiency

Page 2: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com2

300W High Efficiency AC-DC Converter

340W Interleaved BCM PFC

300W AHB DC-DC with Current Doubler Rectifier

Page 3: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com3

Total Measured AC-DC System Efficiency100%=300W

>90% for POUT > 38% (114W)

91% Peak for 120VAC, 92% Peak for 230VAC

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%70%

75%

80%

85%

90%

95%

100%

Total Measured AC-DC System Efficiency

120 Vac

230 Vac

Output Power (%)

Effic

ienc

y (%

)

Page 4: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com4

300W AC-DC Board DimensionsPower Density Calculation

231 mm

158 mm

18 mm

Board Profile:18 mm(0.7 in)

Board Area:36,498 mm2

(56.55 in2)

Volume:657 cm3

(39.6 in3)

Power Density:0.456 W/cm3

(7.5 W/in3)

Page 5: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com5

300W AC-DC Power Partitioning

EMI Filter and Bridge Rectifier 340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N)

300W AHB DC-DC with Current Doubler Rectifier(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)

Page 6: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com6

Interleaved PFC Section340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N)

EMI Filter and Bridge Rectifier

Page 7: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com7

Interleaved BCM/CRM PFC No reverse recovery

Less expensive diode can be used Less switching loss, Less EMI

Smaller inductor than single CCM PFC (Overall inductor size is reduced)

Phase management can improve light-load efficiency

Reduced ripple current in the output capacitor

IL1

IL2

IL1 + IL2

iL

(1-D)TsDTs

TsIL

IDIsw

iL

DTs

Ts

IDIsw

BCM

CCM

IL1

IL2

IL1 + IL2

Page 8: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com8

FAN9611/12 Interleaved Dual BCM PFC Controller

Efficiency Interleaved Lower Turn-off Losses Phase Management Valley Switching Minimize COSS losses Strong gate drive reduce switching losses Adjust Bulk Output Voltage at Light Load Boost-follower (“tracking boost”) Possible

Protection Closed-loop soft-start w/ Prog. Ramp Time Power and Current Limit per Channel Input Voltage Feed-forward Secondary Latched OVP Input Brown-out Protection Internal maximum fSW clamp limit

Ease of Design & Solution Size Easy Valley Detection Implementation Easy Loop Compensation (constant BW and

PWM Gain) Integrated +2.0A/-1.0A Gate Drivers Works with DC, 50Hz to 400Hz AC Inputs

VOUT

385 VDC

D2

D1

FAN96121

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

CS2

CS1

VDD

DRV1

DRV2

PGND

VIN

OVPFB

COMP

SS

AGND

MOT

5VB

ZCD2

ZCD1

L2

AC IN85-265 VAC

L1

M2

R1 R2

CBULK

M1

BIAS

Bold = Key Advantages

FAN9611: UVLO (10.0 V / 7.5 V)FAN9612: UVLO (12.5 V / 7.5 V)

Page 9: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com9

Asymmetrical Half-Bridge (AHB) Section

300W AHB DC-DC with Current Doubler Rectifier(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)

Page 10: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com10

Asymmetrical Half-Bridge Converter

Advantages Fixed frequency ZVS Constant power transfer (D and 1-D) reduces output ripple Power stage can be controlled using any active clamp PWM controller Easy implementation of self-driven synchronous rectification

Disadvantages High voltage stress on secondary rectifier Loss of ZVS at some min load current – extending ZVS range is difficult Poor transient response due to DC blocking capacitors Increased magnetizing current at DMIN can push transformer toward saturation -

Transformer design is critical

Page 11: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com11

FSFA2100Features

Internal 600V SuperFETTM

MOSFETs with fast recovery body diodes (tRR=120ns) toimprove reliability and efficiency when operating out of ZVS mode

Protection functions: Over Voltage Protection (OVP), Over Load Protection (OLP), Abnormal Over Current Protection (AOCP), Internal Thermal Shutdown (TSD)

Up to 300kHz operating frequency with fixed dead time (200ns)

Applicable to AHB and active clamp flybacks etc.

Rsense

ControlICCDL

Vcc VDLLVcc

RT

VFB

CS

SG PG

VCTR

HVcc

Cr

Llk

Lm

Ns

Vo

D1

D2RFCF

Np Ns

KA431Vin

Rsense

ControlICCDL

Vcc VDLLVcc

RT

VFB

CS

SG PG

VCTR

HVcc

Cr

Llk

Lm Vo

D1

RFCF

Np

Ns

KA431

Vin

Page 12: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com12

Dual channel Low side gate drivers are good solution for self driven SR

Gate drive signal is easily obtained from the transformer voltage

Enable pin can be used to disable SR until the output is built up during startup

Self driven SR using Low side drivers

DTS (1-D)TS

Dloss1TS

VGS S1 S2 S1

ipri

vT2

iLo1

iLo2

iSR2iSR1

t0 t1 t2 t3 t4

(Vin-VCb)/Lm -VCb/Lm

(Vin-VCb)/n

-VCb/n

-VO/LO1

-VO/LO2

(VCb/n-VO)/LO2((Vin-VCb)/n-VO)/LO1

diLo1+diLo2 diLo1+diLo2

im

t

t

t

t

t

Dloss2TS

Vo

Ns

L201

L202

Low side driversQdr1

Qdr2

N3

N4

FAN3224

INA

INB OUTA

OUTBENA

ENB

Page 13: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com13

FAN3223/4/5 Dual 4A Drivers

20V Abs Max (18V Max Operation)

3x3mm MLP-8 and SOIC-8 Dual 5A-peak sink & source

(4.3A sink/2.8A src. at Vdd/2) CMOS or TTL input thresholds 10ns fall time with 2.2nF load Prop delays < 20ns Under-Voltage Lockout Industry standard pin-outs

Dual Inverting & dual Non-Inverting with dual Enable

Dual-Input version Enable defaults to “ON” Fail-Safe Inputs: Output held

low if no input signal

6 VDD

7 OUTA

VDD_OK

5 OUTB

Inverting(FAN3223)

INA 2

100k

ENA 1

GND 3

VDD

SmartStart-up

100k

8

VDD

ENB

Inverting(FAN3223)

INB 4

100k

100k

100k

100k

100k

100k

Non-Inverting(FAN3224)

Non-Inverting(FAN3224)

UVLO

Part of the family of High-Performance

Low-side Gate Drivers from

Fairchild

Page 14: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com14

Design Methodology

AC-DC 300W POWER SUPPLY DESIGN SPECIFICATIONSInterleaved BCM PFC Section

MIN TYP MAXVIN_AC 90V 120V 265VFVIN_AC 50Hz 60Hz 65HzVOUT_PFC 389.5V 390V 391.25VVOUT_PFC_RIPPLE 10V 11VPOUT_PFC 340W 350WFSW_PFC 18kHz 300kHztHOLD_UP 20mstSOFT_START 250ms 300mstON_OVERSHOOT 10Vη_PFC_120V 97% 97.5%η_PFC_230V 98% 98.6%PF_120V 0.990PF_230V 0.983

DC-DC Converter SectionVOUT_AHB 12.22 12.2V 12.25VOUT_AHB_RIPPLE 0.12VPP 0.13VPPVOUT_AHB_REGULATION 0.12% 0.16%POUT_AHB 310WIOUT_AHB 0A 25AFSW_AHB 120kHzη_AHB 92% 93.3%η_TOTAL 90% 92%

Mechanical and ThermalHeight 18mmθJC 60⁰C

Primary Design Goals:1. Maximize Wide Range Efficiency

2. Lowest Possible Design Profile

3. Minimize Heat Sinks

4. Conventional Design Methods

Page 15: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com15

Interleaved PFC Section340W Interleaved BCM PFC (FAN9612+SupreMOS™ FCP22N60N)

EMI Filter and Bridge Rectifier

Page 16: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com16

FAN9612 Interleaved BCM PFC Schematic

Page 17: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com17

FAN9612 PFC Steady State VGS and VDS

120VAC Input, IOUT=12.5ADC

Always ZVS

No Coss turn-on loss

230VAC Input, IOUT=12.5ADC

ZVS when VIN < ½ VOUT

No Coss turn-on loss

Valley Switching for VIN > ½ VOUT

Minimizes Coss turn-on loss

VGS1

VGS2

VDS1

VDS1

Valley SwitchingZVS

Page 18: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com18

FAN9612 230VAC Switching, VGS and VDS

230VAC Input, IOUT=25ADC

VIN > ½ VOUT

Valley Switching Shown Minimizes Coss turn-on loss

VGS1

VDS1

IL1

230VAC Input, IOUT=25ADC

VIN < ½ VOUT

ZVS Shown Eliminates Coss turn-on loss

Page 19: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com19

FAN9612 PFC Current Waveforms

230VAC Input, IOUT=25ADC

IIN

120VAC Input, IOUT=25ADC

IL1

IL2

IL1+IL2

Page 20: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com20

FAN9612 Interleaved PFC Current Waveforms

230VAC Input, IOUT=25ADC 120VAC Input, IOUT=25ADC

IL1

IL2

IL1+IL2

Page 21: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com21

FAN9612 Interleaved Current Waveforms

230VAC Input, IOUT=25ADC

3Ap Inductor Ripple Current

1.4App Cancellation Current

53% Ripple Current Reduction

120VAC Input, IOUT=25ADC

5Ap Inductor Ripple Current

1.6App Cancellation Current

68% Ripple Current Reduction

IL1

IL2

IL1+IL2

IL1

IL2

IL1+IL2

Page 22: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com22

FAN9612 Phase Management Waveforms

120VAC, 390VDC, IOUT_PFC=0.107ADC

POUT_MAX=340W

2 Phase to 1 Phase at 41.75W 12% (default) Phase Threshold

120VAC, 390VDC, IOUT_PFC=0.166ADC

POUT_MAX=340W

1 Phase to 2 Phase at 64.75W 19% (default) Phase Threshold

VGS1

VGS2

IL1

IL2

Page 23: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com23

FAN9612 Phase Management Waveforms1 Phase to 2 Phase

120VAC, 390VDC, IOUT_PFC=0.166ADC

POUT_MAX=340W

1 Phase to 2 Phase at 64.75W 19% (default) Phase Threshold

120VAC, 390VDC, IOUT_PFC=0.166ADC

POUT_MAX=340W

1 Phase to 2 Phase at 64.75W 19% (default) Phase Threshold

VGS1

VGS2

IL1

IL2

Page 24: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com24

FAN9612 PFC VOUT Start-Up Waveforms

120VAC Input, IOUT=25ADC

Closed Loop Soft-Start 0V Overshoot

120VAC Input, IOUT=0ADC

Closed Loop Soft-Start <10V Overshoot <2.5% for 390V Output

VGS1

VOUT

IL1

IIN

Page 25: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com25

FAN9612 PFC VOUT Start-Up Waveforms

230VAC Input, IOUT=25ADC

Closed Loop Soft-Start 0V Overshoot

230VAC Input, IOUT=0ADC

Closed Loop Soft-Start <10V Overshoot <2.5% for 390V Output

VGS1

VOUT

IL1

IIN

Page 26: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com26

FAN9612 120VAC Input Current and FFT

120VAC, VOUT=12VDC, IOUT=25ADC

100% Load PF=0.991

FSW_AHB=120kHz

35kHz<FSW_PFC<300kHz

120VAC, VOUT=12VDC, IOUT=5ADC

20% Load PF=0.952

FSW_AHB=120kHz

35kHz<FSW_PFC<300kHz

VIN

IIN

IIN_FFT

Page 27: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com27

FAN9612 230VAC Input Current FFT

230VAC, VOUT=12VDC, IOUT=25ADC

100% Load PF=0.983

FSW_AHB=120kHz

35kHz<FSW_PFC<300kHz

230VAC, VOUT=12VDC, IOUT=5ADC

20% Load PF=0.879

FSW_AHB=120kHz

35kHz<FSW_PFC<300kHz

VIN

IIN

IIN_FFT

Page 28: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com28

FAN9612 Interleaved BCM PFC Efficiency100%=340W

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%70%

75%

80%

85%

90%

95%

100%

FAN9612 Interleaved BCM PFC Measured Efficiency

120 Vac 230 Vac

Output Power (%)

Effic

ienc

y (%

)

>97% for 20%<POUT<100%, 120VAC Input, 97.5% peak

>98% for POUT>40%, 230Vac Input, 98.6% peak

Page 29: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com29

Total Measured AC-DC System Efficiency100%=300W

>90% for POUT > 38% (114W)

91% Peak for 120VAC, 92% Peak for 230VAC

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%70%

75%

80%

85%

90%

95%

100%

Total Measured AC-DC System Efficiency

120 Vac

230 Vac

Output Power (%)

Effic

ienc

y (%

)

Page 30: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com30

FAN9612 Interleaved BCM PFC AC-DC System Power Factor

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%0.70

0.75

0.80

0.85

0.90

0.95

1.00

FAN9612 AC-DC Measured Power Factor

120 Vac 230 Vac

Output Power (%)

Pow

er F

acto

r

PF>0.9 for 20%<POUT<100%, 120VAC<VIN<230VAC

Page 31: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com31

Asymmetrical Half-Bridge (AHB) Section

300W AHB DC-DC with Current Doubler Rectifier(FSFA2100+FAN3224T+PowerTrench™ FDP047N08+ PowerTrench™ FDP025N06)

Page 32: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com32

FSFA2100 AHB DC-DC Schematic

Page 33: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com33

FSFA2100 AHB Primary ZVS WaveformsNo Load

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

ZVS Turn-On down to 0% Load Soft Commutation of Current

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

AHB Limits VDS to VIN

ZVS Turn-On down to 0 Load

VDS(High)

(200X Probe)

ID

ZVS390V

Page 34: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com34

FSFA2100 AHB Primary ZVS WaveformsFull Load

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

ZVS Turn-On at 100% Load Soft Commutation of Current

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

AHB Limits VDS to VIN

ZVS Turn-On at 100% Load

VDS(High)

(200X Probe)

ID

ZVS390V

Page 35: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com35

FSFA2100 AHB Current Doubler Rectifier

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

ZVS Turn-On at 100% Load Soft Commutation of Current Asymmetrical Voltage Stress

VDS_SR1 = 60V spike

VDS_SR2 = 40V spike

D = 38%

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

Self Driven SR (FAN3224T) ZVS Turn-On at 100% Load Asymmetrical Voltage Stress

VDS_SR1 = 78V spike

VDS_SR2 = 36V spike

D = 33%

VDS_SR1

VGS_SR1

VDS_SR2

VGS_SR2

20V

43V

Page 36: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com36

FSFA2100 AHB Current Doubler RectifierNo Load SR Dead Time

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

Falling Edge SR Dead Time

VGS_SR1_R to VGS_SR2_F = 30ns

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

Rising Edge SR Dead Time

VGS_SR1_F to VGS_SR2_R = 27ns

VDS_SR1

VGS_SR1

VDS_SR2

VGS_SR2

VDS_SR1

VGS_SR1

VDS_SR2

VGS_SR2

Page 37: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com37

FSFA2100 AHB Current Doubler RectifierFull Load SR Dead Time

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

Falling Edge SR Dead Time

VGS_SR1_R to VGS_SR2_F = 380ns

12:1 Variation verses Load

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

Rising Edge SR Dead Time

VGS_SR1_F to VGS_SR2_R = 260ns

10:1 Variation verses Load

Total SR Body-Diode Conduction Loss

PBDC_SR1=1.54W, PBDC_SR2=0.86W

0.8% Total Overall Efficiency Penalty

VDS_SR1

VGS_SR1

VDS_SR2

VGS_SR2

VDS_SR1

VGS_SR1

VDS_SR2

VGS_SR2

Page 38: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com38

FSFA2100 AHB Current Doubler RectifierOutput Ripple Current Cancellation

VIN=390VDC, VOUT=12VDC, IOUT=25ADC

Asymmetrical Current Distribution

IL_SR1 = 6.4APP, 11.10ARMS

IL_SR2 = 8.6APP, 14.07ARMS

Ripple Current Cancellation

IL_SUM = 5.4APP, 25ARMS

37% reduction eases filter cap

VIN=390VDC, VOUT=12VDC, IOUT=0ADC

Asymmetrical Current Distribution

IL_SR1 = 4APP, 0.89ARMS

IL_SR2 = 8.2APP, 2.13ARMS

Ripple Current Cancellation

IL_SUM = 5.8APP, 1.28ARMS

29% Reduction

IL_SR1

VGS_SR1

VGS_SR2

IL_SR2

IL_TOTAL(MATH FUNCTION)

NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement

IL_SUM(MATH FUNCTION)

IL_SUM(MATH FUNCTION)

Page 39: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com39

FSFA2100 AHB Output Ripple Voltage

VIN=390VDC, VOUT=12.2VDC, IOUT=25ADC

VOUT Capacitor Ripple Voltage

VOUT_AC = 120mVPP

0.98% of 12.2V

VIN=390VDC, VOUT=12.2VDC, IOUT=0ADC

VOUT Capacitor Ripple Voltage

VOUT_AC = 130mVPP

1.06% of 12.2V

VGS_SR1

VGS_SR2

VOUT_AC

NOTE: Additional Ringing Due to Current Doubler Loops Installed for Measurement

Page 40: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com40

FSFA2100 AHB DC-DC Efficiency100%=300W

93% at Full Load (12V, 25A) 93.3% Peak at 50% Load

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%70%

75%

80%

85%

90%

95%

100%

FSFA2100 AHB DC-DC Efficiency

Output Power (%)

Effic

ienc

y (%

)

Page 41: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com41

Output Voltage Regulation

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%12.10

12.12

12.14

12.16

12.18

12.20

12.22

12.24

12.26

12.28

12.30

Output Voltage Regulation for AC-DC System

120 Vac

230 Vac

Output Power (%)

VOUT

(VDC

)

0.16% for Full Load Range at 120VAC

0.11% for Full Load Range at 230VAC

Page 42: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com42

RELATED MATERIALSAppendix

Page 43: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com43

Single Phase CCM PFC

IL (1-D)TsDTs

TsIL

IDIsw

(Not to scale)

Benefits Peak to RMS ratio lower

Lower I2R losses Lower ripple current

Lower core loss Lower EMI

Smaller input filter Can be used at any power level Easily interleaved for power levels to many

KW’s.

Challenges Requires very fast boost diode with low

IRR Silicon carbide diodes are often used

Large inductor MOSFET switching loss (hard switching)

Page 44: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com44

Single Phase BCM PFC

(Not to scale)

IL

DTs

Ts

IDIsw

Benefits Simple to design, well understood control

technique Lower I2R losses

MOSFET turns on at zero current and minimum voltage

Lower core loss No reverse recovery in boost diode

Low cost fast recovery diode can be used

Lower current sensing loss compared to CCM

Challenges Higher MOSFET conduction losses Variable frequency High peak current limits practical use to 300W

Impact on EMI filter size

Page 45: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com4545

Asymmetrical Half-Bridge (AHB) Converter

Square wave generator produces a square wave voltage (Vd) by driving switches Q1 and Q2 complementarily

Energy transfer network removes DC offset of the square wave voltage (Vd) using DC blocking capacitor (CB) transfers a pure AC square wave voltage to the secondary through the transformer Causes Ip to lag Vpr to provide ZVS condition for Q1 and Q2

Rectifier network produces a DC voltage by rectifying the AC voltage with rectifier diodes and a low-pass

LC filter

+

VO

-Ro

Q1

Q2

n:1Ip

Llkp

LmCBIds2

Im

ILO

Vin

Io+Vd

-

Square wave generator

Energy transfer network Rectifier network

VCB

+Vpr

-

+Vrec

-

Ids1

C2

C1

1-D

D

Page 46: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com46

Asymmetrical Half-Bridge Converter

D1

D2

L

CO

NPNS

Q1

NS

Q2

CIN

C1

C2

VP

VP

IP

Q2 (D)

Q1 (D)

VIN/2

-VIN/2

D=0.46 D=0.23

VIN/2

-VIN/2

VP

IP

Q2 (D)

Q1 (1-D)

VC1

VC2

VC1

VC2

D=0.46 D=0.23

EqualArea

(a) Symmetrical HB waveforms

(b) Asymmetrical HB waveforms

Asymmetrical Gate Drive Q2 modulated by D Q1 driven by 1-D Fixed dead time between Q1 and Q2 Dead time optimized for ZVS and anti cross

conduction Fixed frequency ZVS PWM operation Near D=0.5, operation is same as symmetrical HB

INC VDV 1

INC VDV 12

DDNN

VV

P

S

IN

O 12

Page 47: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com47

Current Doubler Rectifier

D1

D2

L

CO

NP

NS

NS

VO

D1

D2

L CO

NP

NS

NS

VO

D1

D2

CO VOV

I

V

What is it? - A full wave alternative rectification technique compatible with all double ended converter topologies

D1

D2

CO VO

VI

I

D1

D2

CO VO

L2

L1

NP NSNP NS

D1

D2

L1

CO

L2

VO NP

Q1

L1

CONS

L2

Q2

VO

OR

Current Doubler

Derivation of Current Doubler

(a) (b) (c) (d)

(e)

(f) (g)

Page 48: APEC 2010 ACDC Live Demo Tech SessionPresentation_Feb 19 2010

www.fairchildsemi.com48

Synchronous Rectification (SR)

D1

D2

L

CONP NS

CIN

Q1

ResetCircuit

Efficiency vs Output VoltageVf=0.4V, Vf=1V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.5 1.7 2.8 4.0 5.1 6.3 7.4 8.6 9.7 10.9 12.0

Output Voltage (V)

Effic

ienc

y

Vf=0.4V Vf=1V

Q2

Q3

L

CONP NS

CIN

Q1

ResetCircuit

What is Synchronous Rectification? Replacing secondary side discrete

rectifiers (D1, D2) with MOSFETs (Q2, Q3)

Benefits of SR Parallel MOSFETs Increase efficiency

Lower output voltage and higher current applications benefit most

How do we drive them?

OUT

FOUTFOUTOUT

OUTOUT

IN

OUT

VVIVIV

IVPP

1

1


Recommended