+ All Categories
Home > Documents > APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28...

APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28...

Date post: 25-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
223
APPDOIXA AR103071
Transcript
Page 1: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

APPDOIXA

AR103071

Page 2: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZWUTHAL RESISTIVITY - WELL C-3A- 50'

Center at 2600 Ohm-FeetEdge at 1100 Ohm-Feet250 Oha-Feet per Division (annular)15° per Division (angular)

ARI03072

Page 3: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIHUTHAL RESISTIVITY - WELL C-3

Center it 2300 Ohm-FeetEd?e at 800 Ohm-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

AR.103073

Page 4: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZWUTHAL RESISTIVITY - HELL C-1A- 50'

Center at 2600 Ohm-FeetEdge at 1100 Ohm-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

ARIP307&

Page 5: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIBUTHAL RESISTIVITY - WELL C-4-..»• '*it#.r ^ •-*#

A* 75'

Center at 2200 Ohm-FeetEdge at 700 Ohm-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

flRI03075

Page 6: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIHUTHAL RESISTIVITY - HELL C-6A- 50'N

Center at 2400 Ohm-FeetEdge at 900 Ohm-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

ARI03076

Page 7: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIHUTHAL RESISTIVITY - WELL C-6T 'V!I75,

2300 Ohm-FeetEdge at 800 .Ohm-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

"RI03077

Page 8: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIMUTHAL RESISTIVITY - HELL C-7A-50'N

Center at 2400 Ohm-FeetEdge at 900 Ohm-Feet250 Ohm-Feet per Division (annular)1S° per Division (angular)

ARI03078

Page 9: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIMUTHAL RESISTIVITY - HELL C-7A- 75'

Center at 2300 Ohm-FeetEdge-at 800 . Ohm-Feet250, • Ohm-Feet per Division (annular)IS0/ peri Division (angular)

Page 10: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIMUTHAL RESISTIVITY - HELL C-8A - 50'N

Center at 2400 Ohn-FeetEdge at 900 Ohn-Feet250 Oha-Feet per Division (annular)15° per Division (angular)

ARI03080

Page 11: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZinilTHAL RESISTIVITY - HELL C-8s. • i-''"'iS'" H*' _ X' .

A* 75'

Center rat 2700 Ohm-FeetEdge at 1200 Ohm-Feet250 Ohm-Feet per Division (annular)

per Division (angular)

flRI0308i

Page 12: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIHUTHAL RESISTIVITY - HELL C-llA-50'N

Center at 2300 Ohm-FeetEdge at 800 Ohn-Feet250 Ohm-Feet per Division (annular)15° per Division (angular)

ARI03082

Page 13: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AZIHUTHAL RESISTIVITY -.HELL C-ll. , , - . - -i,'r,t •' *'*->! = - - lr '• "•'

A* 75'

Center at 2400 Ohm-FeetEdge at 900 Ohm-Feet '250 Ohm-Feet per Division (annular)15° per Division (angular)

Page 14: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.RESISTIVITY PROFILING

LINE A

A-SPACING A-SPACING A-SPACING50 rr 75 PT 100 n

RESISTANCE RESISTIVITY RESISTANCE RESISTIVITY RESISTANCE RESISTIVITYSTATION <oh»> (oha-ft) STATION (otu) <oh»-ft> STATION (of») (ofw-ft)

175 5.11 1605 261.225 3.59 1128 337.275 3.45 1084 412.325 2.16 679 487.375 3.23 1015 562.425 3.21 1008 637.475 4.06 1275 712.525 5.42 1703 787.575 4.90 1539 862.625 5.55 1744 937.675 4.64 1458 1012.725 4.65 1461 1087.775 4.24 1332 1162.825 3.67 1153 1237.875 2.85 895 1312.925 3.92 1232 1387.975 2.55 801 1462.1025 4.22 1326 1537.1075 3.04 955 1612.1125 2.96 930 1687.1175 3.69 1159 1762.1225 3.53 1109 1837.1275 3.11 977- 1912.1325 3.68 . 1156 1987.

2.61 1230 250 2.36 14831.82 856 300 1.72 10822.35 . 1202 350 1.84 11592.38 1122 400 1.95 12233.00 1414 450 1.76 11062.91 1371 500 1.86 11712.16 1018 550 2.08 13072.32 1093 600 1.97 12401.33 628 650 1.66 10401.55 732 700 1.35 8511.89 890 750 1.39 8731.28 603 800 1.37 8612.31 1089 850 1.05 6571.61 758 900 0.80 5022.54 1197 950 1.00 6291.92 903 1000 0.98 6133.05 1437 1050 0.88 5523.97 1871 1100 0.85 5353.20 1508 1150 1.19 7494.53 2135 1200 1.25 7845.56 2620 1250 1.01 6355.25 2474 1300 1.30 6175.92 2790 1350 1.92 12077.75 3652 1400 1.58 992

1375 5.22 1640 1450 1.62 10191425 3.12 980 1500 2.49 15651475 5.73 1800 1550 2.44 1533 v J1525 4.93 1549 1600 2.25 1414 ^1575 6.06 1904 1650 2.34 14701625 6.32 1985 1700 3.37 21171675 7.19 2259 1750 4.11 25821725 7.17 2253 1800 4.17 26201775 8.37 2630 1850 3.57 22431825 7.03 2209 1900 3.86 24251875 8.11 25481925 8.72 27391975 11.37 35722025 11.19 3515

A- SPACING150 rr

RESISTANCE RESISTIVITYSTATION (oh») (ohm-ft)

325 1.330 1253475 1.534 1446625 1.099 1036775 0.755 712925 0.486 4581075 0.480 4521225 0.611 5761375 0.916 8631525 1.179 11111675 1.885 17771825 2.380 2243

Afll0308l*

Page 15: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.< tESIITIvm PROFILING

-n-- ;;; ;1IN£ 8

A-SPACIKG A-SPACINfi A-SPACINGso r. • 75 n -*'ioo ftRESISTANCE RESISTIVITY RESISTANCE RESISTIVITY RESISTANCE RESISTIVITY

STATION <oh«) . <ottt-ft) STATION (oho) (ohn-ft) STATION (ohn) (ohm-ft)

175 5.08 1596 212.5 2.77 1305 250 2.47 1552225 3.05 958 287.5 2.82 1329 300 2.04 - 1282275 4.33 1360 - 362.5 1.74 818 350 1.54 967325 ' 2.15 675 437.5 2.48 1263 400 1.61 1011375 2.98 936 512.3 3.02 1423 450 1.98 1242425 3.21 1008 587.5 3.44 1621 500 2.35 1477475 4.68 1470 662.5 3.64 1715 550 2.40 1508525 5.38 1690 737.5 2.79 1315 600 2.22 1395575 5.40 1696 812.5 3.20 1508 650 2.20 1382625 5.60 1759 887.5 3.05 1437 700 2.06 1294675 5.58 1753 962.5 2.87 1332 750 2.06 1294725 , 4.61 1448 1037.5 2.91 1371 800 2.11 1326775 6.10 . 1916 ' 1112.5 3.20 1508 850 2.12 1332825 4.75 1492 1187.3 2.60 1225 900 1.89 1184875 4.92 1546 1262.5 3.28 1546 950 2.07 1301925 5.77 1813 1337.5 2.74 1291 1000 1.99 1250975 4.52 1420 1412.5 3.58 1687 1050 1.99 12471025 5.63 1769 1487.5 3.27 1541 1100 1.83 11501075 5.10 1602 1562.5 3.99 1830 1150 1.98 12411125 5.12 ~ 1608 1637.5 4.18 1970 1200 2.24 14071175 4.08 T282 1712.5 4.67 2201 1250 2.27 14261225 5.27 1656 1787.5 5.92 2790 1300 2.13 13381275 4.36 1370,. 1862.5 5.85 2757 1350 2.17 13631325 4.08 1282 1937.5 5.63 2653 1400 2.50 15711375 4.97 1561 1450 2.69 1690142514751525157516251675172517751825187519251975

.60 1445 1500 2.63 1652

.90 1539 1550 2.89 1816

.37 1373 1600 3.16 1985

.88 1847 1650 2.99 1879

.72 .1797 1700 3.13 1967

.85 2152 1750 3.98 2501

.47 2347 1800 4.78 3003

.17 2567 1850 4.26 2677

.60 3016 1900 3.79 2381

.30 2608

.15 2875

.32 2928

A-SPACING130 FT

RESISTANCE RESISTIVITYSTATION (ohn) (Ofwtt)

275 1.94 1827425 1.35 1270575 1.73 1627725 1.11 1048875 1.26 11831025 1.05 9901175 1.25 11821325 1.41 13251475 1.81 17061625 1.76 16621775 2.89 2724

flRI03085

Page 16: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.VLF ELECTROMAGNETIC SURVEY

LINE 8

1150 -29.4 1137.1175 -7.5 1162.1200 -13.7 1187.1225 -9.3 1212.1250 -20.5 1237.1275 -2.5 1262.1300 1.5 1287.1325 -15.0 1312.

11001125115011751200122512501275130013251350137514001425145014751500

3.915.717.716.116.327.531.138.435.238.436.035.832.340.740.453.244.5

1137.1162.1187.1212.1237.1262.1287.1312.1337.1362.1387.1412.1437.1462.

-14.01.0

-10.0-26.0-26.0-15.0-4.0-1.02.0

-14.0•21.07.0-1.0-17.0

REAL TILT FILTER REAL TILT FILTERSTATION ANGLE STATION G.W.-4 STATION ANGLE STATION G.U.-4

1100 -30.2 1000 -9.61125 -33.0 1025 6.8

-26.0 1050 -6.5 1037.-41.0 1075 -45.9 1062.-14.0 1100 -44.0 1087.9.0 1125 -28.5 1112.0.0 1150 -26.0 1137.

-29.0 . 1175 -22.6 1162.-10.0 -1200 -21.4 1187.15.0 1225 -25.4 1212.

1350 -0.6 1250 -5.4 1237.1275 -4.0 1262.1300 -15.8 1287.1325 -19.7 1312.

LINE 9 1350 -15.1 1337.1375 -11.2 1362.

REAL TILT FILTER 1400 *11.4 1387.STATION ANGLE STATION G.U.«4 1425 -7.5 1412.

1450 -10.0 1437.1475 -4.6 1462.1500 -5.0 1487.1525 -2.5 1512.1550 2.3 1537.1575 1.0 1562.1600 4.4

50.090.020.0-35.0-24.0•11.0-2.0-13.0-37.0•11.026.015.0-9.0•12.07.05.04.08.07.09.0

•11.0-6.0

ARI03086

Page 17: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, IRC.: VLF ILECTROMAGHETIC SURVEY

LINE 11

REAL TILT - FILTER REAL TILT FILTERSTATION ANGLE STATION tt.W.«4 STATION ANGLE STATION G.W.-4

1250 4.8 2375 4.5 2362.1275 3.7 2400 3.7 2387.1300 . 2.7 1287.1325 . 4.9 ,1312.1350 0.2 1337.1375 *2.3 1362.1400 4.1 1387.1425 -1.1 1412.1450 -1.2 1437.1475 0.8 -1462.1500 -1.5 1487.1525 -1.5 1512.1550 0.2 1537.1575 -1.5 1562.1600 -3.2 1587.1625 -4.5 1612.1650 -1.7 1637.1675 -2.8 1662.1700 -7.0 1687.1725 -5.1 1712.1750 -10.6 1737.1775 -8.8 1762.1800 0.0 1787.1825 -18.6 1812.1850 -3.8 1837.1875 -15.1 1862.1900 -14.6 1887.1925 -13.3 1912.1950 -9.4 1937.

\. y 1975 -13.8 1962.- 2000 -14.7 1987.

2025 -13.6 2012.2050 -12.2 2037.2075 -11.2 2062.2100 -17.0 2087.2125 -2.2 2112.2150 -6.4 2137.2175 -7.1 2162.2200 -2.9 2187.2225 -3.9 2212.2250 -0.4 2237.2275 1.6 2262.2300 -0.3 2287.2325 3.4 2312.

1.0 2425 5.9 2412.1.0 2450 13.9 2437.10.0 2475 8.6 2462.4.0 2500 20.0 2487.•5.0 2525 21.4 2512.4.0 2550 30.8 2537.3.0 2575 35.3 2562.•2.0 2600 50.9 2587.3.0 2625 75.9 2612.1.0 2650 -79.1 2637.-2.0 2675 -99.9 2662.3.0 2700 -99.9 2687.4.0 2725 -65.3 2712.2.0 2750 -64.1 2737.-3.0 2775 -46.5 2762.4.0 2800 -50.3 2787.8.0 2825 -37.4 2812.4.0 2850 -40.8 2837.7.0 2875 -43.2 2862.•7.0 2900 ' -36.6 2887.-1.0 2925 -30.9 2912.14.0 2950 -29.1 2937.0.0 2975 -35.5 2962.7.0 3000 -28.69.0-7.0•5.07.07.0•5.0-7.02.0-4.0-20.0-6.01.0•7.0•6.0•8.0•6.0-2.0 ••10.0•9.0

3.03.0

-12.0-13.0-9.0-19.0-24.0-25.0-34.0-61.089.0306.0197.0•14.0-70.0•55.0-33.0-23.0•19.0-4.02.0

•17.0-20.0-3.04.0

ARI03087

Page 18: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.VLF ELECTROMAGNETIC SURVEY

LINE 12

REAL TILT FILTER REAL TILT FILTERSTATION ANGLE STATION G.U.-4 STATION ANGLE STATION G.U.*4

1200 9.7 2373 16.9 2362.1225 9.3 2430 19.7 2387.1250 -0.8 1237.1275 12.3 1262.1300 12.9 1287.1325 8.2 1312.1350 14.6 1337.1375 8.2 1362.1400 -1.2 1387.1425 31.1 1412.1450 17.1475 24.1500 21.1525 35.1550 27.1575 43.1600 23.1625 29.1650 13.1675 15.1700 13.1725 17.1750 3. 1737.T775 5. 1762.1800 7.1825 11.1850 14.1875 2.

20502075210021252150

1437.1462.1487.1512.1537.1562.1587.1612.1637.1662.1687.1712.

1787.1812.1837.1862.1887.1900 4.

1925 11.3 1912.1950 18.6 1937.1975 15.4 1962.2000 10.1 1987.2025 8.8 2012.

.1 2037.

.0 2062.

.4 2087.

.2 2112.

.1 2137.2175 2.7 2162.2200 15.2 2187.2225 12.7 2212.2250 10.8 2237.2275 9.7 2262.2300 12.5 2287.2325 10.8 2312.2350 16.5 2337.

7.0 242S 15.0 2412.-17.0 2450 22.-10.0 2475 13.2.0 2500 22.-2.0 2525 28.16.0 2550 32.-7.0 2575 a.-42.0 2600 82.

2437.2462.2487.2512.2537.2562.2587.

•12.0 2625 -3.3 2612.3.0 2650 -39.2 2637.

• 15.0 . 2675 -99.0 2662.•17.0 2700 -53.9 2687.•14.0 2725 -40.5 2712.-5.0 2750 -40.3 2737.18.0 2775 -27.4 2762.24.0 2800 -20.8 2787.24.0 2825 -23.4 2812.14.0 2850 -20.4 2837.-2.0 2875 -9.2 2862.8.0 2900 -16.1 2887.23.0 2925 -19.0 2912.9.0 2950 -8.8 2937.

•10.0 2975 -18.4 2962.•13.0 3000 -4.22.019.01.0

•23.0•18.04.013.011.04.0-4.00.07.08.0•7.0•20.0-6.07.01.0-3.0-5.0•10.0

-9.0-1.0-1.0-2.02.0

-15.0-25.0-30.0-71.01.0

174.0218.0110.0-44.0-72.0-27.0-33.0-24.0-4.0-15.0-19.06.03.0-8.0-3.0

flRI03088

Page 19: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.VLF ELECTROMAGNETIC SURVEY

' 'REAL TILT FILTER REAL TILT FILTER

STATION ANGLE STATION tt.tl.-4 STATION ANGLE STATION G.U.«4

1250 13.3 2375 -26.7 2362.1275 -22.4 2400 -33.1 2387.1300 -37.0 1287.5 62.0 2425 *20.8 2412.1325 -34.0 1312.5 11.0 2450 -14.9 2437.1350 -36.0 1337.5 -1.0 2475 6.4 2462.

•11.0-2.0•24.0•45.0-36.0

1375 -34.3 1362.5 -16.0 2500 -6.6 2487. -7.01400 -19.7 1387.5 -26.0 2525 5.1 2512. -33.01425 -24.7 1412.5 -18.0 2550 17. t 2537.5 -100.01450 -11.3 1437.5 -22.0 2575 70.7 2562.5 62.01475 -10.8 1462.5 -9.0 2600 -99.9 2587.5 248.01500 -16.1 1487.5 14.0 2625 -49.5 2612.1525 -20.0 1512.5 8.0 2650 -48.1 2637.1550 -15.4 1537.5 -5.0 2675 <73.8 2662.1575 -15.9 1562.5 4.0 2700 -68.6 2687.1600 -23.1 1587.5 11.0 2725 -58.7 2712.1625 -19.3 1612.5 -2.0 2750 -60.6 2737.1650 -18.0 1637.5 10.0 2775 -41.4 2762.1675 -14.4 1662.5 23.0 2800 -56.1 2787.1700 -25.9 1687.5 -6.0 2825 -50.3 2812.1725 -20.4 1712.5 -35.0 2850 -66.2 2837.1750 -4.9 1737.5 -18.0 2875 -52.1 2862.1775 -23.3 1762.5 13.0 2900 -41.3 2887.1800 -H.9 1787.5 9.0 2925 -47.9 2912.1825 -22.0 1812.5 11.0 2950 -28.2 2937.1850 '26.9 1837.5 3.0 2975 -31.3 2962.1875 -13.3 1862.5 -18.0 3000 -51.4 2967.1900 -17.5 1887.5 -5.0 3025 30.2 3012.1925 -17.5 1912.5 15.0 3050 28.81950 -28.5 1937.5 16.01975 -22.0 1962.5 5.02000 -29.2 1987.5 -5.0 '2025 -16.0 2012.5 7.02050 -42.3 2037.5 18.02075 -21.1 2062.5 -3.02100 -34.6 2087.5 -7.02125 -21.8 2112.5 -13.02150 -20.6 2137.5 0.02175 -35.3 2162.5 33.02200 -40.2 2187.5 30.02225 -45.2 2212.5 *4.02250 -26.8 2237.5 -24.0 .2275 -34.9 2262.5 9.02300 -46.1 2287.5 26.02325 -41.6 2312.5 -10.02350 -29.3 2337.5 -32.0

68.0-27.045.05.0

-23.0•25.0•22.04.019.012.0•23.0-29.0-17.0-30.07.010.0

-58.0

ARI03089

Page 20: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.VLF ELECTROMAGNETIC SURVEY

LIME 14

REAL TILT FILTER REAL TILT FILTERSTATION ANGLE STATION 6.U.-4 STATION ANGLE STATION tt.U.«4

1250 35.8 2475 41.5 2462.1275 56.4 2500 45.7 2487.1300 45.2 1287.1325 11.3 1312.1350 6.1 1337.1375 11.4 1362.1400 8.7 1387.1425 23.9 1412.1450 21.8 1437.1475 23.7 1462.1500 25.3 1487.1525 23.9 1512.1550 22.2 1537.1575 25.5 1562.1600 22.5 1587.1625 ' 27.6 1612.1650 25.0 1637.1675 23.0 1662.1700 16.0 1687.1725 11.8 1712.1750 27.5 1737.1775 17.0 1762.1800 17.4 1787.1825 15.8 1812.1850 14.3 1837.1875 38.5 1862.1900 30.3 1887.1925 22.6 1912.1950 17.4 1937.1975 7.3 1962.2000 15.1 1987.2025 16.1 2012.2050 20.6 2037.2075 2.7 2062.2100 22.5 2087.2125 13.1 2112.2150 4.4 2137.2175 17.0 2162.2200 20.6 2187.2225 2.8 2212.2250 17.0 2237.2275 14.6 2262.2300 24.0 2287.2325 20.9 2312.2350 27.7 2337.

34.0 2525 68.6 2512.84.0 2550 99.9 2537.39.0 2575 47.4 2562.-3.0 2600 -14.9 2587.-15.0 2625 -U.7 2612.-26.0 2650 -49.4 2637.-13.0 2675 -29.4 2662.•3.0 2700 -26.8 2687.-4.0 2725 -26.1 2712.3.0 2750 -2. 2737.1.0 2775 2. 2762.-2.0 2800 -21. 2787.-2.0 2825' -12. 2812.•5.0 2850 -20. 2837.2.0 2875 -3. 2862.14.0 2900 0. 2887.20.0 2925 6. 2912.0.0 2950 5.1 2937.

-17.0 2975 21.1 2962.5.0 3000 3.7 2987.11.0 3025 30.2 3012.4.0 3050 28.8

•19.0•39.00.029.028.018.0-7.0-14.08.012.0-12.08.014.0•20.0-2.018.0-8.0-19.0-13.0-10.0-1.0

-26.0-37.0-81.0•33.0136.0177.097.049.0-8.0-26.0-28.0-53.0-10.035.014.0-11.0-31.0•31.0-15.0-19.0-13.0-8.0-34.0

ARI03090

Page 21: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY. INC.VLF ELECTROMAGNETIC SURVEY

-• :; UK 15 ; •

REAL TILT FILTER REAL TILT FILTESTATION ANCLE STATION G.U.-4 STATION ANGLE STATION 8.U.

1350 -3.2 2475 -13.6 2462.5 -25.01375 -5.8 2500 -3.7 2487.5 -36.01400 -23.8 1387.1425 -38.7 1412.1450 -22.7 1437.1475 -9.4 1462.1500 -25.2 1487.1525 -10.5 1512.1550 -23.8 1537.1575 -16.9 1562.1600 -19.1 1587.1625 -12.4 1612.1650 -16.2 1637.1675 -19.1 1662.1700 -20.6 1687.1725 -. -14.5 1712.1750 -12.8 1737.1775 -19.2 1762.1800 -8.7 1787.1825 -14.5 1812.1650 -7.0 1837.1875 -17.6 1862.1900 -6.3 1887.1925 -26.7 1912.1950 M9.7 1937.1975 -20.5 1962.2000 -31.3 1987.2025 -24.3 2012.2050 -31.1 2037.2075 -27.9 2062.2100 -54,5 2087.2125 -34.2 2112.2150 -35.2 2137.2175 -27.4 2162.2200 -31.2 2187.2225 -32.8 2212.2250 -26.0 2237.2275 -28.2 2262.2300 -15.7 2287.2325 -12.3 2312.2350 -18.7 2337.2375 -10.4 2362.2400 -19.6 2387.2425 -25.9 2412.2450 -16.4 2437.

54.0 2525 9.7 2512.5 -59.032.0 2550 32.0 2537.-30.0 2575 73.2 2562.-27.0 2600 -99.9 2587.4.0 2625 -42.9 2612.0.0 2650 -53.6 2637.5.0 2675 -59.2 2662.2.0 2700 -49.3 2687.•9.0 2725 -53.8 2712.-7.0 2750 -50.5 2737.4.0 2775 -39.5 2762.11.0 2800 -52.6 2787.0.0 2825 -52.6 2812.

-12.0 2850 -63.5 2837.•3.0 2875 -38.5 2862.1.0 2900 -47.1 2887.-9.0 2925 -37.7 2912.•6.0 2950 -33.5 2937.1.0 2975 -28.7 2962.2.0 3000 -17.9 2987.8.0 3025 -22.3 $012.23.0 3050 -22.5 3037.7.0 3075 -4.8 3062.5.0 3100 -19.0 3087.15.0 3125 30.2 3112.4.0 3150 28.83.07.010.07.0•6.0-11.01.00.0

-10.0-15.0-26.0-13.01.0-1.016.012.0-16.0

-99.068.0248.070.0-30.012.0-10.0*4.0-13.0-12.015.024.0•3.0-31.0•17.0-14.0-23.0-25.0•22.0•2.0-13.0•21.0•39.0•83.0

ARI0309I

Page 22: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.VLF ELECTROMAGNETIC SURVEY

LINE 16

REAL TILT FILTER REAL TILT FILTERSTATION ANGLE STATION G.W.-4 STATION ANGLE STATION G.W.-4

1450 50.7 1437.1475 33.5 1462.1500 40.4 1487.1525 19.8 1512.1550 14.1 1537.1575 17.6 1562.1600 38.6 1587.1625 52.8 1612.1650 14.4 1637.1675 24.8 1662.1700 12.5 1687.1725 27.0 1712.1750 42.7 1737.1775 31.0 1762.1800 38.5 1787.1825 9.1 1812.1850 15.9 1837.1875 24.3 1862.1900 28.1 1887.1925 28.7 1912.1950 43.0 1937.1975 43.4 1962.2000 21.7 1987.2025 10.2050 23.2075 24.2100 38.

2012.2037.2062.2087.2112.2125 34.

2150 28.0 2137.2175 24.0 2162.2200 24.2 2187.2225 29.4 2212.2250 21.2 2237.2275 26.4 2262.2300 33.5 2287.2325 41.5 2312.2350 28.0 2337.2375 41.8 2362.2400 41.6 2387.2425 43.4 2412.5 -1.02450 40.9 2437.5 -26.0

1400 54.5 2475 69.6 2462.1425 69.1 2500 78.1 2487.

39.0 2525 88.0 2512.46.0 2530 83.5 2537.24.0 2575 ' 99.9 2562.40.0 2600 -75.0 2587.29.0 2625 -39.4 2612.-22.0 2650 -30.0 2637.-60.0 2675 -11.3 2662.-13.0 2700 3.1 2687.50.0 2725 -8.2 2712.32.0 2750 31.7 2737.2.0 2775 3.7 2762.

-32.0 2800 -2.3 2787.-34.0 2825 1.0 2812.0.0 2850 -5.9 2837.26.0 2875 2.5 2862.45.0 2900 13.4 2887.7.0 2925 29.2 2912.

•27.0 2950 31.2 2937.-17.0 2975 21.1 2962.-19.0 3000 60.9 2987.-30.0 3025 32.2 3012.7.0 3050 33.6 3037.54.0 3075 36.0 3062.31.0 3100 38.9 3087.-16.0 3125 33.2 3112.-29.0 3150 39.4 3137.-25.0 3225 30.2 3162.1.0 3250 28.821.014.0-2.0•2.06.0-9.0•27.0-10.05.0

-14.0-15.0

-63.0-56.0-24.0•17.0147.0298.094.0•73.0-63.0-38.0-30.0-39.022.037.06.02.0

-21.0-46.0-45.0-17.0-29.0-34.023.024.0-9.0-3.02.03.014.0

flRI03092

Page 23: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.'AZIMUTHAL RESISTIVITY SURVEY

WELL C-3 ,A-SPACINC-50 FT A-SPACING-75 FT

RESISTANCE RESISTIVITY ' RESISTANCE RESISTIVITYAZIMUTH (oNw) Coh*-ft) ' AZIMUTH <oh») (oho-ft)

0 6.13 1926 0 3.34 1574345 5.74 1803 345 3.02 1423330 5.78 1816 330 2.72 1282315 5.42 1703 315 2.43 1145300 5.19 .1630 300 2.38 1122.285 4.85 .'• 1524 285 2.30 1084,270 4.63 1455 270255 •••* •••* . 255240 *»• **** 240225 *•** •••• 225210 ***« •*** 210195 .05 1587 195160 .00 1571 160 1.77 632165 .47 1716 165 2.36 1112150 .16 1621 ISO 2.53 1192135 .11 1605 135 .29 1550120 .66 1778 120 .29 1550105 .72 2111 105 .62 170690 .04 ' 2526 90 .86 181975 .13 2554 75 .88 230060 .55 , 2056 60 .05 190945 .17 1938 43 .77 177730 5.66 1778 30 .74 176215 5.70 1791 15 .74 1762

UELL C-4 , -A*SPACING*50 FT ' A-SPACING-75 FT

RESISTANCE RESISTIVITY RESISTANCE RESISTIVITYAZIMUTH (ohms) <oto-ft) AZIMUTH (ohm) (ohm-ft)

0 ,18 , 1942 0 3.30 1649345 .00 1885 345 3.42 1612330 .56 1433 330 3.33 1569315 .16 ; 1627 315 3.24 1527300 .44 1709 300 3.33 1569285 .42 2017 285 3.11 1466270 .05 : . 1901 270 3.16 1499

" 255 .59 ' 2070 255 3.40 1602240 .67 2095 240225 .69 2102 , 2 2 5 -210 .40 2073 210195 .791 1819 195 2.56 1206160 .06 _: 1590 160 3.01 1418165 .02 *", 1577 165 3.07 1447150 ,38 1690 , 150 3.22 1517135 .62 1766 135 3.11 1466120 .78 ,;«16 120 3.33 1569105 .77 1813 105 3.81 179590 .92 I860 90 3.99 168075 .43 2020 75 3.74 176240 .40 2011 60 3.88 182845 .34 1992 45 3.86 1819

,30 .25; 1964 30 4.15 195615 .98 1679 15 3.92 1847

READING NOT TAKEN DUE TO FENCE

Page 24: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.AZIMUTHAL RESISTIVITY SURVEY

WELL C-4A-SPACIN6 50 FT A-SPACING 75 FT

RESISTANCE RESISTIVITY RESISTANCE RESISTIVITY-AZIMUTH (ohm) (oho-ft) AZIMUTH (ohm) (oha-ft)

0 4.50 2042 0 3.70 1744345 6.55 2056 345 3.49 1645330 4.42 2017 330 2.66 1253315 5.71 1794 315 2.56 1206300 5.64 1772 300 2.68 1263285 6.06 1904 285 2.39 1126270 5.42 1703 270255 4.91 1543 255240 **"* **** 240225 •••• *•*• 225210 •••• ***• 210195 4.40 1382 195180 .03 , 1560 180165 .83 1832 165 2.31 1089150 .14 1929 150 2.82 1329135 .49 2039 135 3.41 1607120 .16 1935 120 3.57 1682105 .79 1819 105 3.80 179190 .53 1737 90 4.02 189475 .85 1838 75 4.29 202260 .27 1970 60 4.35 205045 .93 2177 45 4.47 210630 7.06 2218 30 4.12 194215 6.56 2061 15 3.57 1682

UELL C-7A-SPACING 50 FT A-SPACING 75 FT

'RESISTANCE RESISTIVITY RESISTANCE RESISTIVITYAZIMUTH (ohm) (ohflrft) AZIMUTH (ohm) (ohn-ft)

0 4.09 1913 0 3.10 1461343 6.11 1920 345 3.60 1696330 5.59 1756 330 3.38 1593313 5.87 1844 315 3.34 1574300 6.21 1951 300 3.51 1654285 6.09 1913 285 3.96 1866270 6.52 2048 270 3.05 1437255 6.53 2051 255240 5.73 1800 240225 5.47 1718 225 * **•• ••**210 5.25 1649 210195 5.55 1744 195180 5.54 1740 180 2.71 1277165 5.24 1646 165 3.19 1503150 5.36 1684 150 3.52 1659135 5.42 1703 ' 135 3.77 1777120 5.43 1706 120 4.21 1984105 5.23 1643 105 4.35 205090 5.50 1728 90 4.15 195675 5.51 1731 75 4.09 192760 5.47 1718 60 3.78 178145 6.16 1935 45 4.00 188530 6.56 2061 30 4.17 196515 6.37 2001 15 3.75 1767

»***: READING NOT TAKEN DUE TO FENCE

ARI03091*

Page 25: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION COMPANY, INC.AZIMUTHAL RESISTIVITY SURVEY

WELL C-8A-SPACING 50 FT A-SPACINC 75 FT

RESISTANCE RESISTIVITY RESISTANCE RESISTIVITYAZIMUTH (ohm) (otw-ft) AZIMUTH (ohms) (ohm- ft)

0 4.94 1552 0 3.91 1843345 5.53 1744 345 3.77 1777330 5.52 1734 330 3.09 1456315 3.20 1634 " 315 2.95 1390300 4.12 1923 300

READING NOT TAKEN DUE TO FENCE

270 **•• **•• 270255 "1J *•** • 255240 *••• ***• 240225 6.15 1932 225210 7.01 -2202 210 5.41 2549195 6.56 2061 195 5.45 2568160 6.75 2121 180 4.90 2309165 6.25 1964 165 4.90 2309150 5.76 1810 150 4.75 2238135 5.83 1832 135 4.59 2163120 6.03 1894 120 4.53 2135105 6.13 1926 105 4.86 229090 5.83 1632 90 4.77 224875 5.06 1590 75 4.18 197060 5.06 1590 - , ,F 60 3.91 184345 5.00 1571 V lv-;, 45 3.98 187630 4.61 1448 30 3.93 185215 4.68 1470 , £ 15 3.71 1748

WELL C-11A-SPACING 50 FT A-SPACING 75 FT

RESISTANCE RESISTIVITY RESISTANCE RESISTIVITYAZIMUTH (ohm) (otw-ft) AZIMUTH (ohm) (ohm-ft)

0 5.46 1715 0 4.15 1956345 5.32 1671 345 3.49 1645330 4.79 1505 330 3.30 1555315 4.28 1345 315 3.51 1654300 4.33 1360 SCO 3.25 , 1532265 4.54 1426 285270 5.02 1577 270255 5.26 1652 255240 5.21 1637 240225 5.49 1725 225210 5.41 1700 210 3.54 1668195 4.96 1558 195 4.62 2177180 5.03 1580 180 4.61 2172165 5.16 1621 165 4.33 2040150 5.11 1605 150 4.21 . 1984135 4.98 1565 135 4.01 1890120 4.96 1558 120 4.25 2003105 4.96 1558 105 3.78 178190 4.92 1546 90 3.85 181475 4.92 1546 75 4.03 189960 4.90 1539 60 3.93 185245 4.93 1549 45 4.15 195630 5.53 1737 30 4.14 195115 5.78 1816 15 4.67 2201

I03095

Page 26: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

APPENDIX I

NOK1TORIN& WELL LOGS

flRI.03096

Page 27: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

- AU3L8t 21. 1989 J

OATEHWTB)Auut 21. 1CB9

DATE FWISra' 771J7Mf ACT ELEWTIOH

fryrjoll RvdT-4.. . ..; „. ......jwnm.1, . . .

C-1NCLENO.

St£ET 1 OF 3

735.57WTER LEVa AFTER DRILLING

755.6724 MR. tATER LBG.

Bevston* Sanitation GrturtiBtcr P(m „, Union TonftfD. ParwtvontaPROJECT N*C ; s LCCATICN j64156 - - - • • - '" f '~:~ — - Clear • • - - ~" • '- •'FBOJECTN3. .,..,,„ 4CWHSR . .

DEPTH

0-

••

.

-

10-

*

20-

*

*

30-

40-

-

50-

OESCR1PTIW

1

- ,-;•* - !"-

Soil; i

Schist - bPOurVT«i

Sdifst • brarfVOnuwthcnd

Schist - browvon -r !l

Schist - brotiVtrtVery HBBthend, poudery

Schist, brawVtvi

Schist • brtwVtjn • ""•'"•Uutf»r«J, podery

OBSERUAT1CN5

P

'

Nbist an

;

i

DRILUR: Willi«nReid»rt. Inc. ^ -* / -v" INSPECTOR: J. Sargan

OCNSTRUCTICN

9'C" Casing

4" OfaaeterSched. 40 PVC

firout

•HH I-

.

-

• ;

• '

tfl3. tfiaten

Page 28: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 21. 1999 C-1DATE STARTED

Auut 21. 1989DATE FINISH3)

HCLENO.

SHEET 2 OF 3

n _ 771.37 735 .37SJtTACE ELEVATION WTER Lf L AFTER MILLING

Iruernll Rard T-4 735.67RU KZCL 24 HR. WTER LCUEL

KMtana Sanitation Groitiatar Plan Uifon Toronto. Pemsvl niaPROJECT Wt LOCATION64196 ClcuVPROJECT NO. taWICR

DEPTH

50-

-

60-

-

70-

.

-

3D-

m

90-

i

100-

DESCRIPTION

Schist - brofVtanSlightly withered, paudary

-

Schist, tight btufah grayVfMBthared

Schist • Light bluish grayUtoatharcd

Schist - mdfui light graySoft, erutbly

Schist - rediua grayUMBtharad, flftc jartz

Schist • mdiui gray to grayish greanUuestharad, SX jartz

Schist - grayish greanSoft* uMBtharad

CBSBRMTICNS

UKST srm/ffsrad at 5V

Moist zom

Vary mist and elayay

Hard, wtsr bearing zonaUaitharad reck

CCNSTRUCTICN

4" 01an.Schtd. 40 PVC

Grout

Bantonlta

Shal* Trap

Opan Inttrval

R1vtr Channtl6rav«1Btntonlta

7s*/*t* •**»

*

^f*

y'V'j"ty S

-

.

m

*

-

-

OtlLLER: umtai Btichart. Inc. " H 1 U U U J 0 IH3WTCR: J. Saras**. Uiatan

Page 29: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

,L tout ii. m?' """ " ' . c-i• ' WTEtTARTED " HOI NO.

Amst 21T 1W? ,BATE FINISHED

SHEET 3 OF 3

TS5.571AFACE ELEVATICN MTER LEVEL AFTER DRILLING

irneraotl land T-4 735.67; UGMCDEL * W. WTER LEW.

KMttne Sanitation Groniater Plan Uhion Tounehie. PenravlvaniaPHOJECT NWC ; ", H U3CATIOM64156 ClOiVPROJECT NO. * : '"" WEATHER

DEPTH

100-

110 •

*

*

120-

-

130-

-

140 •

150-

DESCRIPTION

Schist - grayish greenweathered to cUley yellou

Schist - ndiua gray,Soft weathered, 3X Uadc stained cjartz

Schist - ntdiuR gray to graanieh grayUuBBthered, ZXo artz

Schist - aBdiua dark graySoft, ifMatftered, 5X cpBrtz

Schist - ndfun gray to grecniah grayUuHiThrred, 10Xq*rcz

Schist - aadiuB gray

Son largt sized pieces

Schist - «ediui grayUMathered, lOKo rtz

Schist - greenish gray15X Matherad rectifah partieleB

..... —— . ————— I.O.H. U9 ft..........................

DRILLER: William Reiehart. Inc. ' *

OBSERVATIONS

i

Qjartz fragnits atparent inauctinos.Soft artNora opera

•rani ah cuttings

tELL'oasTRUcricN

Bentonlta

River Channelfirivel

^1mmmmmim%$&vrn/fanfvfVG&.mm$38triJrfli1mmm

^ TNGf -CT »? J. Sargent/D. Uwtcn

-

.*

• '

*

• -

Page 30: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 21. 1969 " C-2OATt STARTS)

DATE FINISHO)

HOLE NO,

SHEET 1 OF 3

771-79 735.49SURFACE ELEVATION UHSt LEVEL AFTER DRIUING

(npersoll Rard T-4 7J5.74RIG KEEL 24 HR. MTER LEVa

KMtcne Sanitation Gmrdater Plan l*iicn Tcwahlo. PerrwlvaniaPROJECT mm LCCATICN64156 CleerPWJECTNO. iCATHK

CEPTH

0-

-

-

10-

-

20-

-*

30-

.

40 -

50-

DESCRIPTION .

Schist • bronish/tan

Schist • bro*VtanUesthared, poudsry

Schist - bromfah/tajiSoft, uaathared

Schist - greenish graySoft, weathered

Schist - medius gray to greenish graySoft, MBttwred, 2CK o rtz

Schist • greeniflh graySoft, incetftared, 75-aCK c artz

asKuna.

Enccmtercd top of bedrock

Moist zone

Enoouiterad Mter

U5LLcaonucTicN8 '6" Casing(US')

Grout

4" 01am,Sched. 40 PVC

Ban ton Ha

Shale Trap

Open Interval

BPBBBBBBBBBT *

••-:-*

-

^

,

ORILLBt: UillfanRtiehart. Inc. INSPOTCR: J. SarrwrM). tfwlm

Page 31: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

tevstor* Sanitation Grorciater PlanPROJECT**6X156PROJECT NO.

DEPTH

50*

60 -

70-

80-

90-

100-

tout»1. WB9 C-2CATE rARTB)

tout *t. 1989BATE FINISHED

771.79

HCLEN3.

SHEET 2 OF 3

735.49tKFACE ELHUATIOJ WTER LEVEL AFTER DRILLING

Imrsotl Rand T-4 735.74R1C NOa 24 «. WTER LEVEL

f' "••-•*" Irtm Tonhio. Pemsvlwnia

LCaTICN, . • . •'•„ ,. .... ftcuv

.„ "• '"",...„'...:,.,. , ... RATHER . . . . . . . .

DESCRIPTION , ;

Schist - pile oliveyeethcrad. 3ffi q*ra

Schist • greenfsft gray to eediui greyWeathered, SX qxtz ;

Schist * eedfun gray (6m) to greenish grayMattered <4flt>, 25 a*rt2

Schist - eediui light gray to ndiun grayUuathered, IXe Bttz

Schist - greenish gray to eediiiB greyUeethtrad to datcy yellowIXqartz

(Schist - greenish grey(cm tejstherad rains <15X), flt q rtz

Schist - greenish gray to nediun grayUwettwred, 50X q«ra

Schist - greenish gray to eediua greyUiaatnared, SQXqjrtz

wrt iDRILLER: WflltOTReidwt. Inc.

CBSnATIOMS

• ii

Hard

IEncontered wter

Encanterad wter

a

Ueetnerad zcnt

«Encontered uater

i

H^BUlelVJ BJm

teatDSTDUCTION .

Open Interval

River ChannelGravel

Bentonlte

S

^iRiver Channel n orySraval IC§-C\

7>CWRJf* Jf » ,

P6Z»iHJC E?

i

*

*

*

*

-'

Uo U ' h WSPKTCR: J. SargenM). Uwlen

Page 32: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Kevstcr* Sanitation Grautiater PlanPROJECT HAK«156PROJECT NO.

OEPTM

100-

-

110-

-

120 -

130-

*

*

WO-

150-

AtABt 21. 1909

DATE STARTS)Auuit 21. 1939

DATE F1NISHB771.79

SURFACE ELEVATIONIrnenoll Rard T-4

RIG M3a

C-2HCLEND.

SHEH 3 OF 3

735.<9WTER LEVa AFTER DRILLING

735.7424 W. WATER LEVEL

Union Tourehfo. PemsvlwifaLCCATICNCtoud/uEATHER

DESCRIPTION

Schist - greenish gray to radius graySen ueethertrg, 1t o rtz

Schist • radius graymcathered, SXq rtz

Schist - radius grayincethered, 1Xc*artz

Schist - greenish gray with senSons minor of weathering

• radius gray

Schist - greenish gray, minor anuits ofyellowish browji weathering

Asabcva

DRILLER: UlUianRttf chart. Ire.

CBSERVATIO8

Encouitered o rtzNintralizad zone

uELLcosmrricN

River Channe'Gravel

mTJ±JJmmHii

:.

*

-

-

A K 1 U w 1 U t INSPECTOR: J. Sarqent/o! Uialen

Page 33: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

.

Auut 21. W09cwE*TA*T£o ';.::

Auut SI. |Pfl9OATE pisra7K.KUtMX ClBKTICN

Inwsoll fcrd T-4RIG me. , .;.. .'

C-3HOLE NO.

SHEET 1 OF 3

735.54WATER LEVEL AFTER DRILLING

'735.*: * Nt. WATER LEVEL

KMtcrv sanitation QrorcLater Plan Union TownsMe. PemsvlventaPROJECT t*VC — • ' ' iflCATIOM6X156 • • •••"• CleM-PROJECT NO. IEWHER ;

DEPTH

0-

> -

W-

20-

' -

30-

40-

• -

-

50-

DESCRIPTION

Schist - red/brcwi

Contimsd

Schist - brcwVtan

Contirud

i !

t

Schist - eediun ligHt graySoft, SX 9artz, weathered

1 ',

Continued

OBSERW1QKS

!

ii

Moist zone

Ercuunterad up of beuocx

Incauntered water

V21COBTRTTIOJ

8'6N Casing

•• . • .Open Well

-,

'

1

1V

-

*

-'

1

• .

-•

. •

*

WlUBt: Vtllfaff'Rtiehart. Inc. fill 1 UO 1 U,,&ECTCR: j. 'saromt/D, uhaten

Page 34: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

*sat 2t. 1989 C-3DATE STARTS HOLE NO.

Auut 21. 1989DUE FINISHED

SHEET 2 OF 3

7».04 735.54SLRFACE ELEVATIOM WATER LEVEL AFTER DRILLING

traeraoll Rand T-4 735.94RI6 HD6L 24 W. WATER LEVEL

Kevstone Sanitation Qroirdwter Wan Union Teurehfo. PerravlvaMaPROJECT Hflrt LCCATICN64156 CtortvPROJECT NO. , . WEATHE*

DEPTH

50 •

-

-

60-

m

70-

X -

90 -

IX-

DESCRIPTION

. *

Schist - brewVtan

Schist - broun/tsn

Schist - breuVtan

Schist - mdiui light graySoft

Schist • greenish grayunueatnared, SXoutttz

Schist - gray

Schist - greenish gray with sons radius gray5CK cusrtz. snll anunt of wenherirg, nostly fresh

Schist - radius graySoft, weathered. 1GX qjartz

OBSERVATIONS .

Ueathared zone

usatnared zone

Encountered water

...,«,,nJ :..-..

uEUCOSTRUCTION

Open Well

-

--

-

n • i ** . • - • ' 1 1 *DRILLER: UilUa»ff«iehart, Ire. IHSPECTC*! J. SanwifO. whalen

Page 35: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

. . . _ .

IftMtcre Sanitation Graftfcater PlanPROJECT K*£66156PROJECT NO.

DEPTH

100 -

-

110-

*

120 -

*

*

*

130 **

*

*

140 -

•; -

150 •

Auut 21. 1999: DATEfTWto

- . Amurt 21J1989DATEriHISHED

: TO.Ot

VJRFACE ELEVATIONIroersoll«ardT*4 '

RIG NOEL

C-3HOE NO.

SHEET 3 OF 3

735.56UUER LEVEL AFTER DRILLING

735.9624 Mt. WATER LEVG.

v - - Union Townshfo. Pemsvlvenie1 UCATIOM

!; - UEATHER

DESCRIPTION

Schist • mdiun greyUnweathered, 5-WK o>autz

Schist - rediun greyUMBtharad, SOXoura

Schist • fledtua gray to greenish greyUnweethered, no cjjartz

Schist - eediuM grey iurueetnerad •

Schist • mediun grayftmll aicuits of weathered piec«5 ' -

Schfst - greenish gray, ineetherad, 10-T5X cfjartz

"

• • i

CBSERVATICNS

:

1

j

- i

r

i

i

t

f

i

1

j

CONSTRUCTION

Open Well

i-

i

i

• -

f"

.

-

i

• ;

« n i u 0 1 U 9DRILLER: Ui U im Rei chart. Inc. • INSPECTOR: J. Saraent/D. UhaUn

Page 36: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auxst 21. 1989OATESTMTEO

Auut 21. 1989DATE FINISHED7S6.01SURFACE ELEVATION

(row-soil Rand T-4RIG KEEL

C-4HOLE NO.

SHEET 1 OF 3

721.86WATER LEVa AFTER DRILLING

722.0124 «. WATER LEVEL

Kevstcne Sanitation GrorcLeter Plan union TowrsMo. PemsvlvaniaPRCLJEa HNC , LOCATION66196 ClearPROJECT NO. WITHER

DEPTH

0-

10-

-

20-

30-

60 •

50-

DESCRIPTION

Schist • brown/tan

Continued

Schist - red/brown

Ccntirued

Schist • greenish gray to mdfus grayUeethered, 35-4QX c rtz

Schist * greenish grayueatherad.

cesERvwrioa

Moist zone

uELLCCNSTfUCTICN

8* Casing(1.5'J

4" D1am.Sched. 40 PVC

Grout

Bentonlte

^ ^ ^ ^

?//

>>/s

\•

*

*

:-

*

-

DRILLER: Will fee Reichart.fliW 1 UO 1 06 INSP6CTQR: J. Sanwit/D. Wen

Page 37: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

* " 'Aj»it21."l9W' — - - - ' ^i - DATE ITARTB) - " -• NCLE NO.

• - - • - • • DATE FINISHED7B6.01 ' 721.06

SUtFACE ELEVATION WATER LEVEL AFTER DRILLINGban-soil Rwrf T-4 722.01

RICMOEL 24 HR. WATER LEVEL

Kevstcre Sanitation GroLrtiater Plan Union Townshto. PemsvlvenfaPROJECT N*C UCCATICN i6MS6 Clou*PROJECT NO. - ••- - - ' ' - - V". ""-" LEATHER • • - . ; . . . ' .

DEPTH

50-

-

..,

f

60-

.

-

70-

'-

:80 -

*

*

90 -

.

.

100-

-. , ... ........... „„„DESCRIPTION

. . . - , , , . . ™.™,,ri, , . , . - . „ .

.--,.-. • ., .,. ,,,,.,,«,Schist - gray

Schist - medlua grayUMatnarad

,•

Schist • greenish gray : j"" tUeathtred

Schist - greenish grayUraeBttwed, very soft

As sbcvf, very soft

Schist • greenish greySoft, slightly weathered,

Schist - greenitf) grey iDusky ytltou wsatrterad krfece, highly ueathersd

„....,„,.„ .; OBSERVATIONS

F',

.

j5

i

Weathered term\Enccuitered water

1

Encountered water

fi

1

\

i

Weathered zonej'ii{ •

tf£UccNsnucriON- - - - - -

4" D1am.Sched. 40 PVC

Ben ton Ha

Shale Trap

Open Interva'

River CharmeSravel7' Bentonlte

River Channe

J J^ J

1 <1 <' '<• ;: ;

rfc$<£J J J

wYSWs•— r S

Gravel

.

.,

•.

-

(

^

•-

.

H.nj uo..i u/DRILLER: UitlienKeiehart. Inc. INSPECTW: J. Sargent/D. tfwten

Page 38: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

*ff« 21. 1989QMI STARTED

Auust 21. 1989DATE FINIStO

786.01SUVACE ELEVATION

treersoll Rerd T-4RIGKia

C-4HOLE NO.

S£ET 3 OF 3

721.86WATER LEVEL AFTO WILLING

722.0124 HR, WATSt LEVEL

Kevstar* Sanitation GrarrUtw Plan unien TcwishfD. PorsvlvanfaPROJECT WE LOCATION64156 CtcuVPROJECT NO. uEATHER

DEPTH

100 -

-

110-

120-

130 -

140 •

150-

DESCRIPTION

Schist - greeniah graySUditly weathered, SX qwtz

Schist * greaniah gray to median bluiioh grayurueathared, 3X<urtz

Schist • greaniah graySUditly weathered. 30-35X ouraQuartz is smaky and milky

Schist - greenish gray to Utfit Muich grayStiditly wescherad 40-SOX cusrnNote: fractvre fUUng

Schist - greenish grayurueatnered, IXqjertz

flRimiflR

CBSERVATICNS

Encountered water

Ciern bearing zone

wCUCOSTRUCTION

River ChannelGravel

m

I<&yysiipiS

*1

115zSC*aiI

*•*•4

*

DRILLER! UilliaiiReichart. Ire. INSPECTCR: J. Saroent/D. Wwlen

Page 39: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

jIuXEt 21. 1969

AUUtZI. *fB9DATE FINISHED ; '766.73U ACE ELEVATION.

_[ryrsoU Rard T-4RIG 'MDEL .. , ,

C-5HOLE NO.

SHEET 1 OF 3

734,13WATER LEVEL AFTER DRILLING

735.4524 «. WATER LEVEL

Keystone Sanitation Gro/iiater Plan Union TcwnshiD. PerrsvtvenfaPROJECT N*€ :.:ii". LOCATION64156 CtorVPROJECT NO. ^ . HV~ ' *€ATH£R

DEPTH

0 -

-

*

*

-

w-*

*

20-

-

*

30 •

«.

SO-

DESCRIPTION

Schist - bran

Schist - grey

Schist - brown/tan

Ccntfrud

Ccntirud

Cent i rued

Schist - light greyweathtnd, 52 c srti

- - - ,„.*

Gray schist ;

i OBSERVATIONS

:

Moist zcna

Moist zone

j

Hard rock

1i

1

i

waiCONSTRUCTION ,

8* Casing

Grout

4" Dlaffl.Sched. 40 PV(

1

Bentonlte

7/yyyy/

^

»

•*

•'

V

.

•:

-.-

.

DR1LLER: William Re i chart. Ire. A R i U 3 I 0 9 INSPECTOR: * J. Saroent/0. unalcn

Page 40: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

K*v»t«ne Sanitation Grourttater PlanPROJECT NMC64156

Aueut 21. 1909 C-5DATE STARTS

Auut 21. 198°DATE FINISHB

HOLE NO.

SHEET 2 OF 3

786.73 734.13SUVACE ELEVATION WATER LEVEL AFTER DRILLING

IroanoU Rand T-4 735.48RIG KDEL . 24 tit. WATER LEVEL

UMcn Townahfd. PerrsvlvanfaLOCATIONCltuV

PROJECT NO. . wtATHBl

DEPTH

50-

60-

;.

70-

*

30-

*

90 •

100 *

DESCRIPTION

Schist • light gray to (radius graySUditly weathered

Schist - brawn to tan

Schist - grey

Schist • light gray to mdiui graySUditly weathered

Schist - Light gray to ncdim graySlightly weathered

Schist - brown to tan

Schist - fflediua gray to greeniah grey6OL of sarple weathered

Schist - gray

Schist - greenish grey to light bluish graySen weathering to dusky y*UouZQXouMtz

C8SERUATICNS .

Dry cuttings

MuccV shew then water

UEUCONSTRUCTICN

4" Dlam.Sched. 40 PVC

Bentonlte

Shale Trap

Open Interval

River Channel

vXXXVCOvXXX

xxxxx

'/,\

XXXXXXX'

•4

\

\//

\\t

zSSSS'Gravel

*

.

-

.

*

•••

-

Hit IUO 1 i UOAILLER: William R«K*iert. Ire. INSPECTW: j. Sanjent/D.' Vhalen

Page 41: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

- -

' 1

Auoust 21. 1969i " mJRUOB,.__ ,., Auau5t 21, KB9

OA7E FINISE)7B6.73 ...

*JRfACE ELEVATIONipxrvAi Rand T-4

: " . - • : • " 'RIG MODEL'

C-5HOLE NO.

SHEET 3 OF 3

734.13WATER LEVEL AFTER DRILLING

735.4824 HR. WATER LEVEL

Kewtcre Sanitation Gro/ifcBter Plan icn Tcwnshio. PerrevlveniaPROJECT NWC LOCATION64156 CLouPROJECT NO. VCATHER

DEPTH

100-

.

*

no-*

120-

130-

140 -

*

*

ISO-

DESCRIPTION

Schist - light grey to ndfun grayUwathered

Schist - greenish grayUrweatherd, 30% cuvtz, ojjsrtz grains attached Mschist au-faces

Schist - greeniah grayUnweathered, IX o>«rt2

Schist • greenish gray . „ . .f ...Partly weathered, 50-60X OUM Z, eifnerslfzed SLrfecasseen on tarn chips

fl D 1 n* i . .

i OBSERVATIONS

Herd drilling

1

i

i

I

WILLCCNS71UTICN

Bentonlte

River ChannelGravel

I%

i2ii

<

.

OT§1imii

!

,

*

-

-

'•M J U J J J 1DRILLER: Wf tllsn Refchert. Ire. INSPECTOR: J. Sargent/D. Unalen

Page 42: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut21. 19»! DATE STARTffl

DATE FIHISHS) '772.14SUtFACE ELEVATICN

Inperaoll Rand T-4RIG KEEL

C-6' HOLE MX

SHEET 1 OF 3

754.34WATER LEVEL AFTER MILLING

735.6424 HI. WATSt LEVa

Kevstcne Sanitation Gra/tiwter Plan Uiicn Tewrshio. PemsvlvaniaPROJECT NttC LCCATICN64156 ClearPROJECT NO. . . WSATHER

OEPTH

0-

-

10-

.

20-

-

30-

40-

50-

DESCRIPTION

Schist - brown

Schist - gray

Schist - brawn to tan

Schist • ndtui olive brawnUeathered. SOXcuvtz

Ccntiruad

Schist - cLsky yeUcu to radius graySoft, weathered, 3-SX curtz

Schist • mdiua graySlightly weathered, less than 5X ojsrtx

noimi 10

CBSERVATICW

Poudary, moist zone

Hoist zone

Wat

.

UEUCOHSTRUCTICN

8' 6" Casing

Open Well

^ HH 1

-

-

;a

*

-

*

.

-

-

DRILLERS UftUa*R*tcnart. inc. IHSPKTC*:' J. SarqenuD. Uwim

Page 43: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

- - •

Keystone Sanitation Grar&eter PlanPROJECTNWC64156PROJECT N O . - . . .

DEPTH

50-

*

*

63-

-

70-

*

-.

80 -

-

90 -

103 •

!

.,. _"*"'i "H1" Jj L f* *

1 'DATE STARTED, Juurt 21, 1999 _

WTEriNISHEO772.14 ' '! ' ! ' "

HOLE NO.

SHEET Z OF 3

734.34- SUtFACE ELEVATION WATER LEVEL AFTER DRILLING

Irnersoil Rand T-4 735.6iRICKJEL 24 HR. WATER LEVEL

iWon Towrahio. PerreMvanfaLOCATIONCleuV

• - ' . ; ' ... '":" : " " ' FATHER ' • - ' -

DESCRIPTION

Schist - pale olive to oufty yellcuWeathered soft

Ccntirued

Schist - pale o(fve to dcky yeUcwWeathered, soft

Schist • greyish oliveweathered, 2QXourtz

Schist - pale olive to cLafcy yellowUeathered, soft, 50-60C ouvtz

Schist - greenish gray to cLaJcy yellowWithered, 2CX ouHtz

Ccntirud

/I D I no i ,

CBSERVATIONS

i .

i1

I

}

Incantered water

3J

:

CJuvtz • rich zonejj

Uater present

i1

,

WILLCONSTRUCTION

-

Optn Well

-

*

*

*

*

*

.*

V

I

••" ".w^ 1.1.0DRILLER: Wiltim Reichart. Ire. INSPECTOR: J. Sargmt/0. Uhalen

Page 44: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

AujiBt 21. 1939OATISTART9

At st 21. 1939DATE FINISHD

772.USLRFACE ELEVATION

Iroersoll Rard T-4RIQKDEL

C-6HOLE NO,

SHEET 3 OF 3

734.34WATER LEVEL AFTER MILLING

735.6424 HR. WAT3 LEVEL

Kevstona Sanitation Gran4«ter Plan Union Tanahfo. PemsvivanfaPROJECT W* . LOCATION64T56 CtoxVPROJECT NO. -, UEATHER

DEPTH

109-

110-

120-

-

T30-

wo-

150-

OESCRIPTICN

Schist - grayish greenueathered, SXourtz

Schist - cart greenish grayUeettiered, tXo rtz

Schist * greenish graySltchtly weathered, 1SX c rtz

Schist - dLsky vailcw green•Bai*lT*j>*flQ* •aQ( L sV> 2

Schist - light bluish gray to radius btuiah grayUttaatnered, very platy

Schist - radius bluish grayUueathercd, platy

f t D i n o i i

OBSERVATIONS

Ueethered zone

'• . . -i.

USJ,oHsnajcncN

Open Well

-

*

-

DRILLSt: ultlf an Ref chart. Ire. INSPttTt*! J. Saroent/D. Uhalen

Page 45: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Axust 22. 1989DATE STAGED

j __— - Auast 22r 1989DATE FINISHED

KRFACE OEVATIOH___ ITOSTSOU Rard T-4

. . . . - RIG «6k- •

C-7HOLE NO.

! SHEET 1 OF 3

WATER LEVEL AFTER DRILLING7S5.56

24 NR. WATER LEVEL

Kevstcre Sanitation Groretarter Plan fon Townshio. PernsvlviniePROJECT NArE : r.E LOCATION64156 Clo**/PROJECT NO. , .'.:„' UEATHER •

DEPTH

0-

10-

.

.

20-

.

*

30-

"

40-

*

SO-

: OESCRIPTtON

'•

Schist - bnawn ,

Ccntfrued

Schist • red/brown

Ccntirued

Schist - light grayVery soft, 20S c srtz, weaUiei'eJ

\

Schist • greenish grey to cLe*y yd lowUeathered

Schist • greenish gray to dU>ky yellowWeathered

Schist • greenish gray to cCaJcy yellowUBBtherad

Ccntirued

CBSEftATICNS

i

''.

Hoist cant

i

Hoist zoneiI

iij

Softer rode

J

WELLCCKSDUCTICN

1

10 '2" Casing

Open'uell

.

• • B 1

-

-.

-'

»-

, '

•[

1

'

" -

. :

-

-

HIM UO 1 1 dDRILLER: Uilli«n«e*chert. Inc. INSPECTOR! J. Sarosnt/D. Wwlen

Page 46: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Kevswne Sanitation GroMater PlanPROJECT NMC6(156PROJECT NO.

DEPTH

50-

-

60-

V

70-

ao-

-

90-

100 •

Auut 22. 19»'DATE STARTS)

Autut 22. 1989DATE FINISHB)

771.16SURFACE ELEVATION

Iroersotl Rand T-4RIGMOXL

c-rHOE HO.

SHEET 2 OF 3

WATER LEVEL AFTER DRILLING735.56

» MR. WATER LEVEL

Union TownshfD. PemsvlveniaLOCATIONClearUEATHBt

DESCRIPTION

Schist • greenish gray to mecHun graySoft, weeUiared

Schist - greeniah gray to radius graySoft, weathered, 5X cjartz

Schist • radiua graySoft, u-Methared

Schist • mectfua graySoft, uneethered, 50-60X cuMtz

Schist - radii* graySoft, irweethered

Schist • radfus gray to greaniah graySlightly weathered

Schist - radius gray to curiey yellcw75X cuartz, pertly weithered

Schist • cLsky yallau to greeniah grayUeathered, TSXourtx

Schist • radius grayinaathered, SXcuvtz

Schist - radius gray to greenish grayIhcethered. SXcparti

DRILLER: WHltaiReichart. Inc.

^__ . * ^BJ

03SERVATIONS

Enccuitered water

UELLCOMSntLCTION

Open Well

-

-

9

-

.

-

*

n 1 Q J 1 1 U . . .IHSPGCTQJt! j, SaroenM). Uhaten

Page 47: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

> • .

- - - • . . .

Keystone Sanitation Crordater PlanPROJECT NWC66T56

Auut 22. 1989\ ••' DATESTARTEO

Auwst 22.1999DATE FINISH)

: 771.16-SUVACE ELEVATION

Irsersoii Rard T-4- - -WC NtDEL

C-7NCLEN3.

SHEET 3 OF 3

WATER LEVEL AFTER DRILLING735.5624 HR. WATER LEVEL

"union Townshfo. PemBvlvenie. ., ' "...'"• A, •„ . uXHTION

' • • * * • • ' • clear. . . v

BOO.lC T left . - ., . . . . ,. f ,^, -*.„.» „ ,. LPftTlePDIHilJelaiL i PM* • ' '-"-—- H - feWllfebK

DEPTH

100-

110 •

120 .

130-

140 -

i

150 •

DESCRIPTION

Schist - mecttun gray to greenish gray

Schist - median grey .Slightly ueathered, 5S ouvtz

Schist • greenish grey to bluish greySlightly westhervj

Schist • greeniah grey to bluish grayUneethered, 1-ZCc*artt

Schfst - greenish graySlightly weathered, SOS quartz,

!

.

DRILLER: Uillian Reiehart. Irefl R

sera fracture fillings

CBSESVflTIOG

Ueathered zone

UEU.COHSTRXTION

Open Well

*

• •

-

--

-

-

-

1 f!3 If 7 ' * INSPECTOR: 'j. Sargent/D. Uialen

Page 48: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. 1989DATE STARTS)

Auut 22. 1989DATE FINISHED772.82SLRFACE ELEVATION

Iroersoll Hard T-4RIQ MODEL

C-8HOLE NO.

SHEET 1 OF 3

WATER LEVEL AFTER DRILLING734.02

24 HR. WATER LEVEL

Keystone Sanitation Groniater Plan Union Towrehto. PemavlveniaPROJECT mm LCCATICN64156 " dearPHDJECT NO. W=ATH£R

CEPTH

0-

10-

*

-

*

20-

4

30-•»

tt-*

*

50-

I —— ' ——————— — ——————— Hit IU*J I i " —— — — ; —— : ————

DESCRIPTION

Schist • red/brown

Schist - brownSchist - red/brown

Schist - brown

Schist - greeniah gray to dsky yellowWeathered, powcer

Schfst * greenish gray to cL&ky yellowUeathered, powder

Schist • greeniah gray to dusky yellowueattwred. powder

Schist • greenish graySlitfitly weethsnd

Schist • greaniah gray to mediua grayUeathered, 40X charts

nn I n 'L

OBSERVATIONS

Encountered water

t'o

UBJ.CQNsnsjcricN

10'5" Casing '

Open Will

BBBBBHBBPeBBl 1

*

-•-•

-

DRILLER: wilUaaReJehert. Ins. INSPCCTCR: J. SaroenM). Uwlen

Page 49: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

._AuX£t 22. 1989: - D A T E STARTE)

Auust 22J 1999- DATE «NISHEO

772.82 ". - • tXfACE HEVATICtt

_Jnaersoll Rard T-4- ' - RIGKKL -

C-0HOLE NO.

SHEET Z -Of 3

WATER LEVEL AFTER DRILLING734.02

24 HR. WATER LEVEL

Kevstcr* Sanitation Grcuti«ter Plan ,..,,„„,,,.„.,,.,.. ^ Towrehio. PemsviwniaPROJECT NttC - LOCATION64T56 •'•' Clear'•UCJECT NO. • - ..... ~':.-.. W2ATHER -

DEPTH

50-

*

60-

'

70-

-

-

83-

90-

-

100 •

DESOIIPTICN

Schist - greenish gray to ndiuiSlightly weathered, soft

Schist - greenish gray to mdfun graySlightly weathered, 20X Quartz

Schist - greenish greyUMBthered

Schist - greenish grayUwatnered, 60X c artz

Schist • greeniah grayUnweachered soft

Schist • greenish grayItMethered

Schist - greenish gray ,UTMetherad

Schist - radius grey with sen greenish grayUncethered, 20X quartz

Schist • wediun gray to greenieh grayUnueathered, lOXcfartz

08SERVATICNS

Erccuitered Hter

i

1

f

1

1

WELLCDKSTRUCTIC*!

Open Hell

-

*

-

,

.

-

-

DRILLER: Iff t Ham Refchart. Ire. A R 1 0 3 1 IQ INSPECTOR: J. Saroent/D. UHelen

Page 50: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. 1999DATE STARTS

*#i*t&. 1969DATE FINISHD

772.82SLRFACE ELEVATION

Imereoll Rand T-4RiaMcca

C-8HCLENO.

SHEET 3 OF 3

WATER LEVEL AFTER DRILLING734.0224 HR. WATER L:VEt

Keystone Sanitation Grcuiiater Plan Union TcwnsMo. PerravlvaniePROJECT KN€ LOCATION64T56 ClearPROJECT NO. WITHER

DEPTH

100-

-

110-

*

120-

130-

uo -

150-

DESCRIPTION

Schist • radius grayu-MSthered

Schist - radius grayL*Mathered

Schist - radius grayUTMSthered

Schist - mdfua gray to light graySlightly weathered, 6>7DX ourtz

Schist - radtua gray to greeniah grayUwatfwad. SXcuvtz

flRI03!2

OBSERVATIONSWOL

CCNSTIUTICN

Open Will

-

-

ORILLSt: UillimRttiehart. Ins. tHSPOTCR* j. SarqaTt/o! Uiaten

Page 51: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

u ttnxt jgr 1999 - • • ••. OATESTWlb!___ iiff «t p, 1989

, DATE f WISHED7£6.7B • ' . •

,. .. tRFACE BLCVATIW(fpersoll Hard T-4

' . . . . ' . RIG-EDR

reviwn* Sanitation Groniater PlanPROJECT N*E .L • '"'•".6&156PROJECT NO. . . . . , - • " :••.,„„ : . .

DEPTH

0-

: •

10-

-

,20-

-

30-

-

-

40-

-

50-

OESOtlPTICM "

Schist - brown to tan ,. . . .

-

'

Schfst - greenith gray to light oliveweathered

Schist - greenish gray(rueethered, SXouvtz

Schist • greeniah grey 'UMBthered

Schist - greeniah gray " '' ''Uuethered

Schist * greenish grayUwethercd

Schist - greenish grey~UMatftered .

C-9HCLENO.

SHEET 1 OF 3

733.88WATER LEVEL AFTER DRILLING

733.8824 HE. WATER LEVEL

Uiicn TewnBhio. PerreMMniaLOCATIONClearWEATHER

OBSERVATIONS

DRILLS?: UUliatiteicnart. Inc. "•** « C 1 '

i

1

Hoist zone

.

W3J.CONSTRUCTION

10' Casing(1.81) «

Grout

4" Oiam,Sched. 40 PVC

Ben ton iU

BBS.

\

••^m am.•

^

1 -

••

*

*

*

*

*

*

Page 52: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Qroniater PlanPROJECT NM€64156PROJECT NO.

D9TM

50-

60-

-

70-

3D-

90-

100-

Auust 22. 19B9 C-9DATESTAina

Auxat 22. 1999DATE FINIStEfi

7&6.T8

HOLE NO.

SHEET 2 OF 3

SWFACE ELEVATION WATER LEVEL AFTER WILLINGIraer-soU Hard T-4 733.9

RI6 KEG. » HR. WATER LEVEL

(Jnion TownahfD. PrrevlveniaLOCATIONClearUEATHER

DESCRIPTION

Schist - greenish graySUditly weathered

Schist • greenish grayUMSthered

Schist - greeniah graymattered

Schist • greenidi grayUMBthend

Schist - greenish grayUMBthared

Schist • greenish grayUPwesthered

Schist - greenish gray to doky yellowueathered, SCKcuartz

Schist - greanieh gray to grayUeatnared, 40Xc*arti

Schist • greenish grayPartly weathered, 1CK cujrtz

— .-. .*..,_ + + ,_

URI03I22

CfiSERMTlCM

Weathered zone

Snail aha* of water

Erconctred water

W31CONSTRUCTION

Bentonlti

4" 01 an.Sched. 40 PVC

Shale Trap

Open Interval

River ChannelGravel

Bentonlte

River ChannelGravel

\ \/ */ t/ '

'', '•> tS t/ »> tf t/ '/ '< ;. t

H-?&*i

7&VSzfi?^

-

" •

*

-

:*

-

-

tHSPfCTCR. j. SaranM). Uhalen

Page 53: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

22. 1999DATE PARTED

*iBLBt B J9B9OATEFWSfi)

3B6.7BSUtFACE ELEVATION

Iraenoll RardT4

C-9NO! NO.

SHEET 3 OF 3

WATER LEVEL AFTER DRILLING7S3.B8__________24 NR. WATER LEVEL

Keystone Sanitation Gretrtiater Plm ' - ' •-•'--* • •••••-• union ToMnship. PemsvlvBniePROJECTNttC LOCATION6&1K • ____--• - - - •- •::•*-."-+.. - -PROJECT NO,

DEPTH DESCRIPTION CBSERVAT10SHELL

CCNSTRLCriCN

100

110

120

130

140

ISO

Schist - greenish grayUrweettered, IXcuvtz

Schist - greenish gray to sedfui grayUMBthered,

Schist - greenish grayPartly weathered, 20-25X ouvtz

Schist * greenish greySlightly weathered, 95X ouvtzCuttings show srintrelixed heir- lint fractures.

Schist - greenish grayModerately weathered, 63X c artx

Schist • greenish greymattered. ISXeuvtz

Schist - greeniih gray. u-Meatnerad, 10X cuvtz..........——.———IJ3.H.—"————•—

k BBtnered, ouvtz-rich >cne

River ChannelGravel

rtfrSlDRILLS*: William Relchert. Inc. fc w - —HWKTOR: J. SargentyO. ttialenfc w

Page 54: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Xuut22. 1999DATE STARTS)

Auut 22. 1999DATE FINI90787.86SLRFACI ELEVATION

Iraeratl Rand T-4RIG MXa

C-10HOLE NO.

star 1 OF 3

WATER LEVEL AFTQt WILLING733.96

24 HR. WATSI LEVEL

Keystone Sanitation Greunduetar Plan Union Townshio. femrytvenlaPROJECT mm LCCATION64156 ClearPROJECT NO. UEATHER

DffTH

0-

10-

-

20-

30-*

40-

30 -

DESCRIPT1CN

Schist - light olive greySoft, weathered

Schist * Udit olive to greeniah grayVery soft, weathered

Schist • lioht olfv* to greenish graySoft, weathered

Schist - greoniah-graySoft, tneathered

Schist - greenish graySoft, incottierad

Schist - greenish gray

m r* • i*. f\ t f\ 1

OBSStUKriOHS

mist an

Ueathered m

-

U31CCNSTRUCTIQH

10 '4' Casing(2'J

4" D1am.Sched. 40 PVC

Grout

*

«

*

-

v

*

A

wn i uo i £*DRILLER: VUllaa) Mehart. Inc. INSPECTCR- j. Sarqent/0. whalen

Page 55: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Grautitfter Plan- PROJECT *»C . . . . . - . , -6MS6PROJECT NO.

DEPTH

50-

60-

»,-

' -

ao •

*

»

90-

-

100 •

Auut fc. 1999DATE STARTED

Auut 22. 1909'; MTEflNISHEO

UFACE tLEVATICNi Insersoll Rand T-4

tic ma

C-10HCLENO.

SHEET 2 OF 3

WATER LEVEL AFTER DRILLING733.86

24 MR. WATER LEVEL

Uiion TownshlD. Pernsvlvenie-- UCATION

Clear• ;- '"• -" ' IEATHER

DESCRIPTION

Schist - graenieh graySlightly uafteredSchist - greenfeh grayUnweathered

]

i

Schist - greenish gray to tight bluieh grayttitfitly weathered

Schist • treenieh grayunfathered

Schist - graenieh grayUn aether eJ

Schist * greeniah grayVeryslitfitlyuesttwred

Schist - greenish grayUTMattiered, tJCouartz

•Schist - greenish grayincathersd ;

Schist - greenish grayPartly weathered, 40X ouvtx

-

N r» • « * .

" ' T . ,'

...... , ..„

OBSERVATIONS

t

leathered are

1 ncortered water

ii

CDNSTRXTICN

4" 01am.Sched. 40 PVC

. - .-- . .

Grout

-

,...

-

*

4

V

*

-

.'

•;*

-1

H|| | {J J I.VV ,._,DRILLS!: UilUm Refchert. Inc. u U • INSPECTOR: J. SargsTtA. Uhslen

Page 56: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

ftuutS. 1989OATESTARTa

Auut 22. 1999DATE FINISHB)

787.96SURFACE ELEVATION

IraersoU Rerd T-4RIGICDEL

C-10ttSLENO.

SHEET 3 OF 3

WATER L£VEL AFTER DRILLING733.9624 HR. WATER LEVEL

Keystone Sanitation Grautfcflter Plan Union Toumhfo. PennsylvaniaPROJECT mm LOCATION66156 ClearPROJECT NO. UEATHER

DEPTH

100-

.

.

110-

»

m

120-

.

130-

140 •

*

*

*

150-

DESCRIPTION

Schist - greenish graySlightly weathered, TX curtz

Schist • greenish grayurueathared. SXcura

Schist - cLsky yellow to greeniah grayweathered, SCK artz

Schist - greeniah grayPertly weathered, 4QX curtzNote: fracture fillings in sons cuttings.

Schist - greenish grayPertly weathered, 40X o>artz

Schist • greenish grayPartly weathered, 35-40X cuNtz

Schist • greenish grayUrueathered, 45-5CX ourtz

Schist • greeniah grayUuetherad to partly weathered. TX euro

no i no i or

CfiSERVATICNS

*"i 11 i ww i fib w

UEUcoNsrnjcriCN

Grout

4" 01an.Sched. 40 PVC

Bentonlte

Shale Trap

Open Interval

I','//t/»*t*+t»t >t ,tft/////<

-

*

4

f

*

-

OtllLBt: WHliaeffciehart. Ire. ' INSPECTCR: j. Sament/D. Uhaten

Page 57: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

_ Auut C. 1999" ' "" "BATE STARTEDJJuut 2. t999

DATEFWISEDTW.tt

;:iuVACE ELSVATIO*trBPTSoti Rard T-4

'"" ' ]'~~.. ,. "" """ ; "" " "RICMCDEL "':" ' ""

C-11NCLENO.

SHEET 1 OF 3

733.04WATER LEVEL AFTER DRILLING

735.67V* m, WATER LEVEL

Kevstcne Sanitation GroLrtijeter Plan Union Townahlo. PerrevtanfaPROJECT N*€ " - ; - ' LOCATION44156 Clear

i

PROJECT NO. "'" ' '"" ' " " ."." . "" •'"'""" "" UEATHER ' ' ' '

DEPTH

0-

. ; -

.

10-

20-

-

-

30-

-

40-

SO-

OESCRIPTICN _ . . , . .

Schist - brawn

Ccntirued

Schist - gray

Ichfst - greenish grey to cLalcy yellow breunweathered, SX aura

Schist - greenieh gray to oUlcy yallowSlightly westhered •

Schist • greeniah grey to dusky yellowSlftfitly woethered

Schist - greenfeh grey to oUfcy yet lowWeathered

Continuedj

CBSEKUttlCKS

Ueathered zone

Moist zone

UM the red zone

WELL' '- " 'coNsmxTtCN :

10* Casing

Open Well

M HHB 1

i

,

.

:-*

-

-

:-

ORtLLER: William Refchart. Ire. ** ' V W 1 £ / INSPECTCR: J. Saroent/0. Wielen

Page 58: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KMtone Sanitation frontBter PlanPROJECT mm64156PROJECT HO.

DOTH

50-

60-

*

*

70-

-

*

30-

-

90 •

.

100 -

Auut 22. 199»DATE STARTED

Auut 22. 1989DATE FINtSHS)

789.64SLRFACE ELEVATION

Iraenoll (tsnd T-4RIQKDEL

C-11HOLE NO.

SHEET 2 OF 3

WATER LCVa AFTER DRILLING733.04

» HR. WATER LEVEL

uiion TownsMn. PwrBvlvanieLOCATICI)ClearUEATHER

DESCRIPTIOI

Schist - greenish gray to lightueathered, SXo rtz

olive

Schist - radius light gray to greenish grayu-neatfwed, ITXe rtz

Schist - radiuB light gray to greenish graytf»!arheinrl, tXcusrtz

Schist -greenish grayUrweethered

Schist * greenish grayPartly weathered, 17X eura

Schist - greeniah grayPartly weathered, ISXcuartz

Schist - greenish gray to lightuvetnered, IQXourtz

Schist - greenish graymothered. SXcuMtz

Schist * greenish gray to lightSlightly weathered

WILIER: ufUfaejRttdiait. Ire.

gray

olive

— ftR|Q3l- ———— ———

03SERVATIONS

.

weauiei eu zcneEncortered water

..

WILLCQSTRUCTIQN

Open Well

.

*

.•

INSfCCTCR: J. Sargent/D. Uvlen

Page 59: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Kevstane Sanitation Groirdater PlanPROJECT*!*64T56PROJECT NO.

DEPTH

100 -

*

*

*

*

110-*

*

120-

-

130-

-

140 •

*

*

*

ISO-

Auut 22. 1999OATETARTED

Auut J2. 999DATE FINISH

7.64SUtFACE ELEVATION

Inwrsoll Rerd T-4RIG ma

C-11HOLE NO.

SHEET 3 OF 3

WATER LEVEL AFTER DRILLING7S3.0C% NR. WATER LEVEL

Union TownahiD. PemsvlveniaWCATIONClearWEATHER

DESCRIPTICN

Schist - light olive to dOcy vet lowUeathered, 70X ouvtz, very large freowits

Schist - light olive to cUky yellowWeathered, 705 <urtz, very large frognents

Schfst - greeniah grayUrweattwrad, 5-1CX cuirtz

Schist - light olive to greenish greyWatered

Schist - light gray to greenish greyU-MSthered

Schist - greenish greyPartly weathered, IQXqjartz

Schist - greeniah greyPartly wnttwred, lOXcjjsrtz

-"F . «! !-','• '

Schist - greeniah gray to dsfcy yellowUeathered, 50-6SK ouvtz

/IDDRILLER: Ufllian Relchart. Ire.

\ Q3 I ?q — -

i

OBSERVATIONS

\

Encontered water

(I

i ' '|if

\i

i

WELL —oasmxncN

Open Well

-

*

-

-

*

-

«

«

v w i c J ...,....-,„.,.. - . .INSPECTOR: J. Sargent ). Uhalcn

Page 60: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. 1999DATE STARTS)

Auut 22. 1999DATE FINISHS)774.9DSUtFACI ELEVATION

ImersoU Rand T-4RIG ma

C-12HOLENO.

SHEET 1 OF 3

WATER LEVA AFTER CHILLING730.30

X m. WT3» LEVEL

Kevstena Sanitation Grardater Plan IMcn Tewrahfo. PerrevivanfaPROJECT tWC LCCATICN64156 ClearPROJECT NO. * UEATHER

DEPTH

0-

10 •

-

20-

-

-

-

30-

40-

-

50-

DESCRIPTION

Schist • brown

Schist • brown gray to light grayweathered

Schist - brownish gray to light graygathered, with clay

Schist - grayish greenPowdery soft, stall cuttings, in«ethered

Schist • grayish greanPowdery soft, snlt cuetirgs, u-ueathered

OBSERVATION!,

Moist zone

UQJ,CCKSTRUCTION

10 '4" Casing(1.4')

Grout

4" Dlan.Sched. 40 PVC

•BH BBBBBi 1-

-

-

-

.

* *ORILLBt: UUlia»Rtichart. Int. IKSPECTCft: J. Sarwnt/D. UHalen

Page 61: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. 1999 C-12

Auut 22. 1999DATE FINISHED

HOLE NO.

SHEET 2 OF 3

•JIFACE ELEVaTIOl " WATER LEVEL. AFTER DRILLING(rfiersoU Rand T-4 730.30

~\ ' RIG KKL » HR. WATER LEVEL

Keystone Sanitation Groniater Plan thlen Tcwahio. PemsvlwilaPROJECTIWE " " t , LOCATION64156 ClearPROJECT NO. - • -- . , ., WEATHER

DEPTH

50-

60-

*

70-

*

80-

90-

100-

DESCRIPTION

Schist - greeniah grayHarder, tass powder, uneethered, 5X cuu z

Schist - grayish greenPowdery soft, slightly weathered

Schist • greyish greenSlightly weathered, powdery

Schist - pale greenUueatnerad, powdery '

Schist - greyish greenWeathered

exam, tftiteVery slightly weathered less than SX schist '.

Schist • gray greenPartly weathered, 4QX ouirtz

Schist • grayish greenPartly weathered, TXouutz

Schist - grayish green to eeidiuH bluishPartly weathered, 10X cuvtz, acne pyrita

; OBSERVATIONS

Iron stainingObserved on cuttings

jiueathered zone

fT

ii

Encountered water

' f

j

iii

i

1

W2J.CCNSTRJCTICN

Ben ton Ha

4" 01am.Sched. 40 PVC

Shale Trap

Open Interval

River ChannelGravel

Bentonlte

River ChannelGravel

1 1/ // '/ t' js // ^M -

wm&&bSs

*

#

*

V

I

DRILLER: William Heichert. Ire. A R 1 fl 3 | 3 f INSPECTOR: J. Sergert/D. USalen

Page 62: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

«uut22. 1999DATE STARTS)

Auast 22 _199Jg_DATE FINISHED

774.90SLRFACE ELEVATION

Iroerwll RardT-4RIG M2EL

C-12HOLE NO.

SHEET 3 OF 3

WATER LEVEL AFTER DRILLING730.30X m. WATER LEVEL

Keystone Sanitation Cnxrtiater Plan_______________ Union Tarshlp. PgrrsylvaniaPROJECT WC LCCATICN6(156 " __ ____________________ ClearPROJECT NO. UEATHER

DEPTH DESCRIPTION CBSERVATIOSUEU

CONSTRUCTICN

100

110

120 -

Schist - dcky green to grayish greenueathered, 3QXo>artz

Schist • pale green to grayish greenPartly ueathered, 10X opMtz

Schist - grayish greenUMBthered, 2X cuvtz

Schist - grayish greenSons weathering

Schist • cUky green to grayish greenUtoathered

—«———-8.0.H."—————

River ChannelGravel

130-

140-

150-

QJ-ILLERt WilHaeBeitfttrt. trc.___________________IKSPECTW: J. Sarwnt/D. Onlcn

Page 63: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

S. 1999

DATE IWiSHED

ELEVATIONIreersoll Rand T-4

RIG KEEL

C-T3HOLE NO.

SHEET 1 OF 3

WATER LEVEL AFTER DRILLING730.20_______

* HR. WATER LEVEL

Kevstere Sanitation CmreUter Plan ' Union TowreMp. PerreMveniaPROJECT N«€ -- - - • ::- '. ICCATICH64156 ____________________-'-' ' r'~ Clear-•ROJECTNO. --- -- - - - • - - • - • —^-"." ~ ,,,,.,, .WEATHER

DEPTH DESCRIPTION CBSERVXTICKSWHL

CCNSTRLCTICN

10

20

30

40

50

Schist - brown to tan

Contfrued

Schist - gray

Schist - light olive brown

Schist - grayish blackPowdery, 60Xourtz

9'9" Casing(1.61)

Soft, wntheredSched. 40 PVC

Schist • light olive branPowdery soft

Schist - tan

4" 01am.

Hoist zone

Very soist and weathered zoneJ Grout

031 33CBILLBt! William Relehart. Ire.'" ' v^ I U J ~ tNgECTOB: J. SaroaTM). Uialen

Page 64: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. 1989DATE STARTED

Auut 22. 1999DATE FINISH3)

774.60SJtFACE ELEVATION

IroeraoU Rard T-4RIGKI«L

C-13HOLE NO.

SHEET 2 OF 3

WATER LEVEL AFTER DRILLING730.20

24 HR. WATER LEVEL

Kevvtcne Sanitation Grn/rl«ter Plan Uhton Townahfo. PemsvlvenlaPROJECT mm LOCATION64156 CteerPROJECT NO. ' UEATHER

DEPTH

50-

60-

70-

ao-

-

90-

-

100-

DESOtlPTION

Schist - grayish blackincathared. 40Xcuartz

Schist - greeniah grayPowary, soft, slightly weatnerad, 2X cuv z

Schist * cark greenish greyPowdery, soft, u eerthered

Schist - dark greenish grayPowdery soft, ljueathered, IX cuartz

Schist - grayish greenPewdsry. weathered

Schist - grayish greenClayey, weathered, TX <urtt

Schist - grayish greanPcwdary. uestnsred, SQX c artz

ftartz. 90X powderyweathered wit 5-1QX achist

Schist • grayish greenUeetheied. poudary, 83t eurtz

QBSERVATtCNS

Ueathared zone

Enaouiterad water

Ercountered water

UEUcoNsnucriON

Grout

4" DIM.Sched. 40 PVC

Bent on Ua

Shale Trap

Open Interval

-

-

-

-

DRlLLERi Uilllanfteichapt. M» 1 U V 1 v H iNSPECIwi J. Saroant .* Uhalen

Page 65: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

:

Keystone Sanitation Groindater PlanPROJECT NWC64156PROJECT NO.

DEPTH

100-

110-

120-

'-

T30-

uo -

-

9

1150-

Auut 22. K69 C-13DATE STARTS . .

DATE flNISHED

HOLE NO.

SHEET 3 OF 3

SURFACE ELCVATICN *TER LEVEL AFTER DRILLINGir»rsol| lard T-4 730.20

RIG Mae. 24 NR. WATER LEVCL

'" Uifon Townshio. PerreMwnie.( . . ... . .:,, LCCATIW . _

" "^r --" *' " .Clear" "tCATHER , . . . '

DESCRIPTION

Schist • oujky yellow green toHard, wsthered, 3CK cuvtz

Schist - dark grey to freylsh (Nerd, mthered, 2GX ouvtz

Schist * cart gray to greyish jWeathered, 20Xq«rtz

- i

grayleh green

men

ireen

Schist • oark graySlightly ueathered, herd, 5X curtz, large ourtz chu*

Schist - grayish blackHard, weathered, SXouartz

.

OBSERVATIONS

Water is befng blown out of wellby cH lienf •j.

water is being blown out of welltoycHllers

^

ij.j

i

i

F

iI

WILLCCNSDUCTICN

Open Interval

River ChannelGravel

Bentonlte

River ChannelGravel

-'••

*\P Jj*SI*

V"7fYvw/SSRffl®U5&ZffimW&mm$$

*

*

*

*

*

*

-

-

DRILLS): Milieu Refchart. Inc. H " ' U 3 J 3 5 1 INSPECTOR: j. SarosnM). toalm

Page 66: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auut 22. T999; DATESTARTO

Auut 22. 1999DATE FINISH3)775.62SJtFACE ELEVATION

tmrsoll Band T-4RIG KEEL

C-14HOLE W.

SHEET 1 OF 3

WATER LEVEL AFTER DRILLING733.62

24 «. WATER LEVEL

Keystone Sanitation Graniater elan iMcn Townshio. PerravlvaniaPROJECT mm LCCATtON64T56 ClearpaCJECTNO. UEATHat

DEPTH

0-

10-

-

20-

-

30-

40 •

*

*

50-

DESCRIPTION

Schist - grayish greenPowdery, very weathered

Schist - grayish greenPowdery, weathered, 5X cuartz

Schist - grayish greenPowdary, soft, weatnered, 2X cuartz

Schist - dark grayPoodtry. soft, waathered. TX cuartz

Schist • grayish greenPcwdary. weathered

Schist • grayish greenPowdery, waitnered

Schist • cLsky yellowish greenPowdery, weathered

- •

OBSERVATIONS

Encountered water

uaj.CONSTfUCTION

8'4' Casing

Open Well

*

*

*

*

*

-

DWILLEti UWIamMehart. Ire. « H 1 U 0 1 0 0 INSPECTO*! J. Sareent/0. UMlen

Page 67: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KMtone Sanitation Gr-cuidater PlanPKUECTNAME -. .- ..64156PROJECT «. ...

DEPTH

50-

-

60-

.

-

70 f

-

ao -

*

90-

*

*

103 *

AuMtariw? --- -_.,,«TEITARTEO

ALDUST 22. KW ": - . , BATEHNISHED

775 2. . . SUVACE BLEVATICN

IrnerioU Rard T-4. RIG KEG.

C-14NCLENO.

SHEET 2 Of 3

WATER LEVEL AFTER OR ILL IMG733.62

y. HR. WATER LEVEL

' "* '"""""' ^ thien Townshlo. Pemsvlwnia- - ' • " ' ":X; •-."•:. ,.,..-.-:, LCCATICN

*•;•;,?•::: Cle8r._ . „ ... . v j . ', ,. . WZATBER

DESCRIPTION

Schist - dcky yellowish greenweathered, powdery

Schist - dark grayPowdery, inceOwed, TXouutz

Schist - oLslcy yellow greenwEaiherad, pcidery, soft

Schfst - cart greenish grayWeathered, powdery

i

Schist - dark greenish grayweathered, powdery

Schist - grayish olive greenUEathersd, eoft, IXo rtz

Schist - grayish olive greenUaachered, IXo rtz

Schist • setiiua dark graySlightly weathered, IXcuvtz

h, ,.

Schist - oark greenish graySlightly weathered, hard, TX cusra

Schist • olfv« greySlightly weathered

- l -'

; OBSERUITICNS

t

-.

Ueathered zone

Uaatherad zcn assoeleted withwater

}

s\

•tweathered zone

i

Li

f

. 1

- wtU .OCNSTRLCTION '

Open Nell .

.'. L ,

;

-;

'

*

••

* n

• :

-;

* .

-

DRILLER: William Reichart. Inc. *» U TO 3 1 3 7 "*" lNS>ECTORi J. Saroent/D. UHaltn

Page 68: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Auu 22. 198?DATE STARTS)

Auut 22. 1999DATE FINISHB

775.62SLRFACfi ELEVATICN

,,, Irflerwll Rand T-4RIGMXEL

C-14HOLE NO.

SHEET 3 OF 3

WATSt LEVEL AFTER DRILLING733.6224 HR. WATER LEVEL

Keystone Sanitatien Grarciater Plan UMon Townshfo. PemsvtvanlaPROJECT mm LOCATION64156 Clou*PROJECT NO. UEATHER

DCPTH

100-

-

110-

*

120-

*

130 •

140 -

*

150 -

DESCRIPTtON

Schist - cark greenish grayUruaethered

Schist - greenish blackWeathered, soft. SX qjrtz

Schist - grayish greenleathered. SGXc jrtz

Schist - dsky yellawish greenUeetherad, soft. 3CX cuMtz

Schist • dark greenish grayweathered, ICXcurtz

Schist • dark grayUveathered. TXcurtz

Schist * dark grayUtaathsred

Schist • dark grayurueethered

, ,,,„ ,.Lo_wta4-afl.

OBSERVATIONS

Enco/itered water

UELLQWSTtUCTIQN

Open Wen

V

-

. A H I U J I U " -— ; ... -I-DRILLER: UillimReichart. Inc. 1NSPECTCR: J. Saroent/D. uhalen

Page 69: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

" APPENDIX CAQUIFER TEST INFORMATION

L flfil03f39

Page 70: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

iOlo

r-S03 f}i « i-sJ3

1-8

* ^"2-s *h41 cx y/1 f *5^

I >II ^S /.'

i i i i i r

<DO

* ' - y rf t •s>

1 1 1 1 1

r--5-a

•s£-R

•2•3•S

•S

v vy £ v * ** * ^^

ARI03UO

Page 71: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00
Page 72: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

I

f(0 S99J68P) J. D}|9Q (0 S99j69p) J.

flRI03.U2 -

Page 73: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

(0 S99J69P)

i r i

? s '? ? !(0 S99J69P) i

«RI03U3

Page 74: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

•3a)

If /» k

•i•|•s•s

iia ell

JlI8 •• «

-8

. *-* i •"I

f f ?(0 S99J69P) i D}|9Q (0 S99J69P) 1 D}|9Q

ARI03UI*

•S*"VSOr

-S

-3

Page 75: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

o

o

103 11.5

Page 76: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUHPIKC TEST DATA - 10/9/89

WELL C-3

DEUATERED OEUATEREO OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME ORAUDOUN ORAUDOWN TIME DRAUDOUN ORAUDOUN TIHR DRAUDOUN DRAUDOUN(•In) (ft) (ft) C«in) (ft) (ft) Cain) (ft) (ft)

0.00830.01660.02500.03330.04160.05000.05830.06660.07500.08330.10000.11660.13330.15000.16660.18330.20000.21660.23330.25000.26660.28330.30000.31660.33330.41660.50000.58330.66660.75000.83330.9166.0000.0833.1666.2500.3333.4166.5000.5833•6666.75001.83331.91662.00002.5000

0.0180.0180.0180.0220.0220.0180.0180.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0250.0250.0280.0310.0310.0310.0340.0370.0440.0470.0470.0470.0470.0470.0470.0470.0440.0410.0370.0340.0340.0310.037

0.0180.0180.0180.0220.0220.0180.0180.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0220.0250.0250.0280.0310.0310.0310.0340.0370.0440.0470.0470.0470.0470.0470.0470.0470.0440.0410.0370.0340.0340.0310.037

3.00003.50004.00004.50005.00005.50006.00006.50007.00007.50008.00008.50009.00009.500010.000012.000014.000016.000018.000020.000022.000024.000026.000028.000030.000032.000034.000036.000038.000040.000042.000044.000046.000048.000050.000052.000054.000056.000058.000060.000062.000064.000066.000068.000070.000072.0000

0.0410.0440.0530.0600.0780.0780.0750.0970.0910.0820.0720.0660.0660.0720.0750.0750.0940.1070.1160.1230.1420.1230.1380.1610.1730.1640.1700.1860.2140.2300.1830.1980.2170.2550.2460.2710.2580.2770.2740.2900.2870.3060.3090.3120.3310.331

0.0410.0440.0530.0590.0770.0770.0740.0960.0900.0810.0710.0650.0650.0710.0740.0740.0920.1050.1140.1210.1390.1200.1350.1580.1700.1600.1660.1820.2100.2250.1780.1930.2120.2490.2390.2640.2510.2700.2660.2820.2790.2980.3000.3030.3220.322

74.000076.000078.000080.000082.000084.000086.000088.000090.000092.000094.000096.000098.0000100.0000110.0000120.0000130.0000140.0000150.0000160.0000170.0000.180.0000 -.190.0000200.0000210.0000220.0000230.0000240.0000250.0000260.0000270.0000280.0000290.0000300.0000310.0000320.0000330.0000340.0000350.0000360.0000370.0000380.0000390.0000400.000ft410.0000420.0000

0.369 (0.397 (0.344 <0.3600.4070.4420.435 10.4390.4570.3820.4730.4450.4200.4570.5020.6190.6190.6150.7100.7480.789 '0.8300.8840.963 11.007 (1.0801.1371.1741.2251.2631.2981.4211.4491.5061.5441.6011.6481.6991.7461.7971.8471.89t1.9391.9862.0342.081

1.3601.3871.3341.3501.3973.4301.423).4273.4459.3719.4603.4323.4079.4449.4879.6021.6011.5961.6893.7253.7653.8031.8551.9321.974.045.100.135.184.219.252.371.398.452.488.543.586.635.680.728.775.817.862I.-906.951.995

AR1031U6

Page 77: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.WMPIKG TEST DATA - 10/9/89

C-3

OEUATEREO DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TINE ORAUDOUN DRAUDOUN TINE OMUDOWN DRAUDOUN(•in) (ft) (ft) (eiin) ; -^fl) : (ft)

430.0000 2.131 2.043 890.0000 •-3.862 3.632440.0000 2.176 2.085 900.0000 3.891 3.658450.0000 2.223 2.129 910.0000 3.922 3.625460.0000 2.274 2.177 920.0000; ,rl.957 v 3.717470.0000 2.318 2.217 930.0000,£.992... 3.749480.0000 2.359 2.256 940.0000 -4.820 3.774490.0000 2.403 2.297 950.0000 • A.052 . 3.803500.0000 2.441 2.332 960.0000 4.OS3 3.830510.0000 2.479 2.368 970.0000 4.112 3.856520.0000 2.517 2.403 960.0000 >.K7 3.887530.0000 2.558 2.441 990.0000 4.172 3.909540.0000 2.599 2.478 1000.0000 ,_:*.207,; 3.941550.0000 2.634 2.511 1100.0000 4. U3 4.148560.0000 2.675 2.549 1200.0000 4.762 4.431570.0000 2.706 2.578 1300.0000 .5.059 4.692580.0000 2.747 2.616 1400.0000 5.293 4.894590.0000 2.788 2.654 1500.0000 5.577 5.140600.0000 2.823 2.686 1600.0000 3.6X3 5.370610.0000 2.864 2.724 1700.0000 \ 4.089 ; 5-579620.0000 2.902 2.758 1800.0000 6.323 5.773630.0000 2.940 2.793 1900.0000 6.563 5.981640.0000 2.978 2.828 2000.0000 6.790 6.171650.0000 3.013 2.860 2100.0000 .7.021 6.364660.0000 3.060 2.904 2200.0000 -, f .242;: , 6.547670.0000 3.092 2.933 2300.0000 7.434 6.7W680.0000 3.133 2.971 2400.0000 , 7.437 6.871690.0000 3.171 3.005 2500.0000 7.629 7.027700.0000 3.208 3.039 2600.0000 4.009 * 7.172 ;710.0000 3.246 3.074 2700.0000 8.193 7.320720.0000 3.291 3.115 2800.0000 • ,1.360 7.453730.0000 3.322 3.144 2900.0000 . i.578 7.630740.0000 3.360 3.178 3000,0000 8.745 . 7.761750.0000 3.395 3.210760.0000 3.430 3.241770.0000 3.464 3.272780.0000 3.499 3,304790.0000 3.540 3.342800.0000 3.569 3.368810.0000 3.600 3.396820.0000 3.638 3.431 '830.0000 3.670 3.459840.0000 3.704 3.490 .8SO.OOOO 3.736 3.519860.0000 3.748 3.548870.0000 3.799 3.576880.0000 3.834 3.607 _

ARI03IH7

Page 78: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPIN9 TEST DATA - 10/9/89

WELL C-3

DEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(nrin) (ft) (ft) (aln) (ft) (ft)

370.000380.000390.000400.000410.000420.000430.000440.000450.000460.000470.000480.000490.000500.000510.000520.000530.000540.000550.000560.000570.000580.000590.000600.000610.000620.000630.000640.000650.000660.000670.000680.000690.000700.000710.000720.000730.000740.000750.000760.000770.000780.000790.000800.000810.000

0.0510.0570.0630.0760.0860.0980.1170.1200.1360.1490.1580.1770.1900.2090.2250.2400.2590.2750.2940.3130.3320.3570.3760.3950.4110.4300.4520.4710.4930.5090.5280.5400.5690.5880.6070.6350.6510.6730.7020.7200.7390.7580.7840.7990.818

0.0090.0140.0190.0300.0390.0500.0680.0700.0850.0970.1040.1220.1340.1320.1670.1810.1990.2130.2310.2480.2660.2900.3080.3260.3410.3580.3790.3970.4170.4320.4500.4610.4880.5060.5230.5500.5650.5860.6140.6290.6470.6650.6900.7030.721

820.000 (830.000 1840.000 (850.000 I860.000 (870.000 (880.000 <890.000 (900.000910.000920.000930.000940.000950.000960.000970.000980.000990.0001000.001100.001200.001300.001400.001500.001600.00 ;1700.00 ;1800.00 i1900.002000.002100.00 '2200.00 '2300.002400.002500.00

1. 840I.863i.saa1.9041.9291.9541.9761.992.021.039.058.077.103.122.137.163.185.204.223.463.665.832t.006(.153E.344E.49St.6381.7771.9161.0421.1621.272S.3861.544

0.0.0.0.0.0.0.0.0.0.0.0.0.*

*

.

.

.

.

.

.

.

.2.2.2.2.2.2.2.2.3.3.

742763786801825848869884910927945962987005018043063080098322507658816975120253379501622732834928025162

ARI03IU8

Page 79: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.PUMPING TEST DATA - 10/9/89

', ^ - WELL C-5

OEUATERED :;, t; OEWATERSO . OEUATEREDANTECEDENT CORRECTED WIYICEDENT CORRECTED ANTECEDENT CORRECTED

TIKE ORAUDOUN DRAUDOUN TINE DRAWDOWN DRAUDOUN TIME DRAWDOWN ORAUDOUN(•(n) (ft) (ft) («tn> (ft) f -(ft) («ln) (ft) (ft)

0.00830.01660.02500.03330.04160.05000.05830.06660.07500.08330.10000.11660.13330.15000.16660.18330.20000.21660.23330.25000.26660.28330.30000.31660.33330.41660.50000.58330.66660.75000.83330.91661.00001.0833.1666.2500.3333.4166.5000.5833.6666.7500.8333.91442.0000

0.0120.0180.0250.0310.0370.0440.0500.0560.0630.0750.0940.1130.1380.1640.1890.2140.2460.2710.3020.3340.3660.3970.4290.4600.4980.6620.8330.9901.1361.2741.3941.5021.6031.4911.7471.8361.9051.9692.0192.0762.1202.1642.2082.2462.284

0.0120.0180.0250.0310.0370.0440.0500.0560.0630.0750.0940.1130.1380.1640.1890.2140.2450.2700.3010.3330.3650.3960.4270.4580.4960.6580.8270.981.124.259.376.481.580.665.739.80S.872.934

1.9822.0372.0792.1212.1442.2002.237

2.5000 •3.00003.50004.00004.50005.00005.50004.00004.30007.0000'7.50008.00008.30009.00009.500010.000012.000014.000016.000018.000020.000022.000024.000026.000028.000030.000032.000034.000036.000038.000040.000042.000044.000044.000048.000050.000052.000054.000056.000058.000040.000042.000044.000046.000048.0000

'2.4733.412t,726<2.8713.0233.1423.2373.3193.3893.4323.5093.5653.4163.4663.710S.7333.9254.0774.2224.3614.4934.4194.7394.847 "•*4.960'5.074'3.1755.1765.3775.4785.5665.4615.755

'.5.144'5.9324.0204.1094.1914.2794.3684.4564.5384.4334.7084.784

2.4172.5502.6582.7952.9393.0513.1413.2183.2843.3433.3963.4493.4963.5433.5843.4263.7833.9244.0584.1864.3074.4224.5324.4304.7334.8364.9285.0185.110-5.2015.2805.3645.4495.5285.4065.6845.7645.8365.9135.9926.0704.1424.2254.2914.358

70.000072.000074.000076.000078.000080.000082.000084.000086.000088.000090.000092.000094.000096.000098.0000100.000110.000120.000130.000140.000150.000160.000170.000180.000190.000200.000210.000220.000230.000240.000250.000260.000270.000280.000290.000300.000310.000320.000330.000340.000350.000360.000370.000380.000390.000

6.8724.9427.0187.0937.1437.2327.3087.3777.4407.5107.5797.4427.7127.7757.8387.901.229.532.842.126.403.481.933

10.16710.39410.68410.92411.14511.37211.58711.80812.02912.23112.45812.67212.86813.05713.27213,47413.45113.83413.96614.11614.30714.440

6.4344.4954.5626.6276.6876.7476.8136.8734.9266.9877.0447.1007.1607.2147.2687.3227.6017.8576.1168.3538.5836.8119.0179.2089.3919.4259.8149.99210,17210.34010.51410.68610.84211.01811.18211.33111.47511.43711.79011.92212.05812.15612.26912.40812.505

RR1031U9

Page 80: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.PUMPING TEST DATA * 10/9/89

WELL C-5

DEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN ORAUDOUN TIME ORAUDOUN, ORAUDOUN(•In) (ft) (ft) (Bin) (ft) (ft)

400.000 14.572 12.602 850.000 18.826 15.528410.000 14.717 12.707 860.000 18.876 15.560420.000 14.843 12.798 870.000 18.927 15.593430.000 14.970 12.890 880.000 19.034 15.662440.000 15.090 12.976 890.000 19.116 15.715450.000 13.203 13.058 900.000 19.192 15.764460.000 15.310 13.134 910.000 19.255 15.804470.000 15.411 13.204 920.000 19.350 15.865480.000 15.506 13.274 930.000 19.413 15.905490.000 15.413 13.349 940.000 19.489 1S.953500.000 15.714 13.421 950.000 19.556 15.997510.000 15.834 13.506 960.000 19.627 16.041520.000 13.929 13.572 970.000 19.703 16.089530.000 16.036 13.647 980.000 19.764 14.129540.000 16.125 13.710 990.000 19.829 14.168550.000 16.224 13.780 1000.00 19.892 14.206560.000 16.320 13.845 1100.00 20.593 16.644570.000 16.415 13.911 1200.00 21 .230 17.032580.000 14.491 13.963 1300.00 21.880 17.421590.000 16.585 14.028 1400.00 22.732 17.922600.000 16.684 14.096 1500.00 23.319 18.258610.000 16.787 14.147 1600.00 23.824 18.540620.000 16.882 14.233 1700.00 24.342 18.826630.000 16.964 14.288 1800.00 24.840 19.094640.000 17.044 14.344 1900.00 25.314 19.348650.000 17.147 14.413 2000.00 25.699 19.549660.000 17.248 14.482 2100.00 24.052 19.731670.000 17.355 14.554 2200.00 24.454 19.937680.000 17.444 14.614 2300.00 26.854 20.137690.000 17.576 14.704 ' 2400.00 27.245 20.331700.000 17.665 14.764 2500.00 27.630 20.520710.000 17.747 14.818 2600.00 28.002 20.699720.000 17.835 14.877 2700.00 28.286 20.833730.000 17.917 . , 14.932 2800.00 28.589 20.974740.000 17.980 14.973 2900.00 28.955 21.145750.000 T8.0S4 15.024 3000.00 29.372 21 .338760.000 18.151 15.087770.000 18.258 15.157780.000 18.334 15.207790.000 18.397 15.248800.000 18.466 15.294810.000 18.523 15.331820.000 18.605 15.384830.000 18.630 15.400840.000 18.731 15.466

RRI03150

Page 81: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/9/69

vv. ?(*U C-5

DEUATERED DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(•In) (ft) (ft) (aln) , (ft) ij <ft) («1n) (ft) (ft)

0.0750 0.006 0.006 6.5000 3.408 3.301 66.0000 7.333 4.8340.0833 0.006 0.006 7.0000 3.477 3.366 68.0000 7.384 6.8780.1000 0.012 0.012 7.5000 :3.540 3.425 ., 90.0000 7.441 6.9270.1146 0.019 0.019 6.0000 3.597 3.478 92.0000 7.491 4.9700.1333 0.025 0.025 8.5000 ; 3.454 3.532 94.0000 7.548 7.019.0.1500 0.031 0.031 9.0000 3.704 3.578 96.0000 7.592 7.0570.1666 0.044 0.044 9.5000 3.761 3.631 98.0000 7.442 7.1000.1633 0.050 0.050 10.0000 3.805 3.672 100.000 .7-499 7.1480.2000 0.063 0.063 12.0000 . - 4.014 3.866 110.000 7.958 7.3690.2166 0.082 0.082 14.0000 4.178 4.017 120.0000.2333 0.094 0.094 16.0000 4.316 4.143 130.0000.2500 0.107 0.107 16.0000 4.449 4.267 140.0000.2666 0.120 0.120 20.0000 .4.575 4.362 150.0000.2833 0.138 0.138 22.0000 4.695 4.492 140.0000.3000 0.157 0.157 24.0000 ' 4.609 4,596 170.0000.3146 0.176 0.176 26.0000 ,-, 4.910 4.487 180.0000.3333 0.195 0.195 22.0000 5.011 4.779 190.0000.4166 0.296 0.295 50.0000 5.112 4.871 200.0000.5000 0.416 0.414 32.0000 5.2060.5833 0.542 O.S39 34.0000; 5,2950.6666 0.669 0.665 36.0000 5.3830.7500 0.601 0.795 58.0000 5.4710.6333 0.934 0.926 40.0000 5.5720.91661.00001.06331.16661.25001.33331.41661.50001.5833

.066 1.056 42.0000 5.673

.199 1.186 44.0000 5.787

.319

.445

.558

.466

.767

.661

.9501.6666 2.025

.303 46.0000 5.875

.426 48.0000 5.970

.536 50.0000 4.065

.441 52.0000 6.153

.739 54.0000 4.229

.830 56.0000 4.304

.915 58.0000 4.380

.988 40.0000 4.4561.7500 2.101 2.061 62.0000 4.5321.8333 2.171 2.126 44.0000 4.407t.9166 2.240 2.194 46.0000 4.4772.0000 2.297 2.249 48.0000 6.7462.5000 2.568 2.508 70.0000 6.6163.0000 2.764 2.695 72.0000 4.8853.5000 2.903 2.826 74.0000 4.9554.0000 3.016 2.932 76.0000 7.0264.5000 3.111 3.022 78.0000 7.1005.0000 3.193 3.099 60.0000 7.1635.5000 3.242 3.164 62.0000 7.2206.0000 3.345 3.242 64.0000 7.276

.956 210.000

.196 7.573

.431 7.770

.433 7.939

.842 6.114

.044 8.282.239 ' 8.444.429 8.401,424 8.741.807 . 8.910.990 9.059

.036 220.000 10.173 9.208

.115 230.000 10.354 9.356

.194 240.000 10.539 9.503

.285 250.000 10.710 , 9.640

.375 260.000 10.899 9.791

.477 270.000 11.063 9.921

.356 280.000 11.227 10.051

.640 290.000 11.391 10.160

.724 300.000 11.555 10.309

.603 310.000 11.751 10.463

.870 320.000 11.696 10.575

.936 330.000 12.054 10.498

.003 340.000 12.205 10.815

.070 350.000 12.363 10.936

.137 360.000 12.508 11.048

.202 370.000 . 12,460 11.164

.264 380.000 12.611 11.279

.324 390.000 12.957 11.390

.385 400.000 , 13.102 11.500

.445 410.000 13.241 11.605

.507 420.000 13.386 11.714

.547 430.000 13.525 11.818

.632 440.000 13.657 11.916

.687 450.000 13.790 12.015

.737 460.000 13.928 12.117

.785 470.000 14.061 12.216

ARI03I5I

Page 82: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE. SANITATION CO., INC.PUMPtNft TEST DATA - 10/9/89

UELL C-5

DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(•In) (ft) (ft) (afn) (ft) (ft)

480.000 14.200 12.319 930.000 17.968 14.947490.000 14.320 12.406 940.000 18.031 14.989500.000 14.440 12.494 950.000 18.094 15.031510.000 14.553 12.577 960.000 18.157 15.072520.000 14.667 12.659 970.000 18.214 15.110530.000 14.780 12.741 980.000 18.271 13.147540.000 14.894 12.824 990.000 18.334 15.188550.000 15.001 12.901 1000.00 18.397 15.230560.000 15.102 12.973 1100.00 18.952 15.588570.000 15.210 13.050 1200.00 19.470 15.918580.000 15.304 13.118 1300.00 19.954 14.223590.000 13.405 13.190 1400.00 20.391 16.491600.000 15.500 13.257 1500.00 20.770 16.721610.000 15.588 13.319 1600.00 21.123 16.932620.000 13.677 13.383 1700.00 21.420 17.107630.000 13.765 13.444 1800.00 21.704 17.273640.000 15.847 13.502 1900.00 21.969 17.425650.000 15.929 13.560 2000.00 22.209 17.562660.000 16.011 13.617 2100.00 22.434 17.690670.000 16.093 13.674 2200.00 22.651 17.810680.000 16.175 13.731 2300.00 22.821 17.902690.000 16.270 13.797 2400.00 23.017 18.010700.000 16.352 13.354 2500.00 23.193 18.105710.000 16.434 13.911720.000 16.516 13.968730.000 16.592 14.020740.000 14.647 14.071750.000 14.750 14.128760.000 16.819 14.176770.000 14.895 14.227780.000 14.970 14.279790.000 17.044 14.330800.000 17.114 14.376610.000 17.185 14.424820.000 17.248 14.447830.000 17.318 14.514840.000 17.381 14.557850.000 17.444 14.598860.000 17.513 14.645870.000 17.576 14.687880.000 17.644 14.734890.000 17.709 14.774900.000 17.776 14.822910.000 17.841 14.843920.000 17.904 14.905

ARI03152

Page 83: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPIIIG ,TEST DATA - 10/9/69

",!".'WELL C-4

TIME(Bin)

0.00830.01660.02500.03330.04160.0500-0.05830.06660.07500.08330.10000.11660.13330.15000.14660.18330.2000

i j 0.2166- 0.2333

0.25000.26660.26330.30000.31660.33330.41660.50000.56330.66660.75000.83330.9166.0000.0833.1666.2500.3333.4166.5000.5633.4666.7500

i , .6333N*- ' .9166

2.00002.5000

ANTECEDENTDRAUDOUN<ft)

0.6010.8551.0131.2331.4251.5201.6151.7421.8372.0272.2492.4072.7562.9463.1043.3263.5163.6113.8333.9914.1184.2774.4034.4984.4255.1005.5125.7345.6615.9246.0194.0836.1466.2414.2414.3044.3364.3996.4636.5266.5696.6536.6844.7486.7164.938

OEUATEREDCORRECTEDDRAWDOWN(ft)

0.5960.6481.0041.2211.4071.4991.5911.7141.8061.9902.2032.3542.6572.8673.0163.2253.4043.4923.6993.8463.9644.1114.2274.3144.4314.6645.2365.4355.5495.4055.4905.7473.6035.8875.8875.9435.9716.0274.0834.1394.1944.2514.2784.3344.3066.500

„ ". ,

TIME(•In) .

3.00003.5000 ,4.00004.50005.0000 -..5.50004.00004.50007.00007.5000 ,6.00006.50009.00009.500010.000012.000014.000014.000018.000020.000022.000024.000026.000026.000030.000032.000034.000036.000038.000040.000042.000044.000044.000048.000050.000052.000054.000056.000058.000040.000042.000044.000046.000048.000070.000072.0000

ANTECEDENTORAUDOUN !tjCft)

,7,033,7,255 \.,7.7428.047

\ 8.1748.2378.395

.: 6.4908.522£.41716.712r 8.7128.6398.902

;'>«.fS4t *'M1'" ».251>' !f.378:9.568 -r*-758

!' »*94810.04310.138

' 10.32810.45510.581

/ 10.708 J10,66716.9931|.«0

' 11.21511.27811.34211.46911.53211.45911.49011.88011.94412.07112.19712.32412.41912.41912.51412.409

OEUATEREDCORRECTEDDRAUDOUN(ft)

4.5834,7767.2137.4577.5667.6197.7537.834

>7.8617.9416.0216.021.6.1288.1818.208.8.3138.4718.577

: 8.734.8.8909.0469.124f.WI9.3539.4589.5609.462

n 9. 7899.690

: 9.99210.068

I 10.11710.16810.26810.31710.41810.44210.59110.64110.74010.83810.93711.01011.01011.08311.157

iTIME(Bin)

74.000076.000078.000060.000082.000064.000066.000088.000090.000092.000094.000096.000098.0000100.000110.000120.000130.000140.000150.000160.000170.000160.000190.000200.000210.000220.000230.000240.000250.000260.000270.000280,000290.000300.000310.000320.000330.000340.000350.000360.000370.000380.000390.000400.000410.000420.000

ANTECEDENTORAUDOUN(ft)

12.67212.79912.894 '12.95813.02113.17913.24313.36913.43313*49613.59113.71813.65313.68613.94014.38314.73213.08015.30215.48215.60915.99916.25316.72817.07617.20317.43717.44717.86816.09018.24916.43918.78719.07219.32619.64319.89619.99120.15020.21320.27620.498'20.36120.68820.75220.847

OEUATEREOCORRECTEDDRAUDOUN(ft)

11.20411.30211.37511.42411.47111.59211.64011.73611.78411.83111.90311.99711.95011.97312,14312.49112.74713.00013.15913.43113.52113.45513.63414.14614.40714.49314.66614.79514.94315.09215.19815.32415.55315.74015.90516.10816.27016.33014.43014.46916.50816.64716.68616.76516.60316.862

ARI03I53

Page 84: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.PUMPINO TEST DATA - 10/9/89

UELL C-6

OEUATERED DEUATEREOANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN DRAUDOUN • TIME DRAUDOUN DRAUDOUN(Bin) (ft) (ft) (Btn) (ft) (ft)

430.000 21.005 16.959 890.000 25.724 19.648440.000 21.132 17.037 900.000 25.789 19.680450.000 21.258 17.114 910.000 25.852 19.713460.000 21.417 17.210 920,000 26.011 19.797470.000 21.375 17.306 930.000 24.074 19.830480.000 21.670 17.343 ' 940.000 24.169 19.879490.000 21.765 17.420 950.000 26.264 19.928500.000 21.924 17.515 960.000 24.326 19.941510.000 22.177 17.666 970.000 24.484 20.043520.000 22.241 17.704 980.000 24.581 20.092530.000 22.334 17.760 990.000 24.613 20.108540.000 22.494 17.852 1000.00 26.676 20. 139550.000 22.589 17.908 1100.00 27.595 20.600560.000 22.652 17.944 1200.00 28.514 21.047570.000 22.779 18.018 1300.00 29.718 21.611580.000 22.938 18.110 1400.00 31.524 22.411590.000 22.969 18.128 1500.00 31.999 22.608600.000 23.128 18.220 1600.00 32.284 22.722610.000 23.223 18.274 1700.00 33.013 23.016620.000 23.349 18.344 1800.00 33.678 23.275630.000 23.413 18.382 1900.00 34.217 23.479640.000 23.371 18.472 2000.00 34.502 23.582650.000 23.633 18.508 2100.00 34.755 23.672660.000 23.730 18.562 2200.00 35.230 23.843670.000 23.888 18.651 2300.00 35.832 24.055680.000 24.015 18.722 2400.00 36.339 24.227690.000 24.268 18.864 2500.00 36.783 24.374700.000 24.363 18.916 2600.00 37.195 24.507710.000 24.395 18.933 2700.00 37.290 24.534720.000 24.427 18.950 2800.00 37.797 24.694730.000 24.458 18.967 2900.00 38.082 24.780740.000 24.490 18.984 ' 3000.00 38.747 24.981750.000 24.585 19.034760.000 24.743 19.123770.000 24.670 19.192780.000 24.934 19.224790.000 24.934 19.224800.000 25.029 19.277810.000 25.029 19.274820.000 25.187 19.362830.000 25,092 19.309840.000 25.250 19.394850.000 25,409 19.480860.000 25.409 19.479670.000 25.472 19.512880.000 25.662 19.614

RR 103151*

Page 85: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.JUMPING TEST DATA - 10/9/89

C-6

OEUATERED • , DEUATERED OEUATEREDANTECEDENT CORRECTED , ANTECEDENT CORRECTED , ANTECEDENT CORRECTED

TINE BUILDUP BUILDUP TINE BUILDUP BUILDUP TIME BUILDUP BUILDUP(•In) <ft) Cft) «rtn) r (ft) f (ft) <Bln) (ft) (ft)

0.0166 0.285 0.284 3.0000 12.198 10.645 72.0000 16.095 13.7340.0250 0.254 0.233 3.5000 12.356 10.968 74.0000 16.158 13.7770.0333 0.444 0.442 4.0000 12.483 11.066 76.0000 16.221 13.8220.0416 0.665 0.661 4.3000 12.578 11.139 78.0000 14.285 13.8670.0500 0.792 0.766 5.0000 12.641 11.168 80.0000 16.348 13.9110.0563 0.919 0.911 5.3000 12.705 11.237 62.0000 16.412 13.9560.0666 1.077 1.066 4.0000 12.800 11.310 84.0000 14.443 13.9770.0750 1.236 1.222 6.3000 12.863 11.358 86.0000 16.507 14.0220.0833 1.394 1.376 7.0000 12.927 11.407 88.0000 16.570 14.0660.1000 1.679 1.653 7.3000 12.990 11.433 90.0000 16.433 14.1100.1146 1.964 1.929 8.0000 13.053 11.503 92.0000 16.665 14.1320.1333 2.250 2.204 8.5000 13.085 11.523 94.0000 16.728 14.1760.1500 2.503 2.446 9.0000 > 13.148 11.576 96.0000 16.740 14.1970.1666 2.788 2.717 9.5000 13.180 11.600 96.0000 16.623 14.2410.1833 3.042 2.958 10.0000 13.243 11.446 100.0000 16.855 14.2630.2000 3.263 3.166 12.0000 13,402 11.768 110.0000 17.172 14.4820.2166 3.517 3.405 14.0000 13,560 11.837 120.0000 17.425 14.6540.2333 3.770 3.441 16.0000 13.455 11.958 130.0000 17.447 14.6040.2500 3.992 3.647 16.0000 13.782 12.054 140.0000 17.901 14.9740.2666 4.214 4.053 20.0000 13.909 12.148 130.0000 18.186 15.1660.2833 4.436 4.257 22.0000 14.004 t 12.219 160.0000 18.439 15.3340.3000 4.657 4.460 24.0000 14.130 12.313 . 170.0000 18.461 15.4810.3166 4.848 4.434 26.0000 14.226 12.384 160.0000 18.915 ' 13.6470.3333 5.006 4.778 28.0000 14.321 12.454 190.0000 -19.200 15.8320.4166 5.925 5.406 30.0000 U.416 12.324 200.0000 19.390 15.9550.5000 6.748 6.334 32. 0000 V 14.479 12.570 . 210.0000 19.548 16.0570.5633 7.477 6.969 34.0000-14.606 12.664 220.0000 19.707 16.1560.6666 8.111 7.513 36.0000 .' 14.669 12.709 230.0000 19.865 16.2580.7500 6.449 7.969 38.0000 14.764 12.779 240.0000 20.023 14.3590.8333 9.125 6.368 40.0000 14.627 r- 12.823 .,," 250.0000 20.150 16.4360.9166 9.537 6.710 42.0000 14.923 12.895 260.0000 20.309 16.5381.0000 9.685 8.997 44.0000 15.018 12.963 270.0000 20.435 16.6171.0633 10.170 9.230 46.0000 15.113 13.032 280.0000 20.562 16.6951.1666 10.424 9.436 48.0000 15.176 13.078 290.0000 20.720 16.7931.2500 10.445 9.615 50.0000 15.271 13.146 300.0000 20.647 ,16.8721.3333 10.804 9.743 52.0000 15.334 13.191 310.0000 21.006 16.9701.4166 10.994 9.695 54.0000 15.398 13.238 320.0000 21.144 17.0661.5000 11.121 9.997 56.0000 15.493 13.306 330.0000 21.291 17.1441.5833 11.247 10.097 58.0000 15.556 13.350 340.0000 21.449 17.2401.6666 11.342 10.173 40.0000 15.620 13.396 350.0000 21.408 - 17.3351.7500 11.469 10.273 42.0000 t5.71 5 13.464 360.0000 21.734 17.4111.6333 11.532 10.323 44.0000 13.610 13.532 370.0000 21.893 17.5071.9166 11.428 10.399 46.0000 15.873 13.576 380.0000 22.019 17.3812.0000 11.491 10.446 48.0000 15.936 13.421 390.0000 22.146 17.6572.5000 12.008 10.697 70.0000 16.000 13.666 400.0000 22.273 17.732

ARI03I55

Page 86: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPINO TEST DATA - 10/9/89

WELL C-6

DEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(•in) (ft) (ft) C«in> (ft) (ft)

410.0000 22.431 17.825 860.0000 24.740 20.182420.0000 22.590 17.916 870.0000 24.803 20.214430.0000 22.714 17.992 880.0000 24.867 20.246440.0000 22.843 18.066 890.0000 26.930 20.278450.0000 23.002 18.158 900.0000 24.994 20.309460.0000 23.128 18.230 910.0000 27.057 20.341470.0000 23.255 18.303 920.0000 27.120 20.373480.0000 23.382 18.374 930.0000 27.213 20.421490.0000 23.508 18.447 940.0000 27.279 20.452500.0000 23.635 18.520 950.0000 27.342 20.483310.0000 23.730 18.573 960.0000 27.405 20.515520.0000 23.857 18.644 970.0000 27.437 20.530530.0000 23.952 18.698 980.0000 27.500 20.561540.0000 24.079 18.768 990.0000 27.532 20.576550.0000 24.205 18.838 1000.0000 27.564 20.591560.0000 24.301 18.892 1100.0000 26.007 20.805570.0000 24.396 18.944 1200.0000 28.451 21.016560.0000 24.522 19.013 1300.0000 28.990 21.269590.0000 24.617 19.065 1400.0000 29.494 21.502600.0000 24.712 19.117 1300.0000 29.972 21.716610.0000 24.807 19.169 1600.0000 30.479 21.940620.0000 24.871 19.203 1700.0000 30.732 22.046630.0000 24.966 19.255 1800.0000 30.954 22.140640.0000 25.061 19.306 1900.0000 31.207' 22.244650.0000 25.124 19.339 2000.0000 31.441 22.351660.0000 25.219 19.391 2100.0000 31.683 22.441670.0000 25.314 19.441 2200.0000 31.904 22.529680.0000 25.378 19.475 2300.0000 32.094 22.604690.0000 25.441 19.509 2400.0000 32.253 22.666700.0000 25.536 19.559 2500.0000 32.253 22.660710.0000 25.600 19.592720.0000 25.695 19.643730.0000 25.758 19.676740.0000 25.853 19.725750.0000 25.914 19.758760.0000 25.980 19.792770.0000 24.075 19.841780.0000 24.138 19.874790.0000 24.233 19.923800.0000 24.297 19.956610.0000 24.392 20.005820.0000 24.455 20.037830.0000 24.518 20.069840.0000 24.582 20.101850.0000 24.643 20.134

AR103156

Page 87: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.POMPiNG:TESTOATA • 10/9/89

0.6333 1.0650.9166 1.1451.0000 1.2601.0833 1.3481.1666 1.4301.2500 1.5061.3333 1,5751.4166 1.4451.5000 1.7011.5633 1,7581.4666 1.6151.7500 1.6651.8333 1.9161.9166 1.9662.0000 2.016

OEUATERED DEUATERED OEUATEREOANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN ORAUDOUN TIME DRAUDOWN DRAUDOUN TIME ORAUDOUN ORAUDOUN(•in) (ft) (ft) (Bin) Cft) (ft) (Bin) (ft) (ft)

0.0083 0.012 0.012 3.0000 2.426 2.372 74.0000 6.819 .3880.0166 0.016 0.018 3.5000 B 2.565 2.505 76.0000 6.907 .4450.0250 0.018 0.018 4.0000 2.703 2.436 78.0000 4.932 .4860.0333 0.025 0.025 4.3000 >*;8.85S 2.760 60.0000 7.008 .5530.0416 0.025 0.025 5.0000 1.993 2.911 82.0000 7.109 .4410.0500 0.031 0.031 5.5000 1.088; 3.000 84.0000 7.191 .7110.0583 0.037 0.037 4.0000 3.176 3.083 86.0000 7.241 .7550.0666 0.037 0.037 4.5000 r 3.277 3.178 68.0000 7.304 .6090.0750 0.044 0.044 7.0000 3.327 3.225 90.0000 7.380 .874,0.0833 0.050 0.050 7.5000 3.384 ' 3.279 92.0000 7.393 .8860.1000 0.063 0.063 8.0000 3.434 3.326 94.0000 7.512 .9890.1166 0.061 0.081 6.5000 3.479 3.368 96.0000 7.550 „ 7.0210.1333 0.094 0.094 9.0000 3.529 3.415 98.0000 7.594 7.0590.1500 0.113 0.113 9.5000 3.379 3.462 100.000 7.670 7.1240.1666 0.132 0.132 10.0000 '3.624 3.504 110.000 7.998 7.4050.1833 0.144 0.144 12.0000 3.781 3.649 120.000 8.357 7.7090.2000 0.143 0.163 14.0000 3.939 3.796 130.000 8.447 7.9530.2166 0.189 0.169 16.0000 4.090 3.936 140.000 6.930 ,1900.2333 0.201 0.201 16.0000 4.222 4.058 150.000 9.277 .4790.2500 0.226 0.226 20.0000 4.343 4.173 140.000 9.567 .7180.2666 0.252 0.251 22,0000 4.474 4.2S9 170.000 9.851 .9510.2833 0.271 0.270 24.0000 4.575 4.382 160.000 10.1030.3000 0.289 0.288 26.0000 4.689 ''"'-'• 4.486 190.000 10.3460.3166 0.321 0.320 28.0000 4.802 4.589 200.000 10.6760.3333 0.340 0.339 30.0000 ' 4.909 4.666 210.000 10.9410.4166 0.466 0.464 32,0000 4.998 4.767 220.000 11.206 10.0420.5000 0.592 0.569 34.0000 5.098 4.658 230.000 11.445 10.2310.5833 0.712 0.707 36.0000 5.199 4.949 240.000 11.672 10.4090.4666 0.638 0.632 38.0000 5.313 5.052 250.000 11.699 10.5870.7500 0.951 0.943 40.0000 tr5.407 V3.137 260.000.12.138 10.773

156355V619.831

.055 42,0000 5.458 5.183 270.000 12.372 10.953

.153 44.0000 5.558 5.272 280.000 12.443 11.142

.246 46.0000 5.647 3.352 290.000 12.863, 11.330.331 48.0000 5.760 5.453 300.000 13.078 '11.494.411 50.0000 5.829 5.515 310.000 13.260 11.431.465 52.0000 5.930 5.404 320.000 13.461 11.798.552 54.0000 4.000 5.466 330.000 13.639 11.954.420 56.0000 6.088 5.745 340.000 13.872 12.090.675 58.0000 6.170 5.818 350.000 14.067 12.235.730 40.0000 4.258 5.695 360.000 14.206 12.337.785 42.0000 6.334 5.962 370.000 14.363 12.453.633 44.0000 4.428 4.045 380.000 14.571 12.605.683 46.0000 6.504 4.112 390.000 14.710 12.706.931 48.0000 4.579 4.178 400.000 14.855 12.612.979 70.0000 4.461 4.250 410.000 15.006 12.921

2.5000 2.250 2.204 72.0000 6.731 4.311 420.000 15.145 13.021

!fl- flfll03!57

Page 88: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/9/89

WELL C-7

OEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME ORAUDOUN DRAUDOUN TIME DRAUDOUN DRAUDOUN(•in) (ft) (ft) (Bin) (ft) (ft)

430.000 15.271 13.111 890.000 19.620 16.047440.000 15.397 13.201 900.000 19.689 16.091450.000 15.523 13.291 910.000 19.771 16.143460.000 15.630 13.367 920.000 19.876 16.210470.000 15.750 13.452 930.000 19.954 16.256480.000 15.844 13.518 940.000 20.023 14.302490.000 15.958 13.598 950.000 20.092 14.345500.000 16.078 13.683 960.000 20.168 16.392510.000 16.197 13.764 970.000 20.254 14.447520.000 16.298 13.837 980.000 20.338 16.499530.000 16.418 13.920 990.000 20.389 16.530540.000 16.513 13.986 1000.00 20.456 16.573550.000 16.607 14.051 1100.00 21.214 17.036560.000 16.702 14.116 1200.00 21.895 17.445570.000 16.802 14.185 1300.00 22.576 17.844580.000 16.884 14.241 1400.00 23.490 18.371590.000 16.992 14.315 1500.00 24.114 18.720600.000 17.092 14.383 1600.00 24.637 19.006610.000 17.212 14.465 1700.00 25.160 19.287620.000 17.300 14.525 1800.00 25.683 19.563630.000 17.382 14.580 1900.00 24.181 19.822640.000 17.477 14.644 2000.00 24.559 20.013650.000 17.578 14.712 2100.00 24.931 20.200660.000 17.685 14.785 2200.00 27.353 20.409670.000 17.798 14.860 2300.00 27.756 20.604680.000 17.893 14.924 2400.00 28.172 20.806690.000 18.038 15.021 2500.00 26.582 21.001 .700.000 18.132 15.083 2600.00 28.960 21.177710.000 18.208 15.133 2700.00 29.263 21.316720.000 18.277 15.179 2800.00 29.591 21.464730.000 18.359 15.233 2900.00 29.944 21.622740.000 18.422 15.274 3000.00 30.353 21.805750.000 18.510 15.331760.000 18.611 15.398770.000 18.718 15.468780.000 18.794 15.517790.000 18.863 15.562800.000 18.926 15.603610.000 18.983 15.639820.000 19.084 15.704830.000 19.109 15.720840.000 19.204 15.782850.000 19.305 15.846860.000 19.380 15.894870.000 19.431 15.927880.000 19.544 15.999

ARI03I58

Page 89: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/9/89

C-7

OEUATERED : : h,-;, OEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME ;, BUILDUP BUILDUP TIME BUILDUP BUILDUP(Bin) (ft) (ft) (Bin) L <ft) <ft) (Bin) <ft) <ft)

0.10000.11460.13330.15000.16660.18330.20000.21660.23330.25000.26660.28330.30000.31660.33330.41660.50000.58330.46660.75000.83330.9166.0000.0633.1666.2500.3333.4166.5000.5633.6666.7500.8333.91662.00002.50003.00003.50004.00004.50005.00005.50006.00006.50007.00007.5000

0.0070.0130.0190.0250.0320.0440.0510.0630.0700.0820.0950.1070.1200.1260.1520.2520.3590.4730.5990.7250.8510.9771.1031.2231.3431.4561.5631.6701.7651.6531.9412.0172.0932.1622.2252.5282.7422.8933.0133.1073.1963.2653.3343.3973.4673.530

0.0070.0130.0190.0250.0320.0440.0510.0630.0700.0820.0950.1070.1200.1260.1520.2510.3580.4710.5960.7200.8440.9681.092

. 1.2091.3271.4371.5411.6451.7371.6221.9071.9802.0532.1202.1602.4702.6742.6172.9303.0183.1023.1673.2323.2913.3573.416

8.00008.5000,9.00009.500010.000012.000014.000016.000016.000020.000022.000024.000026.0000,28.000030.000032.000034.000036.000038.000040.000042.000044.000046.000048.000050.000052.000054.000056.000058.000040.000042.000044.000066.000068.000070.000072.000074.000076.0000

• 78.000060.000062.000084.000086.000068.000090.000092.0000

3.593,3.449

, 3.7063.763,3.826-;;A,0214.1964.3624.5264.6334.622

/>.954:f.080,.

5.194J5.313J.421 ;

, 3.5405.4545.7675.6815.9944.1084.2084.3094.4104.5174.4124.7064.7954.8894.9847.0727.1547.2367.3167.4007.4827.5577.6457.7157.7787.6477.9107.9478.0368.093

. i

3.4753.5273.5803.6333.6923.8724.0364.1874.3384.4814.6084.7284.6434.9453.0535.1505.2575.3595.4605.5625.6635.7645.6525.9426.0316.1254.2084.2914.3694.4516.5344.4104.6826.7526.6234.6944.9657.0297.1057.1657.2197.2787.3327.3617.4397.487

94.000096.000098.0000100.0000110.0000120.0000130.0000140.0000150.0000160.0000170.0000180.0000190.0000200.0000210.0000220.0000230.0000240.0000250.0000260.0000270.0000280.0000290.0000300.0000310.0000320.0000330.0000340.0000350.0000360.0000370.0000380.0000 *390.0000400.0000410.0000 -420.0000430.0000440.0000450.0000460.0000470.0000480.0000490.0000500.0000510.0000320.0000

ARI03I59

.154

.213

.269

.326

.422

.900

.156

.398

.424

.851 r10.07210.28010.48810.48310.87911.07411.27611.46511.44811.83712.01312.18312.36012.52412.48812.64513.00313.16013.31813.46313.42713.77813.92314.07414.21314.35614.503,14.42914.74714.90015.03215.16415.29115.41715.53015.443

7.5417.5907.4367.6857.934.167.361

. .580.766.952.132.301.469.425.781.937

10.09710.24510.38910.53710.67410.60610.94211.06911.19411.31411.43411.35311.67111.76011.90312.01512.12312.23512.338.12.44412.55012.64212.74212.83912.93413.02913.12013.21013.29113.371

Page 90: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/9/89

WELL C-7

DEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(•in) (ft) (ft) (ain) (ft) (ft)

530.0000 15.757 13.451 990.0000 19.356 15.868540.0000 15.870 13.531 1000.0000 19.412 15.903550.0000 15.978 13.607 1100.0000 19.980 16.261560.0000 16.078 13.677 1200.0000 20.509 14.589570.0000 14.186 13.753 1300.0000 21.083 16.940580.0000 16.293 13.828 1400.0000 21.536 17.210590.0000 16.394 13.898 1500.0000 22.992 18.074600.0000 16.482 13.956 1600.0000 23.339 18.269610.0000 16.576 14.024 1700.0000 23.648 18.440620.0000 16.671 14.089 1800.0000 23.932 18.595630.0000 16.759 14.149 1900.0000 24.196 18.737640.0000 16.847 14.210 2000.0000 24.448 18.872650.0000 16.936 14.271 2100.0000 24.675 18.992660.0000 17.017 14.326 2200.0000 24.890 19.104670.0000 17.099 14.382 2300.0000 25.079 19.200680.0000 17.186 14.442 2400.0000 25.255 19.290690.0000 17.270 14.498 2500.0000 25.406 19.366700.0000 17.358 14.556710.0000 17.433 14.608720.0000 17.515 14.663730.0000 17.591 14.715740.0000 17.673 14.769750.0000 17.749 14.820760.0000 17.824 14.870770.0000 17.894 14.917780.0000 17.963 14.962790.0000 18.045 15.017800.0000 18.114 15.063810.0000 18.183 15.108820.0000 18.253 15.154830.0000 18.322 15.199840.0000 18.391 15.245850.0000 18.454 15.286060.0000 18.530 15.335870.0000 18.599 15.381SSO.OOOO 18.662 15.422890.0000 18.726 15.463900.0000 18.789 15.504910.0000 18.852 15.543920.0000 18.921 15.589930.0000 18.984 15.630940.0000 19.047 15.670950.0000 19.110 15.711960.0000 19. in 15.751970.0000 19.236 15.791980.0000 19.299 15.832

• ' . AR103 I 60

Page 91: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE -SAN I TAT ION CO., INC.*PUMPING TEST DATA - 10/16/89

WELL C-8

ANTECEDENT ANTECEDENT ANTECEDENTTIME DRAUDOUN TIME ORAUDOUN TIME DRAUDOUN

(ft) («fn) (ft)

7.0000 0.006 92.0000 0.372 r 580.0000 1.0657.5000 0.009 94.0000 0.385 -' • < 590.0000 1.0788.0000 0.009 96.0000 0.394 400.0000 1.0958.5000 0.012 98.0000 0.382 410.0000 1.1109.0000 0.012 100.0000 0.385 620.0000 1.1219.5000 0.015 110.0000 0.420 • 630.0000 1.13710.0000 0.012 ' 120.0000 0.465 • 640.0000 1.14312.0000 0.022 130.0000 0.481 ' 650.0000 1*15714.0000 0.034 140.0000 0.507 ' 660.0000 1.17216.0000 0.038 150.0000 0.538 670.0000 1.18818.0000 0.051 160.0000 0.565 680.0000 1.19920.0000 0.067 220.0000 0.565 690.0000 1.20222.0000 0.079 230.0000 0.568 - 700.0000 1 21124.0000 0.086 240.0000 0.587 r 710.0000 122226.0000 0.098 250.0000 0.597 720.0000 1.23128.0000 0.111 260.0000 0.610 - ' 730.0000 1 24430.0000 0.117 270.0000 0.622 ^ 740.0000 1.*25732.0000 0.133 280.0000 0.636 < 750.0000 1*27034.0000 0.139 290.0000 0.646 760.0000 1 27036.0000 0.149 300.0000 0.668 770.0000 1 28438.0000 0.155 310.0000 0.684 780.0000 1 28740.0000 0.171 320.0000 0.691 790.0000 MOO42.0000 0.184 330.0000 0.700 800.0000 1 31044.0000 0.197 340.0000 0.720 810.0000 1 31946.0000 0.207 350.0000 0.726 820.0000 1 33248.0000 0.210 360.0000 0.735 830.0000 1 33950.0000 0.219 370.0000 0.749 640.0000 1 34932.0000 0.216 380.0000 0.756 850.0000 1*35854.0000 0.223 390.0000 0.778 660.0000 1*36636.0000 0.238 400.0000 0.788 870.0000 1 37258.0000 0.245 410.0000 0.800 680.0000 1 37960.0000 0.257 420.0000 0.814 690.0000 1*38962.0000 0.264 430.0000 0.830 900.0000 1*39564.0000 0.276 440.0000 0.845 910.0000 1*40266.0000 0.276 430.0000 0,856 920.0000 1 41268.0000 0.289 460.0000 0.875 930.0000 1.41870.0000 0.289 470.0000 0.887 940.0000 1.42672.0000 0.298 480.0000 0.904 950.0000 1 432

U'Jf 490-0000 O'wo 960-ooo° '•«»0.322 500.0000 0.933 970.0000 1.442

5"°'0000 9M W0'0000 L*5280.0000 0.315 520.0000 0.968 99Q.OOOO 1.45882.0000 0.328 530.0000 0.984

OJW 540-ooo° i-«»« n * •88.0000 0.359 560.0000 1.033 1300.0000 1.61890.0000 0.363 570.0000 1.049 ,400.0000 1.672

A R I 0 3 I 6 1

Page 92: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

UELL C-8

ANTECEDENT ANTECEDENT ANTECEDENTTIME BUILDUP TIME BUILDUP TIME BUILDUP<«!n) (ft) (mfn) (ft) (Bin) <ft)

64.0000 0.010 390.0000 0.680 860.0000 1.15066.0000 0.010 400.0000 0.700 . 870.0000 1.15068.0000 0.010 410.0000 0.710 880.0000 1.16070.0000 0.010 420.0000 0.720 390.0000 1.16072.0000 0.020 430.0000 0.740 900.0000 1.17074.0000 0.020 440.0000 0.760 910.0000 1.16076.0000 0.020 450.0000 0.770 920.0000 1.17078.0000 0.020 460.0000 0.790 930.0000 1.18060.0000 0.030 470.0000 0.800 940.0000 1.18082.0000 0.030 480.0000 0.820 950.0000 1.18084.0000 0.030 490.0000 0.830 960.0000 1.19086.0000 0.040 500.0000 0.850 970.0000 1.19088.0000 0.040 510.0000 0.860 980.0000 1.19090.0000 0.040 520.0000 0.880 990.0000 1.19092.0000 0.050 530.0000 . 0.890 1000.0000 1.19094.0000 0.050 540.0000 0.890 1100.0000 1.25096.0000 0.050 550.0000 0.910 1200.0000 1.25096.0000 0.060 560.0000 0.930 1300.0000 1.260100.0000 0.060 570.0000 0.930 1400.0000 1.300110.0000 0.080 580.0000 0.950120.0000 0.110 590.0000 0.960130.0000 0.130 600.0000 0.970140.0000 0.160 610.0000 0.970150.0000 0.180 620.0000 0.990160.0000 0.210 630.0000 0.990170.0000 0.230 640.0000180.0000 0.260 650.0000190.0000 0.280 660.0000200.0000 0.300 670.0000210.0000 0.330 680.0000220.0000 0.350 690.0000230.0000 0.370 700.0000240.0000 0.390 710.0000250.0000 0.410 720.0000260.0000 0.430 730.0000270.0000 0.460 740.0000280.0000 0.470 750.0000290.0000 0.500 760.0000300.0000 0.520 770.0000310.0000 0.530 780.0000320.0000 0.560 790.0000330.0000 0.570 800.0000340.0000 0.590 810.0000350.0000 0.610 820.0000360.0000 0.430 830.0000370.0000 0.640 840.0000

.000

.020

.020

.030

.040

.050

.050

.060

.060

.070

.080

.090

.090

.100

.110

.120

.120

.120

.130

.130

.140380.0000 0.660 850.0000 1.140

Page 93: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC. ''PUMPING TEST DATA - 10/16/89

DEUATERED DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN DRAUDOUN TIME DRAUDOUN ORAUDOUN TIME ORAUDOUN DRAUDOUN(Bin) (ft) (ft) (Bin) (ft) (ft) (Bin) (ft) Cft)

0.2500 0.006 0.006 20.0000 12.994 11.460 160.000 27.737 20.7450.2666 0.012 0.012 22.0000 13.859 12.-114 170.000 27.920 20.8350.2833 0.012 0.012 24.0000 14.578 12.647 160.000 28.110 20.9290.3000 0.018 0.018 26.0000 15.222 13.116 190.000 28.305 21.0240.3166 0.025 0.025 28.0000 16.017 13.685 200.000 28.431 21.0850.3333 0.031 0.031 30.0000 16.630 14.117 210.000 28.539 21.1370.4166 0.056 0.056 32.0000 17.040 14.401 220.000 28.652 21.1920.5000 0.088 0.088 • 34.0000 17.368 14.626 230.000 28.766 21.2460.5833 0.126 0.126 36.0000 17.658 14.624 240.000 28.886 21.3030.6666 0.164 0.164 38.0000 17.936 15.012 250.000 23.955 21.3370.7500 0.208 0.208 40.0000 18.188 15.181 260.000 29.056 21.3840.8333 0.252 0.251 42.0000 18.453 15.356 270.000 29.094 21.4020.9166 0.296 0.295 44.0000 18.693 15.517 280.000 29.132 21.4201.0000 0.347 0.346 46.0000 18.939 15.679 290.000 29.169 21.4471.0833 0.397 0.396 48.0000 19.186 15.840 300.000 29.252 21.4771.1666 0.448 0.446 50.0000 19.438 16.004 310.000 29.302 21.5001.2500 0.504 0.502 52.0000 19.697 16.171 320.000 29.384 21.5331.3333 0.561 0.558 54.0000 19.949 16.332 330.000 29.467 21.5781.4166 0.618 0.615 56.0000 20.195 16.488 340.000 29.328 21.5131.5000 0.681 0.677 58.0000 20.448 16.648 350.000 29.088 21.4001.5833 0.736 0.733 60.0000 20.700 16.606 360.000 28.873 21.2991.6666 0.801 0.795 62.0000 20.940 16.955 370.000 28.697 21.2151.7500 0.864 0.857 64.0000 21.174 17.099 380.000 28.709 21.2211.8333 0.927 0.919 66.0000. 21.401 17.239 390.000 28.810 21.2691.9166 0.997 0.988 68.0000 21.622 17.373 400.000 28.930 21.3262.0000 1.066 1.056 70.0000 21.836 17.503 410.000 29.056 21.3862.5000" 1.489 1.469 72.0000 22.045 17.628 420.000 29.195 21.4523.0000 1.918 1.085 74.0000 22.247 17.749 430.000 29.328 21.5143.5000 2.354 2.304 76.0000 22.448 17.868 440.000 29.454 21.5724.0000 2.795 2.724 78.0000 22.650 17.987 450.000 29.593 21.6374.5000 3.231 3.136 80.0000 22.852 18.106 460.000 29.607 21.6815.0000 3.654 3.533 82.0000 23.067 18.231 470.000 29.744 21.7075.5000 4.083 3.931 84.0000 23.288 18.359 480.000 29.795 21.7306,0000 4.487 4.304 86.0000 23.502 18.482 490.000 29.870 21.7656.5000 4.891 4.674 88.0000 23.711 18.601 500.000 29.965 21.8087.0000 5.250 4.999 90.0000 23.919 18.719 510.000 30.066 21.8547.5000 5.616 5.329 92.0000 24.115 18.829 520.000 30.136 21.8368.0000 5.951 5.629 94.0000 24.317 18.943 530.000 30.167 21.9008.5000 6.292 5.932 96.0000 24.500 19.044 540.000 30.211 21.9209.0000 6.639 6.238 98.0000 24.670 19.139 550.000 30.237 21.9329.5000 6.973 6.531 100.000 24.834 19.229 560.000 30.243 21.93510.0000 7.321 6.834 110.000 25.579 19.633 570.000 30.255 21.94012.0000 6.665 7.982 120.000 26.128 19.923 580.000 30.281 21.95214.0000 9.877 8.990 130.000 26.696 20.219 590.000 30.306 21,96316.0000 11.006 9.905 140.000 27.125 20.438 600.000 30.337 21.97818.0000 12.041 10.723 150.000 27,466 20.610 610.000 30.363 21.989

A R I 0 3 I 6 3

Page 94: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

UELL C-11

DEUATEREDANTECEDENT CORRECTED

TIME DRAUCOUN ORAUOOUN(Bin) (ft) (ft)

620.000 30.382 21.998630.000 30.401 22.006640.000 30.426 22.018650.000 30.470 22.037660.000 30.489 22.046670.000 30.420 22.015630.000 30.344 21.982690.000 30.306 21.965700.000 30.274 21.950710.000 30.255 21.942720.000 30.249 21.939730.000 30.237 21.934740.000 30.243 21.937750.000 30.249 21.940760.000 30.255 21.942770.000 30.255 21.942780.000 30.255 21.942790.000 30.255 21.943300.000 30.249 21.940810.000 30.262 21.946820.000 30.243 21.938830.000 30.268 21.949340.000 30.281 21.955350.000 30.287 21.958860.000 30.287 21.956870.000 30.293 21.961830.000 30.312 21.969890.000 30.325 21.975900.000 30.337 21.981910.000 30.356 21.990920.000 30.363 21.993930.000 30.369 21.995940.000 30.382 22.001950.000 30.394 22.007960.000 30.413 22.016970.000 30.426 22.021930.000 30.445 22.030990.000 30.476 22.0441000.00 30.489 22.0501100.00 31.675 22.5661200.00 30.634 22.1161300.00 31.000 22.2781400.00 31.732 22.593

RR1031&1*

Page 95: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

, '..WELL C-11

OEUATERED DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(mini (ft) (ft) <sin) (ft) (ft) (Bin) (ft) (ft)

0.4166 0.010 0.010 32.0000 3.890 3.752 220.0000 15.990 13.6660.5000 0.020 0.020 34.0000 4.050 3.901 230.0000 16.460 13.9970.5633 0.020 0.020 36.0000 4.200 4.040 240.0000 16.880 14.2900.6666 0.030 0.030 38.0000 4.340 4.169 250.0000 17.340 14.6070.7500 0.030 0.030 40.0000 4.470 4.288 260.0000 17.770 14.8990.8333 0.040 0.040 42.0000 4.610 4.417 270.0000 18.190 15.1820.9166 0.040 0.040 44.0000 4.750 4.545 280.0000 16.530 15.4421.0000 0,040 0.040 46.0000 4.880 4.664 290.0000 18.950 15.6851.0833 0,050 0.050 48.0000 5.020 4.791 300.0000 19.290 15.9071.1666 0.060 0.060 50.0000 5.160 4.918 310.0000 19.610 16.1141.2500 0.060 0.060 52.0000 5.310 5.054 320.0000 19.940 16.3251.3333. 0.070 0.070 54.0000 5.450 5.160 330.0000 20.250 16.5221.4166 0.080 0.080 56.0000 5.570 5.288 340.0000 20.550 16.7111.SOOO 0.080 0.080 58.0000 3.710 5.414 350.0000 20.840 16.8921.5833 0.090 0.090 60.0000 5.660 5.548 360.0000 21.120 17.0651.6666 0.090 0.090 62.0000 5.990 5.664 370.0000 21.370 17.2181.7500 0.100 0.100 64.0000 6.130 5.783 380.0000 21.600 17.3591.8333 0.110 0.110 66. (WOO 6.270 5.913 390.0000 21.830 17.4901.9166 0.110 0.110 68.0000 4.400 6.028 400.0000 22.080 17.6432.0000 0.120 0.120 70.0000 6.530 6.142 410.0000 22.310 17.7852.5000 0.160 0.160 72.0000 6.460 6.257 420.0000 22.550 17.9273.0000 0.210 0.210 74.0000 6.600 6.380 430.0000 22.780 18.0623.5000 0.260 0.259 76.0000 6.940 4.502 440.0000 23.010 18.1974.0000 0.320 0.319 78.0000 7.090 6.633 450.0000 23.210 18.3134.5000 0.370 0.369 80.0000 7.230 6.755 460.0000 23.420 18.4345.0000 0.430 0.428 82.0000 7.370 6.876 470.0000 23.620 18.5435.5000 0.500 0.498 84.0000 7.510 6.997 430.0000 23.830 18.6686.0000 0.560 0.557 86.0000 7.440 7.109 490.0000 24.020 18.7756.5000 0.620 0.617 38.0000 7.770 7.221 . 500.0000 24.200 18.8767.0000 0.680 0.676 90.0000 7.890 7.324 510.0000 24.390 18.9827.5000 0.750 0.745 92.0000 6.030 7.444 520.0000 24.570 19.0820.0000 0.810 0.804 94.0000 6.150 7.546 530.0000 24.760 19.1878.5000 0.080 0.873 96.0000 8.290 7.665 540.0000 ,24.940 19.2859.0000 0.960 0.952 98.0000 8.410 7.767 550.0000 25.110 19.3789.5000 1.040 1.030 100.0000 6.540 7.877 560.0000 25.260 19.45910.0000 1.110 1.099 110.0000 9.310 8.522 570.0000 25.410 19.54012.0000 1.440 1.421 120.0000 10.010 9.099 580.0000 25.540 19.61014.0000 1.770 1.742 130.0000 10.690 9.651 590.0000 25.660 19.67416.0000 2.090 2.050 140.0000 11.380 10.203 600.0000 25.770 19.73318.0000 2.330 2.329 150.0000 12.040 10.722 610.0000 25.870 19.78620.0000 2.640 2.577 160.0000 12.690 11.226 620.0000 25.980 19.84422.0000 2.890 2.814 170.0000 13.290 11.684 630.0000 26.090 19.90224.0000 3.120 3.032 180.0000 13.900 12.144 640.0000 26.190 19.95424.0000 3.330 3.229 190.0000 14.450 12.552 450.0000 26.290 20.00728.0000 3.520 3.407 200.0000 14.950 12,918 660.0000 26.390 20.05930.0000 3.710 3.585 210.0000 15.470 13.294 670.0000 26.480 20.106

: ARI03I65

Page 96: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA • 10/16/89

UELL C-11

DEUATEREDANTECEDENT CORRECTED

TIME BUILDUP BUILDUP(Bin) (ft) (ft)

680.0000 26.570 20.152690.0000 26.630 20.183700.0000 26.710 20.224710.0000 26.790 20.265720.0000 26.350 20.296730.0000 26.920 20.332740.0000 26.990 20.368750.0000 27.040 20.393760.0000 27.110 20.429770.0000 27.180 20,464780.0000 27.240 20,494790.0000 27.300 20.525300.0000 27.350 20.550810.0000 27.400 20.575820.0000 27.450 20.600330.0000 27.500 20.625340.0000 27.550 20.630850.0000 27.600 20.675360.0000 27.640 20.695870.0000 27.630 20.715830.0000 27.720 20.735390.0000 27.760 20.754900.0000 27.300 20.774910.0000 27.840 20.794920.0000 27.880 20.314930.0000 27.930 20.838940.0000 27.970 20.858950.0000 28.010 20.878960.0000 28.050 20.897970.0000 28.100 20.922980.0000 28.140 20.941990.0000 28.200 20.9711000.0000 28.240 20.9901100.0000 28.600 21.1641200.0000 28.900 21.3071300.0000 29.110 21.4061400.0000 29.290 21.491

flRI03i66

Page 97: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/09

; WELL C-12

DEUATEREDANTECEDENT CORRECTED

TIME DRAUDOUN DRAUDOUN(«1n) (ft) <ft>

5.0000 0.018 0.0185.5000 0.031 0.0316.0000 0.037 0.0376.5000 0.056 0.0567.0000 0.075 0.0757.5000 0.081 0.0818.0000 0.100 0.1008.5000 0.113 0.1139.0000 0.132 0,1329.5000 0.144 0.14410.0000 0.163 0.16312.0000 0.245 0.24514.0000 0.334 0.33416.0000 0.415 0.41516.0000 0.504 0.50420.0000 0.592 0.59222.0000 0.680 0.63024.0000 0.762 0.76226.0000 0.844 0.84420.0000 0.920 0.92030.0000 0.989 0.98932.0000 1.071 1.07134.0000 1.128 1.12336.0000 1.134 1.18438.0000 1.241 1.24140.0000 1,292 1.29242.0000 1.336 1.33644.0000 1.336 1.36646.0000 1.418 1.41848.0000 1.462 1.46230.0000 1.493 1.49352.0000 1.525 1.52554.0000 1.556 1.55656.0000 1.588 1.58858.0000 1.619 1.62060.0000 1.657 1.65862.0000 1.689 1.69064.0000 1.720 1.72166,0000 1.745 1.74668.0000 1.783 1.73470.0000 1.796 1.79772.0000 1.821 1.82274.0000 1.852 1.85376.0000 1.084 1.88578.0000 1.903 1.904

DEUATEREDANTECEDENT CORRECTED

TIME •(Bin)

60.000082.000064.000086.000083.000090.000092.000094.000096.000098.0000100.000110.000120.000130.000140.000150.000160.000170.000180.000190.000200.000210.000220.000230.000240.000250.000260.000270.000280.000290.000300.000310.000320.000330.000340.000350.000360.000370.000380.000390.000400.000410.000420.000430.000440.000450.000

DRAUDOUN(ft)

1.9161.9411.9792.0042.0292.0422.0732.0932.1242.1302.1552.2622.3632.4322.4952.5652.6212.6782.729

. 2.7792.817

. 2.8612.8922.9302.9633.0003.0313.0563.0883.1193.1513.1893.2203.2453.2773.2893.3023.3083.3273.3403.3713,4033.4163,4473.4973.316

DRAUDOUN(ft)

1.9171.9421.9802.0052.0302.0432.0742.0992.1252.1312.1562.2632.3642.4332.4962.5662.6222.6792.7312.7812.8192.8632.6942.9322.9703.0023.0333.0583.0903.1223.1543.1923.2233.2483.2803.2923.3053.3113.3303.3433.3743.4073.4203.4S1

1 3.501' 3.520

ANTECEDENTTIME(Bin)

460.000470.000460.000490.000500.000510.000520.000530.000540.000550.000560.000570.000580.000590.000600.000610.000620.000630.000640.000650,000660.000670.000600.000690.000700.000710.000720.000730.000740.000750.000760.000770.000780.000790.000800.000610.000820.000630.000840.000050.000360.000870.000680.000690.000900.000910.000

DRAUDOUN(ft)

3.5543.5863.6173.6363.6613.6873.7243.7433.7623.7873.0133.8323.0443.0633.0833.9073.9263.9513.9763.9834.0034.0214.0464.0464.0524.0774.0774.0904.1034.1134.1284.1404.153

' 4.1724.1844.1974.2104.2164.2354.2414.2734.2794.2984.3114.3234.342

DEUATEREDCORRECTEDDRAUOOUN

(ft)

3.5583.5903.6213.6403.6653.6913.7293.7483.7673.7923.6183.8373.8493.8683.8933.9123.9313.9563.9623.9094.0144.0274.0524.0524.0584.0834.0834.0964.1094.1224.1354.1474.1604.1794.1914.2044.2174.2234.2424.2404.2804.2874.3064.3194.3314.350

flRI03!67

Page 98: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

UELL C-12

DEUATEREOANTECEDENT CORRECTED

TIME DRAUDOUN DRAUDOUN(Bin) (ft) (ft)

920.000930.000940.000950.000960.000970.000930.000990.0001000.001100.001200.001300.001400.00

4.3554.3674.3304.3924.3994.4114.4244.4374.4494.6894.7454.3274.979

4.3634.3754.3384.4004.4074.4194.4334.4464.4584.6994.7554.3384.991

A R I 0 3 I 6 8

Page 99: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

' j JUELL C-12

ANTECEDENT ANTECEDENT ANTECEDENT ANTECEDENTTIME BUILDUP TIME BUILDUP , 1 TIME BUILDUP TIME BUILDUP(Bin) (ft) (Bin) (ft) <Bin) (ft) (Bin) (ft)

1100.00 3.$81200.00 3.671300.00 3.751400.00 3.60

9.00009.500010.000012.000014.000016.000018.000020.000022.000024.000026.000028.000030.000032.000034.000036.000038.000040.000042.000044.000046.000048.000050.000052.000054.000056.000050.000060.000062.000064.000066.000060.000070.000072.000074.000076.000078.000080.000082.000084.000086.000038.000090.000092.000094.000096.0000

0.010.010.010.030.040.060.070.090.10O.t30.140.150.170.180.200.220.230.250.260.270.280.300.310.330.330.350.360.360.380.400.400.420.430.430.450.460.470.480.490.500.520.520.530.550.560.57

98.0000100.000110.000120.000130.000140.000ISO. 000160.000170.000130.000190.000200.000210.000220.000230.000240.000250.000260.000270.000260.000290.000300.000310.000320.000330.000340.000350.000360.000370.000380.000390.000400.000410.000420.000430.000440.000450.000460.000470.000480.000490.000500.000510.000520.000530.000540.000

0.590.600.630.72 ,0.790.850.910.981.051.111.i6 *v1.23 .t: --1.291.35 :1.401.461.521.571.62 ;. i1.67 _ ,1.721.77 r -1.61 ^1.86 A.:1.90 .1.941.98 ,--2.03 -2.06 -:,.2.10 _2.14 ;T:2.18 - -2.2U2.25 i?2.23 M;.2.32 ;2.35 ?2.382.42 .:.**2-45 :•;,>>2.49 --'--s '2.522.55 ^2.58 *i2.62 ;

2.64 , ->:

sso.ooo•f,' 560.000, 570.000

580.000590.000

,," 600.000610.000620.000630.000640.000650.000

-, 660.000670.000680.000690.000700.000710.000

: 720.000730.000740.000

: 750.000: 760.000770.000780.000790.000800.000

? 810.000820.000830.000

;, 640.000850.000

, 360.000: 870.000880.000890.000

; 900.000910.000

: 920.000930.000940.000

; 950.000960.000970.000

. 980.000990.0001000.00

2.672.712.732.762.792.812.842.862.332.902.932.942.972.993.013.033.053.073.093.103.123.143.163.163.193.213.223.243.253.273.233.303.313.323.343.353.363.383.393.403.413.423.433.453.463.47

ARI03I69

Page 100: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

UELL C-14

OEUATEREO DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN DRAUDOUN TIME DRAUDOUN DRAUDOUN TIME DRAUDOUN DRAUDOUN(Bin) <ft) (ft) (Bfn) (ft) (ft) (Bin) (ft) (ft)

0.0083 0.475 0.473 2.5000 6.334 5.971 70.0000 24.965 19.2990.0166 0.633 0.629 3.0000 6.970 6.528 72.0000 25.219 19.4370.0250 0.728 0.723 3.5000 7.572 7.051 74.0000 25.377 19.5230.0333 0.792 0.736 4.0000 8.047 7.458 76.0000 25.536 19.6080.0416 0.887 0.380 4.5000 8.554 7.889 ' 78.0000 25.821 19.7600.0500 0.633 0.629 5.0000 9.061 8.315 80.0000 26.011 19.8600.0583 0.950 0.942 5.5000 9.504 8.633 82.0000 26.264 19.9930.0666 1.0450.0750 1.0450.0833 1.0770.1000 1.1720.1166 1.1720.1333 1.2670.1500 1.3620.1666 1.3940.1333 1.4570.2000 1.4890.2166 1.615

.6666

.7500

.8333

.91662.0000

.035 6.0000 9.916 9.022 84.0000 26.486 20.109

.035 6.5000 10.360 9.384 86.0000 26.708 20.223

.066 7.0000 10.740 9.691 88.0000 26.898 20.321

.160 7.5000 11.025 9.920 90.0000 27.133 20.466

.160 8.0000 11.342 10.173 92.0000 27.341 20.545

.252 8.5000 11.690 10.448 94.0000 27.627 20.688

.345 9.0000 12.039 10.721 96.0000 27.722 20.736

.376 9.5000 12.387 10.992 98.0000 27.348 20.798

.438 10.0000 12.672 11.212 100.000 26.007 20.876

.469 12.0000 13.908 12.150 110.000 28.672 21.199

.591 14.0000 14.985 12.944 120.000 29.084 21.3940.2333 1.647 1.622 16.0000 16.094 13.739 130.000 29.749 21.7040.2500 1.679 1.653 18.0000 17.108 14.447 140.000 30.130 21.3770.2666 .742 1.714 20.0000 17.963 15.030 150.000 50.415 22.0060.2833 .837 1.306 22.0000 18.787 15.578 160.000 30.605 22.0900.3000 .369 1.837 24.0000 19.579 16.094 170.000 30.827 22.1880.3166 .932 1.898 26.0000 20.308 16.559 130.000 31.017 22.2710.3333 .995 1.959 28.0000 20.625 16.758 190.000 31.302 22.3950.4166 2.249 2.203 30.0000 20.403 16.619 200.000 31.524 22.4900.5000 2.439 2.385 32.0000 20.530 16.698 210.000 31.650 22.5440.5833 2.693 2.627 34.0000 20.688 16.797 220.000 31.309 22.6110.6666 2.883 2.307 36.0000 20.910 16.935 230.000 31.935 22.6640.7500 3.136 3.047 38.0000 21.100 17.053 240.000 32.094 22.7310.3333 3.294 3.195 40.0000 21.258 17.150 250.000 32.252 22.7960.9166 3.543 3.434 42.0000 21.544 17.325 260.000 32.347 22.035.0000 3.706 3.581 44.0000 21.765 17.456 270.000 32.506 22.901.0833 3.696 3.758 46.0000 21.955 17.573 280.000 32.506 22.901.1666 4.087 3.935 48.0000 22.336 17.801 290.000 32.632 22.952.2500 4.277 4.111 50.0000 22.589 17.950 300.000 32.791 23.016.3333 4.403 4.227 52.0000 22.874 16.117 310.000 32.949 23.080.4166 4.562 4.373 54.0000 23.128 18.265 320.000 33.076 23.131.5000 4.752 4.547 56.0000 23.381 16.411 330.000 33.203 23.181.5333 4.347 4.633 58.0000 23.603 18.538 340.000 33.203 23.181

.005 4.777 60.0000 23.888 18.700 350.000 33.171 23.169

.144 4.922 62.0000 24.110 18.026 360.000 33.234 23.193

.322 5.065 64.0000 24.332 18.950 370.000 33.266 23.206

.449 5.179 66.0000 24.553 19.073 380.000 33.456 23.281

.607 5.321 68.0000 24.807 lll 390.000 33.773 23.40424.807 l ll n

Page 101: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

L

KEYSTONE SANITATION CO., INC,PUMPING TEST DATA • 10/16/89

WELL C-14

OEUATERED ! . DEUATEHEDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME DRAUDOUN DRAWDOWN TIME DRAUDOUN ORAUDOUN(Bin) (ft) (ft) (Bin) (ft) (ft)

400.000 34.375 23.633 850.000 36.656 24.442410.000 35.167 23.924 860.000 36.483 24.453420.000 36.054 24.237 670.000 36.719 24.463430.000 36.941 24.536 630.000 36.815 24.495440.000 37.702 '24.780 690.000 36.878 24.515450.000 33.557 25.043 900.000 / 36.941 24.536460.000 38.747 25.099 910.000 37.005 24.557470.000 33.652 25.071 920.000;; 36.973 24.547480.000 38.674 25.137 930.000 37.036 24.567490.000 39.508 25.319 940.000 37.163 24.609500.000 40.236 25.519 950.000 37.226 24.629510.000 40.902 25.694 960.000 37.321 24.660520.000 40.965 25.710 .970.000 37.321 24.660530.000 40.902 25.694 980.000 '_ 37.448 24.700540.000 40.933 25.702 990.000 37.375 24.741550.000 40.670 25.635 1000.00 37.670 24.771560.000 40.458 25.578 1100.00 46.699 , 26.874570.000 40.363 25.553 1200.00 35.864 24.172530.000 40.426 25.570 1300.00 .40.306 25.670590.000 40.521 25.595 1400.00 46.668 26.870600.000 40.711 25,644 ;610.000 40.743 25.653620.000 40.743 25.653630.000 40.806 25.669640.000 40.965 25.710650.000 41.377 25.813660.000 40.616 25.620 "670.000 39.159 25.219630.000 38.367 24.936690.000 37.987 24.869700.000 37.702 24.780710.000 37.543 24.730 '/720.000 37.416 24.690 *730.000 37.353 24.670740.000 37.321 24.660750.000 37.290 24.650 ' '"_' ';760.000 37,163 24.609 J 770.000 37.163 24.609 " : ' , . /780.000 37.068 24.578790.000 37.068 24.578300.000 37.005 24.557 . !

L j 010.000 36.973 24.347 r '__V" 320.000 37.063 24.578 ft "

830.000 37.068 24.578 , \840.000 36.973 24.547

' flRI03!7l

Page 102: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA • 10/16/89

UELL C-14

DEUATERED . DEUATERED DEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(Bin) (ft) (ft) (Bin) (ft) (ft) (Bin) (ft) (ft)

0.0166 0.063 0.063 3.5000 9.916 9.022 76.0000 19.801 16.2370.0250 0.063 0.063 4.0000 10.930 9.844 78.0000 19.960 16.3360.0333 0.095 0.095 4.5000 11.374 10.198 30.0000 20.118 16.4390.0416 0.127 0.127 5.0000 11.564 10.348 82.0000 20.277 16.5390.0500 0.127 0.127 5.5000 11.659 10.423 84.0000 20.435 16.6390.0583 0.158 0.158 6.0000 11.754 10.498 86.0000 20.562 16.7180.0666 0.190 0.190 6.5000 11.912 10.622 38.0000 20.720 16.8170.0750 0.222 0.222 ' 7.0000 12.134 10.796 90.0000 20.347 16.8960.0833 0.253 0.252 7.5000 12.324 10.943 92.0000 21.005 16.9940.1000 0.285 0.284 8.0000 12.483 11.066 94.0000 21.132 17.0720.1166 0.348 0.347 8.5000 12.673 11.213 96.0000 21.290 17.1690.1333 0.412 0.410 9.0000 12.863 11.359 98.0000 21.449 17.2670.1500 0.443 0.441 9.5000 13.021 11.480 100.000 21.607 17.3630.1666 0.507 0.505 10.0000 13.148 11.576 110.000 22.463 17.8760.1833 0.570 0.567 12.0000 13.655 11.960 120.000 23.128 18.2650.2000 0.570 0.567 14.0000 14.194 12.362 130.000 23.825 18.6650.2166 0.633 0.629 16.0000 14.574 12.643 140.000 24.617 19.1080.2333 0.697 0.693 18.0000 14.796 12.806 150.000 25.313 19.4880.2500 0.760 0.755 20.0000 15.081 13.013 160.000 26.010 19.3600.2666 0.324 0.818 22.0000 15.302 13.173 170.000 26.644 20.1900.2833 0.855 0.348 24.0000 15.493 13.311 180.000 27.246 20.4970.3000 0.919 0.911 26.0000 13.633 13.447 190.000 27.816 20.7820.3166 0.950 0.942 28.0000 15.904 13.605 200.000 26.323 21.0300.3333 1.014 1.005 30.0000 16.094 13.739 210.000 28.893 21.3040.4166 1.267 1.252 32.0000 16.235 13.874 220.000 29.400 21.5420.5000 1.521 1.500 34.0000 16.443 13.985 230.000 29.875 21.7610.5833 1.774 1.745 36.0000 16.601 14.096 240.000 30.319 21.9620.6666 2.027 1.990 38.0000 16.760 14.206 250.000 30.762 22.1590.7500 2.281 2.234 40.0000 16.918 14.316 260.000 31.206 22.3530.3333 2.534 2.476 42.0000 17.077 14.426 270.000 31.618 22.5300.9166 2.788 2.717 44.0000 17.235 14.535 280.000 31.998 22.6901.0000 3.041 2.957 46.0000 17.425 14.665 290.000 32.378 22.348.0833 3.263 3.166 48.0000 17.584 14.773 300.000 32.695 22.977.1666 3.517 3.405 50.0000 17.742 14.880 310.000 33.044 23.118.2500 3.770 3.641 52.0000 17.932 15.009 320.000 33.360 23.243.3333 3.992 3.847 54.0000 18.059 15.094 330.000 33.646 23.355.4166 4.214 4.053 56.0000 18.217 15.200 340.000 33.962 23.476.5000 4.467 4.236 58.0000 18.407 15.327 350.000 34.216 23.573.5833 4.689 4.489 60.0000 18.597 15.453 360.000 34.501 23.680.6666 4.942 4.720 62.0000 18.756 15.558 370.000 34.754 23.774 -.7500 5.164 4.922 64.0000 18.883 15.641 380.000 34.976 23.855.8333 5.417 5.150 66.0000 19.041 15.745 390.000 35.198 23.935.9166 5.639 5.350 66.0000 19.199 15.848 400.000 35.451 24.0262.0000 5.893 5.577 70.0000 19.324 15.931 410.000 35.673 24.1042.5000 7.318 6.831 72.0000 19.485 16.033 420.000 35.895 24.1823.0000 8.649 7.969 74.0000 19.643 a M.|3iv « , -, 430.000 36.147 24.269Afffb3l72

Page 103: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.PUMPING TEST DATA - 10/16/89

WELL C-14

DEUATERED OEUATEREDANTECEDENT CORRECTED ANTECEDENT CORRECTED

TIME BUILDUP BUILDUP TIME BUILDUP BUILDUP(Bin) (ft) (ft) (Bin) (ft) (ft)

440.000 36.338 24.334 900.000 41.121 25.749450.000 36.559 24.408 910.000 41,152 25.757460.000 36.749 24.472 920.000 41,184 25.765470.000 36.971 24.545 930.000 41.247 25.780480.000 37.161 24.607 940.000 41.279 25.788490.000 37.383 24.679 950.000 41.311 25.796500.000 37.573 24.739 960.000 41.342 25.804510.000 37.732 24.789 970.000 41.406 25.820520.000 37.922 24.849 980.000 41.469 25.036530.000 38.112 24.907 990.000 41.501 25.043540.000 38.270 24.956 1000.00 41.563 25.859 •550.000 38.460 25.013 1100.00 41.680 25.935560.000 38.587 25.051 1200.00 42.133 25.995570.000 38.745 25.098 1300.00 42.323 26.039530.000 38.872 . 25.135 1400.00 42.576 26.097590.000 38.999 25.172600.000 39.094 25.200610.000 39.189 25.227 '620.000 39.316 25.264630.000 39.411 25.291640.000 39.506 25.316650.000 39.633 25.353660.000 39.696 25.371670.000 39.791 25.397680.000 39.854 25.415 i690.000 39.949 25.441700.000 40.044 25.467710.000 40.108 25.434720.000 40.170 25.501730.000 40.234 25.513740.000 40.297 25.535750.000 40.360 "25.552 . . .-760.000 40.424 25.569 .- ;770.000 40.487 25.585730.000 40.550 25.602 :' r Y ;790.000 40.614 25.619800.000 40.677 25.635810.000 40.709 25.643620.000 40.772 25.660030.000 40.035 25.676040.000 40.067 23.684350.000 40.931 25.701360.000 40.962 25.703070.000 40.994 25.717830.000 41.026 25.725090.000 41.057 25.733

; ARI03I73

Page 104: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

fl I I II I 1 I | f T T T~T""I~1 1 I | I I til II II J I J T"T"T I 1 I I I O

A R I 0 3 l 7 k

Page 105: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

| i r i i [ i i i ! j i r i i i i i T i | i r i i r i i i i j i i i i r i i i

S 8 8(w) drt-aima

ARI03I75

Page 106: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

P-O

I M I I I M I I M I M I I I I I I I I I I I

(W) NMOQMVcJa

ARI03I76

Page 107: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

C/)LJh-

^<

«

* ««

tf)lA<fit • •m 1*1 ••<CM

«ewP* *N 00uuo

dn-anna

A R I 0 3 I 7 7

Page 108: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

av * -AT!= <aqahs.i*fiT e-ja c j c v - SH52T ,\0.CHKD. 3

C sfU.

/»/

' '

e-io

c-8'

A R I 0 3 I 7 8

- A.C-I c-to' Q = M.OI As-

xj WeC-IH

Page 109: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

av

k-n av -C-VtW.

—S -

Gi 5 -A

r*

W)

5^ ^-5 Q.IO 353 CU Cr^HvJ 10 0.»

09 ^3 S\3.5 35

AR I 03 179

3« cs -ao 100 72.

Cl -30 100 60'

Page 110: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

av -AT=*»3o/rt SLJ3J2CTCHIxD. 3YjttA__::ATS.al3ttS _ CPJLU- - .*.ua ________ JC3 :-iO,

Wt\\

A ZOO \COC\\ a\,H 5C\3* 3,| 1CC\M Hil -},3

\00CH J3,r M^ 3**Cia 3.5 »00 97/5ClM

. ^

MTTUJ

5 5= J-asCcioMmo) - G.u ft -3

T =

,.

A RI03I80

Page 111: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

3Y ——— SJr r.iTSJiH SuSJSC

A

w0

voA/

aC.S

CHXD. av *v ; V-" i ti .«aoficv te _______ JC3 f)C<

0tlM1

.

,;

Cl ; -r =

* . . _ i a^ »• — 1 1 e\

I.T4 -H

Page 112: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

SL3JSCT———;——————————————— fl:--s=r MrCHKD. 3Yj6H4_2.-.73Jil2tel. _____Cogj**- - 3V««4»_______ JC3 NO.

—CS T -

-4

(005

'l

llOC-3. ,

ARI03I82

Page 113: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

ARI03I83

Page 114: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

ceLUOLU

LU

S

(w) dn-aiina

ARI03181*

V _-*

H• e

: LU

O

pin 11 i iT 7o o

Page 115: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

oQIQ

CM

UJ

*•t

* •

*' *

1 1 1

F-O; *

mB-O

N

r°«»->.s

f -jrS^: u: 3. F•

••*BB

••

7~O

T~o

ARI03I85

Page 116: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

LJ>

O

\

=-o

cE

"O

(III I I I I I |MI I I I I I Jill I I I I I 11II I I I I I |H I t I I I I | II I I I I I 1

* •* T t 12 2 2 - o T0 70o

(w) dn-aiina

flRI03!86

Page 117: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

r.uxn av .r-.r= l f J J _________________ JC3 iv;0.

Uf*a Nlfgwv*..*. (l«niS of PvJvwJtAfl "" TciV

5)

5. "t,

3.8 3O

• •

O>$* \ \

C-7 " 0.3 i | H (,0 163 3.1

C-5 " 0.3 ' ' ^/

C-3 " (p ' 1 , I 3.7

,03 » - I

«c /

/o 7*4?

TO to 3.3 d/o

Page 118: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

•v/ a- s AT" lgi 3i.3.i-r.T v ,v .l f su=rr.\n - r.______ ; _________________ JC3 NO.

= 7.

Q 3 H,O\Sa a K\».UU

7

.os

f(tl\

s -IO3

s-

.0°\ s . oo/r

" < , ^ s O.3

Page 119: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

S'JSJSCT .;....iKlfaim* —————————:—— SKS2T NO. J__Or—2••"•'______________________ JC3NO.——————————

3t-3 - ,035"

Sp*oCt W -t. . 5. » S/bs. '

S* e V.<,fc-.s-/<,o = 7,7 €-7

*v\

. «K/

6.76-7

AR I 03 I 89

Page 120: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

.SricET MO.J —— Or_Z

no. ——————

1.95

85

7-C

KV

RR 103 190

Page 121: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

BY —————— D A T E t e « fitJRJPCT ..A***- /* 7*T_________ SHEET

CHKD. BY ^» DATE V^V^ - '___________________ JOB NO.

- ?

oo

-r-4 * W^[ " *rlMO * 0,0*0

-;C

<* -S3 ~ >,<WXLJUJ

A R I 0 3 I S I

Page 122: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

QV Mi M DATS //-#•?? .QtlSUPftT AlcuS***'_____________ SHEET N0._6——Cr_Z

CHKD. av <*»• nATP «•**•»? —————————————————————————— J03 NO.——————————-

-/

a <T-//

-?zo

ARI03I92

Page 123: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

BY ——BATS SUSJSCT^^^_____________ SHEET NO.«__C.-_ZCHKD. flY -Mfr- HATP//-**-•? ________________________ J03

i. ;

« 60 -

?- r r/a- « . f , j »• /o •-CT-

• '.n. 'D

- 37;

ff* ~< JX O" S 0.

A R I 0 3 I 9 3

Page 124: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

[ APPENDIX D '

ANALYTICAL RESULTSi

II flR 103l91i

Page 125: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Co., Inc.. iInorganic Analyses Date

Sample Location C-1 C-3 . C-4 C-4 OUP C-5 C-6 C-7 C-8Oatt 10/2/89 10/3/89: 10/2/89 10/2/89 10/2/89 10/2/89 10/2/89 10/4/89Sample Type Ground Ground P; Ground Ground Ground Ground Ground Ground

water Water ' Water Weter Water Weter Weter Water

Arsenic, Total n.d. n.d. n.d. n.d. n.d. n. . n.d. n.d.n.d. n.d.n.d. 0.14n.d. 0.10n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.

Arsenic, Dissolved n.d. n.d. n.d. n.d. n.d. n.Barium, Total 0.12 0.13 n.d. n.d. n.<. n.lartun. Dissolved n.d. 0.10 n.d. n.d. n. . n.Cadmium, Total n.d. n.d. ..„, n.d. n.d. n.<. n.Cadmium, Dissolved n.d. n.d. n.d. n.d. n.<. n.Chromium, Total n.d. n.d. n.d. n.d. n.i . n.Chromium, Dissolved n.d. n.d. .„. • n.d. n.d. n.< . n.Lted, Total n.d. n.d. = n.d. n.d. n.d. n.Lead, Dissolved n.d. n.d. n.d. n.d. n.d. n.Mercury, Total 0.0003 0.00065 0.00055 0.00034 0.00058 0.00035 • 0.00084 0.00055Mtrcury, Dissolved n.d. 0.00034 n.d. n.d. n.d. n.d. 0.00073 n.d.Salaniun, Total n.d. n.d. „;. n.d. n.d. n.d. n.d. n.d. n.d.Stltnium, Dissolved n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Silver, Total n.d. n.d. •- n.d. n.d. n.d. n.d. n.d. n.d.Silver, Dissolved n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Sodium, Total 20 18 18 16 15 9.3 16 14Sodium, Dissolvtd 16 15 14 10 12 8.4 13 10Alkalinity 74.6 65.3 38.6 31.6 48.9 16.6 42.4 24.5Rtsidua, Total Dissolved 260 240 190 170 220 96 170 120Chloride 62 57 v 55 46 58 14 44 25Sulfate n.d. n.d. ; r n.d. n.d. n.d. n.d. . n.d. 3.7Nitrogen-Nitrate 3.7 3.10 - 3.8 3.45 3.3 5.0 3.7 2.05Nitrogen-Ammonia n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Phenolic Compounds 0.136 0.227 >: 0.155 0.029 0.073 0.146 n.d. n.d.pH (Field) 5.7 5.4 5.3 5.5 5.4 5.0 5.3 5.4p« (Laboratory) 5.8 5.7 i , 5.5 5.5 5.5 5.1 5.4 5.7Conductivity (Field) 367 335 257 279 301 115 256 162Conductivity (Laboratory) 387 348 262 275 303 108 249 165

All results reported in ppmn.d.: not dtttcttd

A R I 0 3 I 9 5

Page 126: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Arsenic, Total 0.013 n.d. n.d. n.Arsenic, Dissolved n.d. n.d. n.d. n.Barium, Total 0.68 n.Barium, Dissolved 0.31 n.Cadmium, Total n.d. n.Cadmium, Dissolved n.d. n.Chromium, Total 0.02 n.Chromium, Dissolved n.d. n.Ltad, Total n.d. n.Ltad, Dissolved n.d. n.Mercury, Total 0.00082 n.Mtreury, Dissolved n.d. n.d. n.d. n.dStltnlum, Total n.d. n.d. n.d. n.dSelenium, Dissolved n.d. n.d. n.d. n.dSilver, Total n.d. n.d. n.d. n.dSilver, Dissolved n.d. n.d. n.d. n.d

n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.0.00031 n.d

n.d. n.n.d. n.0.13 n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.

All results reported in ppmn.d.: not detected

ARI03196

Keystone Sanitation Co., Inc.Inorganic Analyses Deta

Sample Location C-9 C-10 C-11 C-12 C-13 C-14 85-13* 85-13BData 10/3/89 10/3/89 10/4/89 10/3/89 tO/3/89 10/4/89 10/4/89 10/4/89Sample Type Ground Ground Ground Ground Ground Ground Ground Ground

Uetar Weter Water Water Water Watar Water Water

n.d. n.d.n.d. n.d.0.20 0.110.19 n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. ' n.d.n.d. n.d.

n.d. n.i . n.d. n.d.0.0018 0.00053

n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d.

Sodium, Total 19 12 14 17 15 18 17 19Sodium, Dissolved 16 10 10 12 11 11 11 14Alkalinity 79.8 85.0 49.6 68.4 88.6 68.9 28.2 84.0Residue, Total Dissolved 160 150 88 160 170 120 170 230Chloride 19 16 6.5 60 21 16 45 39Sulfate 9.7 5.0 1.6 8.6 3.6 2.2 6.7 16.4Nitrogen-Nitrate 2.40 3.05 2.40 3.75 5.90 2.05 5.40 2.7*Mltrogan-Ammonia n.d. n.d, n.d. n.d. n.d. n.d. n.d. 0Phenolic Compounds 0.173 , n.d. 0.500 n.d. 0.010 0.051 0.0362PH (Field) 6.3 6.3 5.8 5.8 6.1 5.6 5.6 5.9pH (Laboratory) 6.4 6.5 6.2 6.0 6.2 5.9 5.3 6.1Conductivity (Field) 246 246 138 212 244 193 242 396Conductivity (Laboratory) 254 244 130 224 243 197 242 355

Page 127: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Co., (Inc.Inorganic Analysts Data

Sample Location < 85-13C BT-7 8T-8 5T-9Data , 10/4/89 10/2/89 10/2/89 10/2/89Sample Typt Ground Surface Surface Surface

Wettr Ueter Water Water

Arsenic, Total n.Arsenic, Dissolved n.Barium, Total ' 0.Barium, Dissolved 0.Cadmfun, Total n,Cadmium, Dissolved n,Chromium, Total n.Chromium, Dissolved n.Ltad, Total n.Ltad, Dissolved n.Mercury, Total ft.Mtreury, Dfssolvtd n.Selenium, Total n.StLenlum, Oissolvtd - n.Silvtr, Total n.Silver, Oissolvtd n.

n.d. n.d. n.d.n.d. n*d. n.d.

1 n.d. n.d. n.d.3 n.d. n.d. n.d.

n.d. n.d. n.d.n.d. n*d. n.d.n.d* n«d. "' n.d.n.d. n.d,* n.d.n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d*n.d. n.d. n.d.n.d. n.d, •• n.d.n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d.

Sodium, Total ..33 27 19 > 20Sodium, Oissolvtd 20 19 15 15Alkalinity 167 43.5 52.4 64.8Residue, Total Dissolved 250 180 200 180Chlorldt 11 46 46 47Sulfatf 37.9 25.7 24.8 27.1Nitrogtn-Nitratt 1.30 n.d. U7 1.7Nitrogen-Ammonia n.d. 0.66 n.d. n.d.Phtnolic Compounds n.d. n.d. n.d. 0.0855pH (Field) 6.8 7.2 7.0 6.9pH (Laboratory) 7.2 7.5 7;3 7.4Conductivity (Fftld) 506 294 31S 336Conductivity (Laboratory) 399 285 313 343

All results rtported in ppmn.d.i not dettcttd

Page 128: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Sromodlchloroethane n. . n.d. n.Bromoform n.i . n.d. n.Bromomethane n.i . n.i. n.Carbon Tttrachlortde n.i. n.<. n.Chlorobenzene n.i . n.<. n.Chloroethane n.<. n.<. n.2-Chloroethyl-vlnyl-Cthar n.i. n.i. n.Chloroform n.<. n.i. n.Chloromathane n.i n.i . n.Dlbromochlorofnethane n.d. n.i. n.1,2-Olchlorobenztnt n.d. n.<. n.1,3-Olchlorobanztna n.d. n.i. n.1,4-Dlchlorobanztna n.d n.i. n.1,1-Oichlorotthane n.d n. . n.1,2-Olchloroethane n.d n.<. n.1,1-Dlchloroethtnt n.d n.< . n.Trane-1,2-Dichloroathtna n.d 1 11.2-Olchloropropane n.d n.i. n.cIs-1,3-Dichloroproptna n.d n.t. n.trana*1,3-D1chloroproptna n.d n.i . n.Mtthyltne Chloride n.d 1Tttrachlorotthana 51,1,1-Trlchloroathane n.d. n.i . n.Trlchlorotthene 7Trlchlorofluoromtthana n.d. n.i . n.Vinyl Chloride n.d. n.i . n.Btnztne n.d. n.i. n.Toluene n.d. n.i. n.Ethylbtnztna n.d. n.< . n.Total Xyltnts n.d. n.d. n.

All results reported in ppbn.d.: not detected

29

n.

n.d. n.n.d. n.n.d. " n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.n.d. n.

n.n.n.n.n.n.d. n.d

n.dn.dn.dn.dn.d

Keystone. Sanitation Co., Inc.Volatile Organic Analyses Oeta

Sample Location C-1 C-3 C-4 C-4 DUP C-5 C-6 C-7 C-8Data 10/2/89 10/3/89 10/2/89 10/2/89 10/2/89 10/2/89 10/2/89 10/4/89Sample Type Ground Ground Ground Ground Ground Ground Ground Ground

Water Wettr Water Water Water Water Weter Water

n.d. n.d. n.d. n.d.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n.n.d. n.d. 2 n.d. 220 15 15 12 15n.d. n.d. n.d. n.d. n.d.

n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d.48 n.d. n.d. n.d.4 7 5 4

n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.n.d. n.d.

n.d. n.d. n.d. n.d.7 2 3 10

n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d.n.d. n.d. n.d.

Page 129: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Co., Inc.x... Volatile Organic Analysts Data

wSample Location C-9 C-10 Ml C-12 C-13 C-14 85-13A 85-138Data 10/3/89 10/3/89 10/4/89 10/3/89 10/3/89 10/4/89 10/4/89 10/4/89Sample Typt Ground Ground Ground Ground Ground Ground Ground Ground

Water Water Uater Water Watar Water Water Water

Bromodfchlorotthant n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Bromoform n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Bromomethane n.d. n.Carbon Tetrachlorlda n.d. n.Chlorobemtne n.d. n.Chloroathant n.d. n.2-Chloroethyl-Vinyl-ethtr n.d, n.Chloroform n.d. n.Chloromethant n.d. n.Dlbromochtoromethan* n.d. n.1,2-Oichlorobenzene ... n.d. n.1,3-OIchlorobtn2tnt n.d. n.

n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d* n.d. n.n.d. n.d. n.d. n.d. n.n.d. n.d. n.d, n.d. n.n.d. n.d. n.d. n.d. n.n.d. n.d. n.d. n.d. n.n.d. n.d. n.d. n.d. n.

trans-1,3-0ichloropropent n.d. n.Mtthyltnt Chloride n.d. n.Tttrachloroathana 21,1,1-Trlchlorotthana n.d. n.Trlchloroethtnt 5Triehlorofluoromtthana n.d. n.Vinyl Chloride n.d. n.Benzene n.d. n.Toluene n.d. n.Ethylbtnztnt n.d. n.Total Xylanes n.d. n.

All results reported in ppbn.d.: not detected

flRI03!99

n.d.n.d.n.d.n.d.n.d.n.d.

n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n,d. n.d. n.d. n.d. n.d. n.d.

1J4-01chlorob*nzene n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.1,1-Dichloroethana n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.1,2-Dfchlorotthant n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.1,1-OIchlorotthtnt n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.Trans-1,2-0ichlorotthtne 7 7 n.d. 16 18 16 18 191,2*01chloropropant n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.cis-1,3-0fehloropropcnt n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

n.d. n.d. n.d. n.d. n.d. n.d.2 22 n.d. n.d. 35 344 19 18 9 8 8

n.d. n.d. n.d. n.d. n.d. n.d.6 21 23 19 21 10

n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. n.d. n.d. n.d. n.d.n.d. n.d. 7 n.d. n.d. n.d.n.d. n.d. 24 n.d. n.d. n.d.

Page 130: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Keystone Sanitation Co., Inc.Volatile Organic Analysts Data ,

Sample Location 85-13C ST-7 ST-8 ST-9Date 10/4/89 10/2/89 10/2/89 10/2/89Sample Type Ground Surface Surface Surface

Water Water Water Water

Bromodlchlorotthana n.d. n.Sromofom n.d. n.Brofflomethane n.Carbon Tatrachlorida n.Chlorobtnzena n.Chloroethana n.2-Chloroathyl-V1nyl-ether n.Chloroform n.Chloromethana n.Dlbromochloromethana n.1,2-Oiehlorobtnztne n.1,3-Olchlorobtnztne n.1,4-Olchlorobcnztnt n.1,1-Dichloroathane n.1,2-Oichloroathana n.1,1-Olehloroathena n.Trana-t(2-0ichloroethent n.1,2-Dlchloropropane n.cis-1(3-01chloroproptnt n.trans-1,3-Dichloroproptne n.

All results reported In ppbn.d.: not detected

Methylent Chloride n.Tetrachloroethene 2 n.1,1,1-Trlchlorotthane n.d. n.Trlchlorotthena 4 n.Trlchlorofluoromathane n.d. n.Vinyl Chloride n.d. n.Benzene n.d. n.Toluene n.d. n.Cthylbtnzent n.d. n.Total Xylenes n.d. n.

n.n.n.n.n.n.n.n,n,n,n.n.n.n.n.n,n.n,n.n.n.n.n,n,n,n.n.n.n.n.

n.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.dn.d

ARI03200

Page 131: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

APPENDIX Ei; • •

COMPENDIUM OF 6ROUNDWATER QUALITY RESULTS

ARI0320

Page 132: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAB: DHMH DHMK DHMH DHMH DHMH DHMH DHMH DHMH DHMH OHHHSAMPLE DATE: 06/21/88 06/21/88 06/21/88 06/21/88 06/21/88 06/22/88 06/22/88 06/22/88 06/22/88 06/22/88WELL NUMBER: S-2 S-3 S-4 S-5 S-6 MATTHIAS CROWFOftD EDDY DAVIS CONAWAY

ALKALINITY, TOTAL 12.0 35.0 27.0 16.0 11.0 54.0 46.0 28.0 19.0 60.0AMMOklA-NITROGEN NO ND 0.20 NO NO NO NO NO NO NDARSENIC, DISSOLVED HA HA HA HA HA NA HA HA HA HAARSENIC, TOTAL ND NO NO NO ND NO MD ND NO NOBARIUM, DISSOLVED • NA NA NA HA HA HA HA NA NA NABARIUM, TOTAL ND NO ND ND ND ND NO ND NO NOCADMIUM. DISSOLVED NA NA NA HA NA NA NA NA NA HACADMIUM, TOTAL NO NO ND HO NO NO ND ND HO NDCHLORIDE 11.0 15.0 27.0 32.0 20.0 . 12.0 U.O 9.0 8.0 4.0CHROMIUM, DISSOLVED NA NA NA NA NA NA NA HA NA NACHROMIUM, TOTAL ND NO ND HO NO NO ND NO ND NDCCO 10.0 14.0 15.0 23.0 19.0 22.0 14.0 15.0 18.0 13.0COPPER, DISSOLVED NA NA NA HA HA NA HA HA NA HACOPPER, TOTAL ND NO HO HO HO NO HD 0.26 0.09 0.09FLUORIOE, DISSOLVED NA HA HA HA HA NA NA HA HA NAFLUOR IDE, TOTAL HA HA HA HA NA HA HA HA HA NAIROH, DISSOLVED HA HA HA MA NA HA NA HA HA NAIRON. TOTAL 0.29 0.39 0.13 7.41 0.64 0.13 ND HO NO NDLEAD, DISSOLVED NA HA NA NA NA NA NA HA NA HALEAD, TOTAL HO HO HD HD HD HO HD ND HD NOMAGNESIUM, DISSOLVED HA HA HA HA HA NA HA NA HA NAMAGNESIUM. TOTAL 4.50 5.20 7.80 7.80 6.90 7.60 27.00 3.50 4.50 2.30MAHGAHESE, TOTAL 0.18 0.08 0.02 0.07 0.01 ND HO HD ND NDMERCURY, DISSOLVED NO HD ND NO NO NO NO KD ND NOMERCURY. TOTAL NO HD HO NO NO ND HO HD HO NDNITRATE-HITROGEN 7.10 3.90 6.00 7.60 9,10 8.40 7.60 3.80 7.90 1.TPHENOL 1CS. TOTAL NA HA NA HA HA HA HA HA HA N\ jOH 6.10 7.30 7.00 5.90 5.90 6.90 6.70 5.90 6.40 7.00—'POTASSIUM, DISSOLVED HA HA HA HA HA NA NA HA HA NAPOTASSIUM, TOTAL HO 1.1 2.4 2.9 1.4 ND *ND ND HD NOSELENIUM, DISSOLVED HA HA NA HA HA NA HA HA HA NASELENIUM, TOTAL HO NO HO NO HO NO NO HD HO NOSILVER. DISSOLVED NA NA HA NA HA HA HA HA HA NASILVER, TOTAL NA HA HA NA NA NA NA HA NA NASODIUM, DISSOLVED HA HA NA NA NA NA NA NA HA NASCOIUM, TOTAL 5.2 4.8 7.6 8.5 5.9 9.9 8.0 6.0 4.6 6.6SPECIFIC CONDUCTIVITY 119 189 190 210 171 209 165 202 113 133SULFATE, DISSOLVED HA HA HA HA NA HA HA HA HA HASULFATE, TOTAL 2.7 6.3 9.0 11.4 9.7 5.8 9.4 HD 4.2 2.1TOC NA HA HA HA HA HA HA HA HA NATURBIDITY 2.6 6.5 2.2 98.0 25.0 1.8 0.6 NO 0.6 1.0ZINC, DISSOLVED NA HA NA NA HA HA HA HA HA HAZINC, TOTAL HD HO HO HO HD HO NO HO HD HO

ALL RESULTS IN PPMHO-BELOW DETECTION LIMITSHA-HQT ANALYZED

ARI03202

Page 133: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAB- DHMH DHMH DHMH DHMH DHMH DHHH DHMH DHMH DHMH DHMHSAMPLE DATE: 06/21/88 06/21/08 06/21/88 06/21/88 06/21/88 06/21/88 06/21/88 06/21/88 06/21/88 06/21/88WELL NUMBER: W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 W-9 f-1

ALKALINITY, TOTAL 365.0 , 58.0 14.0 79.0 77.0 21.0 31.0 14.0 . 8.0 54.0AMMONIA-HITROGEN ND NO HO ND ND 0.30 ND NO ND MOARSENIC, DISSOLVED NA NA NA NA NA NA NA NA NA NAARSENIC. TOTAL ND HD NO , 'NO ND NO ND NO ND NOBARIUM, DISSOLVED NA NA HA ; NA NA NA NA NA NA NABARIUM, TOTAL ND ND HO '0.10 ND ND 0.30 HO HD NOCADMIUM. DISSOLVED HA NA HA HA NA NA NA NA HA NACADMIUM, TOTAL NO NO HO NO HD HO HD HO ND NOCHLORIDE 6.0 16.0 25.0 3.0 8.0 11.0 2.0 12.0 32.0 9.0CHROMIUM, DISSOLVED NA NA NA NA NA NA NA NA NA NACHROMIUM, TOTAL NO NO HD ". NO HD ND NO HO NO NOCOD • 67.0 22.0 NO ,14.0 14.0 NO ND ND - NO 19.0COPPER, DISSOLVED NA HA HA HA NA NA NA NA HA NACOPPER, TOTAL HO ND ND HD NO ND ND NO NO NDFLUORIOE, DISSOLVED NA HA NA NA NA NA NA NA NA NAFLUORIDE, TOTAL NA NA NA MA NA NA NA NA NA NAIRON, DISSOLVED NA NA NA NA NA NA NA NA NA NAIRON, TOTAL 4.70 ND 0.10 0.24 0.17 0.90 0.15 0.24 0.06 1.49LEAD, DISSOLVED NA HA NA NA NA NA NA NA NA NALEAD, TOTAL HO ND HO HD NO HD HD ND NO NOMAGNESIUM, DISSOLVED NA NA HA * NA NA NA NA NA NA NAMAGNESIUM, TOTAL NO 5.30 10.70 , ,3.60 2.60 4.00 2.20 '3.50 4.70 5.70MANGANESE, TOTAL 0.11 NO HD 0.01 HO 0.04 0.01 0.01 HD 1.02MERCURY, DISSOLVED ND * NO NO NO NO NO ND ND NO NOMERCURY, TOTAL NO NO NO NO HD ND ND ND NO NONITRATE-NITROGEN 1.60 4,10 11.00 „, NO 0.40 5.40 ND ND 7.70 1.00PHENOL ICS, TOTAL NA NA NA '' NA NA NA HA HA HA NApH 11.80 6.90 5.80 , 8. BO 8.30 6.10 8.30 6.00 5.70 7.10POTASSIUM. DISSOLVED HA NA NA NA NA NA NA NA NA NAPOTASSIUM, TOTAL 75.0 2.0 1.9 14.1 4.3 4.3 1.9 1.1 2.2 MOSELENIUM, DISSOLVED NA NA NA , MA NA NA NA NA NA NASELENIUM, TOTAL NO ND NO HO ND HD 0.010 ND ND NOSILVER, DISSOLVED NA NA NA NA NA NA NA NA NA NASILVER, TOTAL NA NA NA NA NA NA HA NA NA NASODIUM, DISSOLVED NA NA NA NA NA NA NA NA NA NASODIUM, TOTAL 62.0 7.4 4.1 H 13.1 20.2 6.7 12.0 8.0 5.6 3.7SPECIFIC CONDUCTIVITY 1701 195 184 198 247 145 176 130 133 142SULFATE. DISSOLVED NA NA NA HA NA NA NA NA HA NASULFATE, TOTAL 38.1 1.8 1.7 18.0 30.1 8.7 9.0 6.0 6.7 2.3TOC NA HA HA NA NA HA HA NA NA NATURBIDITY 57.0 2.5 5.0 12.0 6.2 41.0 6.4 13.0 4.2 7.0ZINC, DISSOLVED NA NA HA NA NA NA NA NA NA NAZINC. TOTAL 0.08 ND NO 0.06 ND NO ND ND NO . NO

ALL RESULTS IN PPMND-SElOU DETECTION LIMITSNA-HOT ANALYZED

ARI03203

Page 134: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGAHIC CHEMICAL AHALYSES I j

LAB; DHMH DHMH DHMH DHMH DHMH DHMH DHMH DHMH DHMH DHMHSAMPLE DATE: 06/22/88 06/21/88 09/27/88 09/27/88 09/27/88 09/27/88 09/27/88 09/27/88 09/27/88 09/27/88WELL HUMBER: HUFF J-8 W-1 . W-2 W-3 W-4 W-5 W-6 W-7 W-8

ALKALIHITY, TOTAL 22.0 NO 374.0 61.0 11.0 71.0 71.0 21.0 75.0 1.0AMMONIA-HITROGEN NO NO HO NO ND NO HO HD NO NOARSENIC. DISSOLVED NA NA HA HA NA NA NA HA HA HAARSEHIC, TOTAL NO NO HO HO NO ND HD HO HO HOBARIUM, DISSOLVED NA HA HA HA HA HA HA HA HA NABARIUM, TOTAL NO ND 0.30 MO ND NO NO NO NA NDCADMIUM, DISSOLVED NA MA NA MA NA NA HA NA NA HACADMIUM. TOTAL HO NO NO NO ND NO HD HD HD HDCHLORIDE 13.0 18.0 4.0 14.0 19.0 HA 1.0 7.0 HD 9.0CHROMIUM. DISSOLVED NA NA HA HA NA HA NA HA HA HACHROMIUM, TOTAL ND HO HO HO NO HO NO NO HD HDCOO 15.0 19.0 22.0 HO ND 23.0 12.0 NO ND NOCOPPER, DISSOLVED NA NA NA NA HA HA HA NA HA NACOPPER, TOTAL 0.10 0.10 0.10 0.10 0.10 NO ND NO NO NOFLUOR IDE, DISSOLVED HA NA HA HA NA NA NA NA NA NAFLUOR IDE, TOTAL NA NA HA HA NA NA NA HA NA NAIRON. DISSOLVED NA NA HA HA HA HA NA HA NA NAIRON, TOTAL 0.09 3.40 0.01 NO HA NO 0.10 HO HO 0.41LEAD, DISSOLVED HA HA NA NA NA NA NA NA HA HALEAD, TOTAL NO HD HD 0.04 NO HO 0.01 0.04 HO NAMAGNESIUM. DISSOLVED NA NA HA HA HA HA NA HA HA HAMAGNESIUM, TOTAL 4.40 HD HO 5.80 10.00 NA 0.10 4,10 NA 3.60MANGANESE, TOTAL NO 1.00 0.10 HD NO HD NA ND HD NAMERCURY, DISSOLVED ND HD HO HO HO HO ND ND NO HOMERCURY, TOTAL ND . HO ND NO NO NO ND NO NO NOHITRATE-NITROGEH 7.80 6.30 1.50 4.10 10.00 ND 0.50 HA HO 1.2<*PHEHOLICS, TOTAL NA NA HA HA HA HA HA NA HA HpH 6.20 7.10 11.10 8.30 6.80 7.00 7.90 7.00 7.00POTASSIUM, DISSOLVED NA NA HA NA NA NA NA NA HA HAPOTASSIUM, TOTAL 1.3 NO 105.0 HD HO 0.3 NA HD HA NOSELENIUM, DISSOLVED NA NA HA NA NA NA NA NA NA NASELENIUM, TOTAL HO NO ND NO ND NO NO ND HO HDSILVER, DISSOLVED HA NA HA NA NA NA NA NA NA NASILVER, TOTAL NA NA NA NA NA HA HA HA HA HASODIUM, DISSOLVED NA HA HA HA NA HA HA HA HA NASODIUM, TOTAL 5.9 5.0 71.0 7.9 4.5 11.8 17.8 7.4 14.1 7.5SPECIFIC CONDUCTIVITY 145 169 1004 124 174 191 241 116 175 117SULFATE. DISSOLVED NA NA NA NA NA NA NA HA NA NASULFATE. TOTAL 8.0 11.0 35.0 2.7 NO 11.3 31.4 NA 11.0 NATOC NA NA HA NA NA NA HA NA NA HATURBIDITY 2.1 25.0 25.0 2.4 6.0 1.7 31.Q 11.0 3.5 16.0ZIHC, DISSOLVED HA HA HA HA HA HA HA HA HA NAZIHC, TOTAL HO HO KD HO HD HO HD HO HO HD

ALL RESULTS IK PPMHO-BELOW DETECTION LIMITSHA-HOT AHALYZED

flRI0320ti

Page 135: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAB' DHHH DHMH DHMH OHHH DHMH DHMH OHMH DHMH DHMH OHHHSAMPLE DATE: 09/27/88 09/27/88 09/27/88 $9/27/83 09/27/88 09/27/88 09/27/88 09/28/88 09/28/88 09/28/88WELL NUMBER: W-9 S-1 S-2 1*3 S-4 S-5 S-6 MATTHIAS CROWFORD EDDY

ALKALINITY, TOTAL NA 40.0 MA j MA NA 137.0 NA 47.0 MA MAAMMONIA-HITROGEN NO NA NA ! NA NA 3.20 NO NO ND MOARSENIC, DISSOLVED MA MA NA M MA NA NA MA NA NAARSENIC, TOTAL NO HD NO NO NO 0.050 NO ND MA MOBARIUM, DISSOLVED NA NA NA ,;!" NA NA NA NA NA NA NABARIUM, TOTAL NA NO NO 'NO NO 1.40 HD NO NA ; NOCADMIUM, DISSOLVED NA HA HA NA NA NA NA NA NA NACADMIUM, TOTAL ND HA NO . MD NO NO NA MA NO MOCHLORIDE 9.0 NA MA HA NA 29.0 15.0 9.0 10.0 15.0CHROMIUM, DISSOLVED ' NA NA NA HA NA NA HA NA NA NACHROMIUM, TOTAL HO HO NO :i HD HA 0.24 NO NA NA NACOO ND 23.0 16.0 HA 19.0 900.0 NO NA 10.0 NOCOPPER, DISSOLVED NA NA HA NA NA NA HA HA HA HACOPPER. TOTAL HO NO ND * NO NA 0.22 ND ND NA NAFLUORIDE, DISSOLVED NA NA HA NA NA NA HA NA NA NAFLUORIOE. TOTAL NA NA NA MA NA NA NA NA NA HAIRON, DISSOLVED HA NA HA HA NA NA HA HA HA HAIRON, TOTAL HO HA NA MA NA 212.08 HA HA HA HDLEAD, DISSOLVED NA NA NA NA NA HA NA NA HA HALEAD, TOTAL NA NA MO HD NO 0.39 NO NA NA NOMAGNESIUM. DISSOLVED HA HA HA MA NA NA NA NA NA NAMAGNESIUM, TOTAL NO NA MA ! NA NA 46.10 NA NA NA NAMANGAHESE, TOTAL HD NA 2.00 HA NA 2.02 NA ND NO MOMERCURY, DISSOLVED ND HD NO 'i1 HO ND NO ND NO ND NOMERCURY, TOTAL ND ND ND NO ND NO NO NO HO NONITRATE-NITROGEN NO NA NA MA NA ND HA HA HA 4.00PHENOL ICS, TOTAL HA HA HA NA NA HA NA NA NA HApH NA NA 6.40 '*' NA 7.10 7.00 NA 7.00 7.00 NAPOTASSIUM, DISSOLVED NA NA NA HA NA NA NA NA NA NAPOTASSIUM, TOTAL HD HA NA NA NA 8.4 ND NA NA HASELENIUM, DISSOLVED NA NA NA ." NA NA HA NA NA NA NASELENIUM, TOTAL NO NA NO ' ND NA ND ND NO NO NOSILVER, DISSOLVED HA HA HA ' NA HA HA HA NA NA NASILVER, TOTAL NA NA 'NA NA HA HA NA HA HA NASODIUM, DISSOLVED NA NA NA HA NA NA NA NA NA NASODIUM, TOTAL 0.6 NA 7.6 6.0 NA 7.9 4.6 NA 3.7 HDSPECIFIC CONDUCTIVITY 100 100 NA NA NA 359 100 NA 111 100SULFATE, DISSOLVED NA NA NA ! NA NA NA NA NA NA NASULFATE. TOTAL 1.7 NA NA HA HA HA 11.0 HA 10.0 NATOC NA NA NA NA NA HA HA HA NA NATURBIDITY 1.7 NA NA MA NA 410.0 NA 1.0 1.5 HOZIHC, DISSOLVED KA NA NA •" NA NA HA HA HA HA HAZINC, TOTAL NO NO NO ""' NO KD 1.19 0.11 0.10 NO ND

ALL RESULTS IN PPHNO-BELOW DETECTION LIMITSNA-NOT ANALYZED

ARI03205

Page 136: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LA8: DHMH DHMH DHMH DHHH DHMH DHMH DHHH DHMH DHHH DHHHSAMPLE DATE: 09/28/88 09/28/88 09/28/88 09/27/88 09/27/88 09/27/88 09/27/88 09/27/88 10/13/88 10/13/88WELL NUMBER: DAVIS COHAWAY HUFF POWERS BECHTEL.R 8ECHTEL.J BOUEH HARMAH MOLLY BOWEN

ALKALINITY, TOTAL NA NA 13.0 ND 24.0 NO 3.0 NO NA 110.0AKMONIA-HITROGEH HD HO NA NO NO ND NO HO NA 1.00ARSENIC. DISSOLVED NA NA NA MA NA . HA NA NA NA HAARSEHIC, TOTAL H O H D N O N O H O M O N O M O H A M ABARIUM, DISSOLVED HA HA HA HA HA HA HA HA HA HABARIUM, TOTAL HO HO NO NO NO NO NO NO NA NACADMIUM. DISSOLVED HA NA HA HA HA HA HA HA HA HACADMIUM, TOTAL HO NO HO HO HO HO HD HO HA HACHLORIDE HA NA HA 4.0 50.0 11.0 10.0 3.0 7.0 NACHROMIUM, DISSOLVED NA NA NA HA HA NA NA NA HA NACHROMIUM, TOTAL HO HO HO KD HO HO HO HO HA HACOO 11.0 42.0 NO HA HA 21.0 ND 11.0 NA 210.0COPPER, DISSOLVED NA NA NA HA HA HA NA NA NA HACOPPER, TOTAL HO NO HD HA HA 0.11 0.26 NA HA NAFLUOR1DE, DISSOLVED NA NA NA NA NA NA HA NA NA HAFLUOR IDE, TOTAL NA NA HA HA HA NA NA HA HA NAIRON, DISSOLVED HA HA HA HA HA NA HA HA HA NAIRON, TOTAL HO HA HA NO NO HO HO HO HA HALEAD, DISSOLVED HA HA HA NA NA NA NA HA HA HALEAD, TOTAL ND HO HO NO HA NA HA NA HA HAMAGNESIUM, DISSOLVED HA HA NA HA HA HA NA NA NA HAMAGNESIUM, TOTAL 4.00 HA HA HA 10.00 HA HA HA NA NAMANGAHESE. TOTAL NO NA HO NO NA NO ND NO HA NAMERCURY, DISSOLVED HO HO HO HD HO NO ND ND ND NOMERCURY, TOTAL NO NO ND HO HO ND NO HD HO NDNITRATE-H1TROGEN NA NA HA 6.10 12.50 11.50 5.50 4.60 NA HAPHENOLICS, TOTAL NA NA NA NA HA HA NA HA HApH HA HA NA 6.20 6.80 6.00 6.50 5.80 7.40POTASSIUM, DISSOLVED NA NA NA NA HA HA NA HA HA NAPOTASSIUM, TOTAL ND HO HA HD HA HO 1.0 HA HA HASELEHIUM, DISSOLVED HA HA NA NA HA HA HA NA NA HASELENIUM, TOTAL HD HO HD HO HA HO HO NO HA NASILVER, DISSOLVED HA NA HA HA HA NA NA NA NA NASILVER. TOTAL HA HA HA HA HA HA HA NA HA HASODIUM, DISSOLVED NA NA NA NA NA NA HA NA HA HASODIUM. TOTAL 5.4 1.0 NA 2.8 NA NA 3.3 2.9 HA NASPECIFIC CONDUCTIVITY 111 100 100 85 309 138 102 66 NA 301SULFATE, DISSOLVED HA HA NA HA NA NA HA NA HA NASULFATE, TOTAL NA HA HA 2.2 85.0 2.1 2.7 1.8 31.4 23.1TOC HA HA NA NA NA HA NA HA HA NATURBIDITY ND HO 1.8 0.7 HD HO 0.8 0.6 HA 0.5ZIHC. DISSOLVED HA HA NA NA NA HA NA HA HA NA

ALL RESULTS IN PPMHD-BELOW DETECTION LIMITSHA-HOT ANALYZED

ARI03206

Page 137: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.- INORGANIC CHEMICAL ANALYSES

LAB: l DHHH DHMH DHHH , OHHH ,- DHMH DHMH DHMH DHMH DHMH DHMHSAMPLE DATE: 10/13/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88WELL HUHBER: SPAHGO W-1 W-3 W-4 W-5 W-6 W-7 W-8 W-9 1-1

ALKALIHITY, TOTAL 85.0 461.0 tO.O 76.0 56.0 20.0 70.0 11.0 NO 13.0AKHOHIA-HITROGEN ND 1.10 , MO fl.20 0.40 ND HO HD MO NOARSENIC, DISSOLVED MA HA NA MA NA NA NA NA NA MAARSENIC, TOTAL NA 0.040 ; NO , NO ND ND NO NO NO NOBARIUM, DISSOLVED NA MA NA / KA NA MA NA NA NA NABARIUM, TOTAL NA 1.00 HO '0.10 NO ND 0.30 NO . HD NOCADMIUM, DISSOLVED NA NA ,M ,,,,MA NA NA NA NA NA , MACADMIUM, TOTAL NA 0.02 NO NO MO ND MO NO ND NOCHLORIDE 7.0 4.0 20.0 ,,ND 5.0 9.0 ND 8.0 NO , - MOCHROMIUM, DISSOLVED NA NA NA MA NA NA NA NA NA NACHROMIUM, TOTAL NA .0.04 NO M0 MD ND HO NO HD NOCCO HO 17.0 HD HO NO NO HO HO ND NOCOPPER, DISSOLVED NA NA NA /MA NA NA NA NA NA NACOPPER, TOTAL HA 0.18 HD L „ NO MD ND ND HD HD NOFLUORIOE, DISSOLVED NA NA NA MA NA NA NA NA NA NAFLUORIOE. TOTAL NA HA NA HA HA HA NA NA NA MAIRON, DISSOLVED NA NA NA NA NA NA NA NA NA NAIRON, TOTAL NA 66.49 0.05 0.06 0.13 NO ND ND ND 2.17LEAD, DISSOLVED NA MA NA NA NA NA NA NA HA NALEAD, TOTAL NA 0.17 0.05 NO NO ND ND 0.05 NO NDMAGNESIUM, DISSOLVED HA NA NA „ NA HA HA NA NA NA NAMAGNESIUM, TOTAL NA 12.30 10.80 ;3.60 2.30 3.90 2.40 3.40 , 4.40 ,3.10MANGANESE, TOTAL NA 1.11 0.01 HO NO NO 0.01 ND HD 0.26MERCURY, DISSOLVED NO ND ND TNO HO NO NO NO ND NOMERCURY, TOTAL NO HD NO ND NO NO ND NO NO . NONITRATE-NITROGEN 1.00 1.20 25.00 NO 0.60 3.00 NO 6.90 7.40 1.10PHENOLICS, TOTAL NA HA NA NA NA NA NA NA NA NApH 7.50 11.60 6.60 7.70 7.60 6.90 7.70 6.80 6.20 6.90POTASSIUM. DISSOLVED NA HA HA NA NA NA NA NA NA NAPOTASSIUM, TOTAL NA 91.8 t.7 , l 1.5 NO NO 1.6 1.9 1.1 NDSELENIUM, DISSOLVED NA NA HA HA HA HA HA NA NA NASELENIUM, TOTAL NA HD NO MO NO NO NO ND NO NOSILVER, DISSOLVED NA HA HA NA HA HA HA NA NA NASILVER, TOTAL NA HA NA NA NA NA NA NA NA NASODIUM, DISSOLVED NA NA HA HA NA NA HA NA NA NASODIUM, TOTAL NA 63.9 4.7 , IlS.Z 18.9 9.9 15.1 9.6 6.5 6.4SPECIFIC CONDUCTIVITY 225 1622 190 213 210 126 187 139 129 109SULFATE, DISSOLVED HA NA HA /NA NA NA NA NA NA NASULFATE, TOTAL 29.7 34.6 2.9 !25.1 36.1 6.3 10.7 5.4 7.0 10.1TOC HA HA NA HA NA NA NA NA NA NATURBIDITY' NA 1550.0 '8.7 22.0 47.0 11.1 62.0 3.9 7.4 13.2ZINC, DISSOLVED NA NA HA MA HA NA NA NA NA NAZINC, TOTAL NA 0.47 HD "NO NO ND NO NO HO ND

ALL RESULTS IN PPMNO-BELOU DETECTION LIMITSNA-NOT ANALYZED

ARI03207

Page 138: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAB: DHMH DHMH DHMH DHMH DHMH DHMH DHMH DHMH OHMH DHMHSAMPLE DATE: 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88 12/07/88 12/07/88 12/07/88 12/07/88WELL NUMBER: $-2 S-3 $-4 S*5 S-6 S-9 MATTHIAS CRAUFORD EDDY OAVtS

ALKALINITY, TOTAL 4.0 23.0 21.0 26.0 3.0 NO 54.0 41.0 33.0 9.0AMMONIA-NITROGEN NO ND NO NO NO NO NO NO HD NOARSENIC, DISSOLVED NA NA NA NA HA NA NA NA NA NAARSENIC, TOTAL ND NO ND ND NO ND NO 0.010 ND NDBARIUM, DISSOLVED HA HA NA NA NA NA NA NA NA NABARIUM, TOTAL NO ND NO 0.70 ND NO HD ND ND NDCADMIUM, DISSOLVED NA NA NA HA NA NA HA KA KA NACADMIUM. TOTAL HO NO ' - HO HO NO HD ND NO NO NOCHLORIDE NO HO HD HD ND HO 10.0 16.0 12.0 8.0CHROMIUM, DISSOLVED HA HA HA NA NA NA HA NA NA HACHROMIUM, TOTAL -HO HO HD 0.04 NO NO NO HD KD HOCOD ND 10.0 ND 32.0 NO 13.0 HD HO HO NDCOPPER, DISSOLVED ' NA NA NA NA NA NA HA NA NA NACOPPER, TOTAL ND HD HD 0.07 NO NO ND KD 0.12 0.06FLUORIDE, DISSOLVED HA HA NA NA NA HA HA HA KA NAFLUOR IDE, TOTAL NA NA HA NA NA NA NA NA NA NAIRON, DISSOLVED NA HA NA NA NA NA NA HA NA NAIRON, TOTAL 0.08 0.05 0.13 233.20 0.15 1.02 0.12 HD ND NOLEAD, DISSOLVED NA NA NA NA NA NA NA NA NA HALEAD, TOTAL HD HD ND 0.07 NO HO NO HO HO NOMAGNESIUM, DISSOLVED HA HA HA HA NA HA NA NA HA HAMAGNESIUM, TOTAL 4.00 4.60 6.50 16.50 6.80 6.40 7.30 4.30 4.60 4.80MAHGAHESE, TOTAL 0.04 0.04 KD 0.51 HD 0.01 KD HD HO 0.10MERCURY. DISSOLVED HO HO HO HO HO NO HO HD NO NDMERCURY, TOTAL ND NO HO HO NO NO HO ND HD NONITRATE-HITROGEN 6.40 3.60 ND HD 8.20 9.10 6.90 7.10 3.90 8.00PHENOL ICS, TOTAL HA HA HA HA HA HA NA HA HA HAPH 6.70 7.20 7.10 7.00 6.60 6.40 7.40 7.30 7.00 6.7POTASSIUM, DISSOLVED HA NA NA HA HA HA HA HA NA HAPOTASSIUM. TOTAL 1.3 4.5 2.0 3.3 1.3 NO NO HD ND NDSELENIUM. DISSOLVED NA NA HA HA KA HA HA NA NA HASELENIUM, TOTAL NO HD HD HD HD HD HO NO HO KDSILVER. DISSOLVED NA HA HA HA HA HA NA NA NA NASILVER. TOTAL NA NA NA HA HA HA NA NA NA HASODIUM, DISSOLVED NA HA NA HA HA HA KA HA NA HASODIUM, TOTAL 5.8 5.2 7.2 8.9 6.3 2.4 10.3 8.0 6.7 3.4SPECIFIC COHOUCTIVITY 127 159 173 189 173 180 235 229 160 144SULFATE, DISSOLVED HA HA HA HA HA NA NA HA HA NASULFATE, TOTAL 4.9 8.9 6.7 8.3 8.9 16.8 7.9 7.0 1.2 3.5TOC NA HA KA HA NA HA NA NA NA NATURBIDITY 11.0 4.1 5.6 3850.0 7.4 12.0 2.8 HO 1.1 0.6ZINC. DISSOLVED NA NA HA HA HA KA HA HA HA HAZIHC, TOTAL HD HD HO 0.36 HO HD HD HD HO HD

ALL RESULTS IH PPMND-BELOW DETECTION LIMITSMA-NOT ANALYZED

RRI03208

Page 139: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC., , INORGANIC CHEMICAL ANALYSES

'. ' • ."•!-, ' *'•;'

LAB: OHMH OHHH DHMH DHMH DHMH DHHH DHMK DHMH OHMH OHMHSAMPLE DATE: 12/08/88 12/07/88 03/28/89 ;03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89WELL NUMBER: CONAUAY HUFF . W-1 . r"'. W-2 W-3 W-4 W-5 W-6 W-7 W-8

ALKALINITY, TOTAL 58.0 13.0 344.0 h S6.0 11.0 80.0 86.0 14.0 73.0 9.0AMMONIA-NITROGEN ND NO ND ND ND 0.20 0.20 ND NO NOARSENIC, DISSOLVED NA NA NA ' .,. MA NA NA MA NA NA NAARSENIC, TOTAL NO ND NO NO NO 0.010 .NO NO NO NDBARIUM, DISSOLVED NA HA NA MA HA HA NA NA NA NABARIUM, TOTAL 0.20 NO 0.20 MO NO 0.10 ND NO 0.30 NOCADMIUM, DISSOLVED HA HA NA ', NA NA NA NA NA NA MACADMIUM, TOTAL NO MD * NO NO NO ND NO ND NO NOCHLORIDE ND 11.0 7.0 14.0 24.0 4.0 8.0 10.0 2.0 11.0CHROMIUM, DISSOLVED HA NA NA „ MA NA NA NA NA NA NACHROMIUM, TOTAL NO ND .; NO ( . MO MO MO HO ND ND NOCOO ND ND 10.0 HD HD HO ND ND NO NOCOPPER, DISSOLVED NA MA NA \ NA NA NA NA NA MA NACOPPER, TOTAL 0.06 0.12 NO \' NO MD NO ND ND NO NOFLUORIOE, DISSOLVED NA NA NA ,, M NA HA NA NA NA MAFLUORIOE, TOTAL NA NA NA NA NA NA NA HA NA NAIRON, DISSOLVED HA HA NA ; NA HA HA NA NA NA NAIRON, TOTAL NO NO 6.82 ? HO HO 0.06 0.82 0.74 HO MOLEAD, DISSOLVED HA HA HA HA NA NA NA NA HA NALEAD, TOTAL HO HO NO ,rNO HO HO KD HD NO NOMAGNESIUM, DISSOLVED NA HA - NA y NA KA HA NA NA HA MAMAGNESIUM, TOTAL 2.00 4.10 HD :: 5.00 10.00 6.70 2.50 4.50 2.50 3.50MANGANESE, TOTAL ND HD 0.02 „ NO HO HO ND 0.16 NO NOMERCURY, DISSOLVED NO ND NO NO HD HO NO NO NO MOMERCURY, TOTAL NO HO NO V NO NO NO NO ND NO HDNITRATE-NITROGEN 0.20 6.60 1.50 ;£.» 10.60 NO 0.30 5.50 0.20 6.90PNEHOLICS, TOTAL NA ' NA HA .„ MA HA HA HA HA NA NAPH 7.40 6.80 11.40 7.80 6.70 7.80 8.60 6.80 8.00 6.90POTASSIUM, DISSOLVED NA HA NA HA NA HA NA NA NA NAPOTASSIUM, TOTAL NO 1.4 61.0 61.0 0.6 4.0 6.5 0.5 6.5 NOSELENIUM, DISSOLVED KA HA KA HA NA NA NA NA NA MASELENIUM, TOTAL HO KD HO NO NO HO ND NO NO NDSILVER, DISSOLVED HA NA NA , NA NA NA HA NA NA NASILVER, TOTAl NA NA NA NA HA NA KA NA NA NASODIUM, DISSOLVED NA NA NA HA HA NA NA HA HA HASODIUM, TOTAL 7.3 6.0 45.7 . fl 0.6 . 6.3 5.4 24.0 4.5 15.7 9.0SPECIFIC CONDUCTIVITY 141 163 506 -.M83 225 230 240 126 185 133SULFATE, DISSOLVED KA HA NA . NA HA NA NA NA NA NASULFATE, TOTAL 3.9 7.3 55.5 ;! 1.6 2.2 26.9 40.4 4.9 10.5 4.0TOC HA HA HA NA NA NA NA NA NA NATURBIDITY 0.7 0.9 59.0 0.4 5.2 22.0 14.0 19.0 3.9 4.9ZINC, DISSOLVED HA NA NA HA NA HA NA NA NA NAZINC, TOTAL ND ND 0.06 NO HD NO HD KD HO HO

ALL RESULTS IN PPMNO-BELOU DETECTIOH LIMITSHA-NOT ANALYZED

Page 140: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATIOH CO., INC.INORGANIC CHEMICAL ANALYSES , ,

LAB: DHMH DHMH DHHH DHMH OHMH DHHH DHMH DHMH DHMH OHMHSAMPLE DATE: 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/29/89 03/29/89 03/29/89WELL HUMBER: W-9 MATTHIAS CRAWFORO EDDY DAVIS COHAWAY HUFF S-1 S-2 S-3ALKALIHITY, TOTAL HO 66.0 33.3 17.0 6.0 53.0 10.0 7.0 9.0 13.0AMMONIA-HITROGEN NO ND 0.20 NO ND HD HO KD HO NDARSENIC. DISSOLVED NA HA NA NA NA NA NA NA NA HAARSENIC, TOTAL NO HO NO ND NO NO HD HO HO HDBARIUM, DISSOLVED KA NA MA HA HA NA NA NA HA HABARIUM, TOTAL HD HD NO NO NO NO ND ND ND HDCADMIUM, DISSOLVED NA HA HA NA NA NA HA HA NA HACADMIUM, TOTAL NO NO NO HO NO ND NO NO NO NDCHLORIDE 11.0 10.0 14.0 9.0 9.0 3.0 11.0 10.0 12.0 15.0CHROMIUM. DISSOLVED NA NA HA HA HA HA HA KA HA HACHROMIUM. TOTAL HD HO HD HO " HD NO ND NO ND NDCOO ND NO HO ND NO HO HD NO NO NOCOPPER, DISSOLVED NA NA HA NA NA NA NA NA NA NACOPPER, TOTAL NO HD HO 0.31 0.06 0.06 0.20 HD NO HOFLUOR IDE, DISSOLVED NA NA NA HA HA HA NA NA HA HAFLUORIOE. TOTAL HA HA HA HA HA HA HA NA NA NAIRON, DISSOLVED NA HA NA HA HA NA NA NA HA HAIRON, TOTAL 0.40 0.14 HD HO HO 0.09 0.12 0.15 0.52 0.19LEAD, DISSOLVED HA HA HA HA HA HA HA HA HA HALEAD, TOTAL HO HO 0.06 HO HD HO HO HO HD KDMAGNESIUM, DISSOLVED HA KA HA HA HA HA NA HA HA KAMAGNESIUM, TOTAL 4.70 7.40 4.50 3.50 5.40 2.60 5.00 4.60 4.70 5.30MANGANESE, TOTAL 0.02 HO KD HO HO NO NO 0.02 0.06 0.05MERCURY, DISSOLVED NO HO ND HO NO HO HD HO HO NOMERCURY, TOTAL NO HO HO HO NO NO HD HD HO NONITRATE-NITROGEN 7.70 6.00 7.40 3.50 8.50 1.20 6.90 2.90 6.90 4.9"PHENOL ICS, TOTAL HA KA HA KA NA NA HA NA NAPH 6.60 7.60 7.30 6.80 6.70 7.50 7,00 6.90 6.90POTASSIUM. DISSOLVED HA NA NA KA NA NA NA NA NA NAPOTASSIUM, TOTAL 4.5 HO HO ND HD NO 2.4 1.5 0.9 1.9SELENIUM, DISSOLVED NA NA NA NA HA NA NA HA HA NASELENIUM, TOTAL NO NO HD HO HO NO HD N O - N O NOSILVER. DISSOLVED NA NA HA HA HA NA HA NA HA HASILVER. TOTAL NA KA HA NA HA KA NA HA HA HASODIUM, DISSOLVED HA HA HA NA NA HA NA HA HA NASODIUM, TOTAL 7.3 0.3 8.9 6.4 4.7 5.4 6.1 4.7 0.2 5.1SPECIFIC CONDUCTIVITY 743 236 224 112 46 147 173 120 133 152SULFATE, DISSOLVED HA HA NA HA HA HA KA HA HA HASULFATE, TOTAL 2.0 6.5 6.6 NO 5.4 3.5 17.8 5.0 5.7 12.6TOC NA HA HA HA NA HA NA NA NA NATURBIDITY ia.7 3.3 0.6 NO 0.8 1.1 0.9 2.5 6.0 12.2ZIHC, DISSOLVED HA NA HA HA KA HA HA NA KA HAZIHC, TOTAL HO HO HD HD HD HD HO NO HO HD

ALL RESULTS IH PPMNO-BELOW DETECTION LIMITSNA-NOT AHALYZEO

ARI032IO

Page 141: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SAMITAT ION CO., JHC..INORGANIC CHEMICAL ANALYSES

LAB: DHMH OHHH DHMH H. DHHH DHHHSAMPLE DATE: 03/29/89 03/29/89 03/29/89 03/29/89 03/29/89WELL NUMBER: S-4 S-5 S-6 ,;. S-8 , S-9

ALKALINITY, TOTAL 7.0 6.0 2.0 j: 16.0 NDAMMONIA-NITROGEN NO NO NO ;„„ HD NDARSENIC, DISSOLVED NA NA NA NA NAARSENIC, TOTAL ND ND NO , MD NDBARIUM, DISSOLVED NA NA HA NA NABARIUM, TOTAL NO NO HO NO NOCADMIUM, DISSOLVED NA NA NA , NA NACAOHIUH, TOTAL MO MO NO NO NDCHLORIDE 20.0 24.0 15.0 ;•; •>•- 11.0 12.0CHROMIUM, DISSOLVED NA NA NA NA NACHROMIUM, TOTAL NO ND NO > NO NOCOD NO ND NO : 14.0 NDCOPPER, 01SSOLVEO NA NA NA ,: ,„ NA NACOPPER, TOTAL ND NO NO ND NOFLUOR IDE, DISSOLVED NA NA NA ,„. NA NAFLUORIOE, TOTAL NA NA MA NA NAIRON, DISSOLVED NA NA NA < NA NAIRON, TOTAL 0.15 3.92 1.35 {.;, 0.11 0.19LEAD, DISSOLVED NA HA NA NA NALEAD, TOTAL NO 0.05 NO 0.08 0.06MAGNESIUM, DISSOLVED NA NA ' HA ;;„ , NA NAMAGNESIUM, TOTAL 8.00 8.30 7.40 : ,,7.70 9.90MANGANESE, TOTAL 0.30 0.03 0.04 ? 0.20 NOMERCURY, DISSOLVED ND NO NO NO NOMERCURY, TOTAL NO HO NO ND NONITRATE-NITROGEN 8.00 9.00 9.80 ?r *-30 10.40PHENOlICS, TOTAL NA NA NA • i. NA NAPH 7.00 6.60 6.50 r 7.20 6.50POTASSIUM, DISSOLVED NA HA NA i HA NAPOTASSIUM, TOTAL 2.0 2.4 0.4 f - 3.3 1.7SELENIUM, DISSOLVED HA HA HA :„ NA NASELENIUM, TOTAL NO NO NO HD NOSILVER, DISSOLVED HA HA NA : HA HASILVER, TOTAL NA HA HA , , HA HASODIUM, DISSOLVED HA NA NA -, NA NASODIUM, TOTAL 7.4 10.1 6.8 ;"• 5.6 4.1SPECIFIC CONDUCTIVITY 199 212 77 : 180 195SULFATE, DISSOLVED HA NA NA • NA NASULFATE, TOTAL 15.3 11.0 8.7 23.7 22.7TOC HA NA HA NA NATURBIDITY 4.4 61.0 13.7 * ••• 2.8 2.8ZIHC, DISSOLVED HA NA NA '.r,. NA KAZINC, TOTAL NO ND 0.17 ,* . NO ND

ALL RESULTS IN PPMND-BELOU DETECTION LIMITSNA-HOT ANALYZED

ARI032I/

Page 142: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES ,

LAB: BH BH BH BH BH BH BH BH BH BHSAMPLE DATE: 01/03/89 01/03/89 01/03/89 01/03/89 01/03/89 01/04/89 01/04/89 01/04/89 01/04/89 01/04/89WELL KUH8ER: S-1 1-2 S-3 S-4 S-6 PN8S-11A PN8S-1U PK85-11C PK85-12A PN85-12B

ALKALINITY, TOTAL 12.4 8.3 21.6 22.2 53.2 116.0 2430.0 267.0 19.4 19.1AMMONIA-NITROGEN HD NO NO 0.50 ND NO NO NO ND HOARSENIC, DISSOLVED ND NO NO NO ND NO ND 0.009 NO NDARSENIC, TOTAL HO KD ND MO HO NO ND 0.011 ND NDBARIUM. DISSOLVED NO ND NO NO NO NO 1.10 NO HD NDBARIUM, TOTAL NO HD HO NO NO NO 1.60 NO 0.12 NDCADMIUM, DISSOLVED NO NO ND NO NO KD 0.02 KD 0.02 NOCADMIUM, TOTAL MD NO NO NO NO NO 0.02 NO 0.04 0.02CHLORIDE 17.0 5.5 9.3 8.5 19.0 7.8 170.0 56.0 14.0 8.6CHROMIUM, DISSOLVED NO ND HO KD ND NO NO NO NOWCHROMIUM, TOTAL K O N O N O H D K D N D K O H D N O N DCOO 3.8 3.8 3.8 7.7 1.9 7.3 16.0 16.0 10.9 18.2COPPER, DISSOLVED HA HA HA HA NA NA NA NA HA NACOPPER. TOTAL NA NA NA HA NA HA HA HA HA NAFLUORIDE, DISSOLVED NA HA NA NA NA NA NA NA - NA NAFLUORIDE, TOTAL NO HO NO NO ND HO 0.19 0.71 ND MDIRON. DISSOLVED NA NA HA KA HA NA HA HA NA NAIRON, TOTAL 2.20 HO 0.18 0.22 0.45 8.10 0.21 2.60 6.20 0.74LEAD. DISSOLVED N O H D H O N O N O N D H O H D N O N DLEAD, TOTAL NO NO NO NO HO HO 0.07 NO NO NDMAGNESIUM, DISSOLVED 6.10 1.70 4.20 4.60 5.30 3.70 1.00 1.20 4.90 5.10MAGNESIUM, TOTAL 6.10 2.00 4.60 4.80 5.80 4.10 1.20 1.70 5.10 5.40MANGANESE, TOTAL 0.06 NO 0.08 0.05 0.60 0.10 ND NO 0.05 0.05MERCURY, DISSOLVED H O N O N D N D M D H D H D N O N D N DMERCURY, TOTAL H O N O N O N O M D N O N D H O N O N ONtTRATE-HITROGEN 6.08 5.51 8.28 7.70 3.51 4.10 3.46 3.80 5.42 8.1'PHENOLICS, TOTAL 0.07 0.02 1.00 0.04 0.02 NO ND 0.05 0.05pH 6.20 6.00 6.70 6.70 6.90 9.20 12.30 11.30 5.80POTASSIUM, DISSOLVED 3.6 2.1 10.0 7.1 1.9 4.9 83.0 50.0 1.4 1.8POTASSIUM, TOTAL 4.0 2.4 13.0 7.6 2.3 5.1 88.0 56.0 1.8 2.2SELENIUM, DISSOLVED H O N O N O N O H D N O H O N O N O N DSELENIUM, TOTAL H O H O N O H O N O N O N O N O H O N DSILVER. DISSOLVED HO HO NO. HO HO HD HO HO HO NDSILVER, TOTAL HD HO NO 0.02 HO 0.01 0.01 HO HD NOSODIUM, DISSOLVED HA NA NA HA NA HA NA HA NA NASODIUM, TOTAL 7.2 7.7 9.2 10.0 13.0 8.8 82.0 63.0 11.0 11.0SPECIFIC CONDUCTIVITY 75 68 97 92 12S 201 10500 1070 163 145SULFATE. DISSOLVED HA HA NA HA NA NA NA NA NA NASULFATE, TOTAL 7.0 8.3 10.2 11.1 12.7 14.2 12.7 45.1 9.2 8.7TOC 1.0 NO 1.0 1.0 1.0 _ 0.0 8.0 6.0 1.0 5.0TURBIDITY 2.2 2.4 2.0 3.8 4.9 43.0 9.5 72.0 28.0 24.0ZINC, DISSOLVED NO NO NO HO HO NO NO HO HO NOZINC, TOTAL 0.06 HO NO ND HD 0.05 NO NO 0.06 ND

ALL RESULTS IN PPMKO-BELOW DETECTION LIMITSHA-MOT ANALYZED

HR1032I2

Page 143: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION OL, INC.INORGANIC CHEMICAL ANALYSES

LAB: BH BH BH BH BH IN IK IK BHSAMPLE DATE: 01/04/89 01/04/89 01/04/89 01/05/89 01/09/89 01/10/89 01/10/89 01/10/89 01/10/89WELL NUMBER: PNS5-12C -PN85-13A PN85-13B PN85-13C PN85-3A PN85-1 MU85-21 MUS5-22 PN8S-2A

ALKALINITY, TOTAL 140.0 26.6 100.0 114.0 99.2 10.9 5-2 3.1 28.4 41.3AMMONIA-MTROGEN NO NO NO '-), NO 0.65 NO NO HO ND NOARSENIC, DISSOLVED NO NO NO ;; HO MO MD NO MO NO MDARSENIC, TOTAL NO NO NO J MO NO NO NO 0,007 ND 0.007BARIUM, DISSOLVED NO NO NO 0.14 NO NO NO NO NO DOBARIUM, TOTAL 0.18 NO NO 0.12 NO NO NO NO NO 0.12CADMIUM, DISSOLVED NO NO NO "" NO NO NO NO NO MD NOCADMIUM, TOTAL ' NO HO HO ND ND NO NO M O N O NOCHLORIDE 14.0 48.0 36.0''! 4.3 7.0 3.4 8.9 6.1 3.5 7.5CHROMIUM, DISSOLVED NO NO NO -, NO NO NO NO NO NO NOCHROMIUM, TOTAL 0.03 NO NO NO NO NO ND HD NO NOCOO 7.3 3.7 14.6 14.6 4.0 4.0 2.0 2.0 HO 4.0COPPER, DISSOLVED NA NA NA ' NA NA NA NA NA NA - NACOPPER, TOTAL HA NA NA NA NA NA NA NA NA HAFLUORIOE, DISSOLVED NA - NA NA * NA NA NA NA NA NA NAFLUORIDE, TOTAL 0.19 NO 0.11 ' NO 0.18 NO NO HD NO NDIRON, DISSOLVED NA HA NA ' f, NA NA NA HA NA NA NAIRON, TOTAL 85.00 7.20 0.94 « 0.80 7.10 7.90 1.80 11.00 0.84 11.00LEAD, DISSOLVED 0.05 NO NO NO HO NO NO NO NO NOLEAD, TOTAL 0.06 HO NO NO NO ND NO NO NO NOMAGNESIUM, DISSOLVED 18.00 11.00" 8.70 i1 4.10 8.30 1.80 2.10 5.00 9.20 6.20MAGNESIUM, TOTAL 19.00 12.00 8.80 4.60 8.70 2.40 2.40 5.20 10.00 6.60MANGANESE. TOTAL 1.10 0.45 0.11 H; 0.10 0.18 0.11 0.05 0.22 ND 0.24MERCURY, DISSOLVED NO 0.0009 NO l! NO NO NO NO NO NO NOMERCURY, TOTAL NO 0.0011 MO HO MD NO NO NO NO NONITRATE-NITROGEN 2.21 5.10 4.80 6.S3 9.60 3.25 4.71 7.36 3.09 6.00PHENOLICS, TOTAL 0.02 0.08 NO : L ND 0.05 NO 0.05 NO NO 0.04pH 7.50 5.30 6.10 8.70 7.00 5.80 5.60 5.10 6.70 8.80POTASSIUM, DISSOLVED 1.2 1.7 2.6 ; 3.7 17.0 10.0 6.3 9.8 20,0 7.7POTASSIUM, TOTAL 1.5 1.9 2.8 h 4.2 20.0 14.0 6.7 12.0 22.0 S.ISELENIUM, DISSOLVED ND NO MO ND ND NO NO NO MO NOSELENIUM, TOTAL NO 9.000 NO ND 0.008 NO NO ND NO NOSILVER, DISSOLVED NO NO NO NO NO HD HO NO NO NOSILVER, TOTAL 0.01 0.01 0.01 NO ND NO NO HO NO NOSODIUM, DISSOLVED NA NA MA NA NA NA HA NA NA NASODIUM, TOTAL 22.0 15.0 20.0 17.0 19.0 7.4 11.0 7.2 10.0 14.0SPECIFIC CONDUCTIVITY 380 248 359 ;, 260 290 57 45 58 109 232SULFATE, DISSOLVED NA NA NA ! NA NA NA NA NA NA NASULFATE, TOTAL 38.9 1.8 19.7 31.0 32.6 ND ND NO 2.9 11.7TOC 5.0 1.0 2.0 ' 7.0 2.0 4.0 NO NO NO NOTURBIDITY 1300.0 59.0 • 11.0 .'",',' 2S.O 38.0 65.0 23.0 40.0 24.0 100.0ZINC, DISSOLVED NO - 0.07 NO NO 0.05 NO HO ND NO NOZINC, TOTAL 0.29 0.09 NO *\ 0.07 0.07 0.05 NO 0.09 NO 0.06

ALL RESULTS IN PPMNO-BELOW DETECTION LIMITSNA-NOT ANALYZED

ARI032I3

Page 144: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAB: BH BH BH BH BH BH BH BH BH BHSAMPLE DATE: 01/13/89 01/13/89 01/13/89 01/12/89 01/12/89 01/13/89 01/13/89 01/13/89 04/10/89 04/10/89WELL NUMBER: MW-1 MU-2 MW-3 MW-4 MW-5 MU-6 MW-7 MW-8 S-1 S-2

ALKALINITY, TOTAL N A N A N A N A N A H A N A N A 15.0 12.2AMMONIA-NITROGEN ND ND 4.91 ND NO NO NO NO NO NOARSENIC, DISSOLVED NA NA NA NA NA NA NA NA HO HOARSENIC, TOTAL N A N A H A N A M A N A N A N A N D N OBARIUM. DISSOLVED NA HA NA MA NA NA NA MA ND NOBARIUM, TOTAL M A N A N A N A N A N A N A N A N O N DCADMIUM, DISSOLVED NA HA KA NA NA NA NA NA NO NOCADMIUM, TOTAL NA HA HA HA HA NA NA NA NO NOCHLORIDE 100.0 50.0 NA 3.5 24.0 50.0 12.5 25.0 17.0 11.0CHROMIUM, DISSOLVED HA NA NA KA NA NA NA HA NO HOCHROMIUM, TOTAL HA NA HA NA NA NA NA NA NO HOCOO 6.0 15.9 73.4 8.0 4.0 10.0 7.9 4.0 8.3 10.6COPPER, DISSOLVED NA NA NA NA HA MA NA NA NA NACOPPER, TOTAL NA NA NA NA HA NA NA NA HA NAFLUORIOE, DISSOLVED HA HA HA NA HA HA HA HA HA HAFLUOR IDE, TOTAL NA MA HA NA HA HA KA HA NO HOIRON, DISSOLVED 0.10 0.14 9.50 0.13 0.07 0.18 0.05 0.20 NA HAIRON. TOTAL 0.87 3.80 11.00 1.10 7.70 0.36 1.90 19.00 0.13 0.52LEAD. DISSOLVED NA HA HA HA NA HA HA HA NO NDLEAD. TOTAL MA HA NA HA MA HA HA NA NO MOMAGNESIUM, DISSOLVED HA NA MA MA KA MA NA HA 2.90 4.00MAGNESIUM, TOTAL H A N A H A M A N A N A N A N A 3.80 4.70MANGANESE, TOTAL 0.82 0.12 2.30 0.05 0.96 0.87 0.05 0.21 NO 0.05MERCURY. DISSOLVED N O K D M D N O H O N O M D M D H O N OMERCURY, TOTAL N O N O N D N O N O N D H O M O 0.0006 N DNITRATE-NITROGEN 1.00 2.45 3.32 3.42 1.00 2.91 4.30 2.37 7.92 7.10PHENOLICS, TOTAL HO HO HO 0.05 0.02 ND 0.02 NO 0.08 0pH 5.50 5.60 7.80 5.40 6.00 5.80 5.90 6.20 6.00 6V JPOTASSIUM, DISSOLVED HA NA NA NA NA NA HA NA 1.1 6\1TPOTASSIUM, TOTAL HA NA NA NA NA NA NA NA 1.8 7.1SELENIUM, DISSOLVED N A N A N A H A N A N A H A N A N O K DSELEHIUM, TOTAL H A N A H A N A N A N A H A N A N O N OSILVER., DISSOLVED HA HA HA NA HA HA NA NA HO HOSILVER. TOTAL NA HA HA HA HA HA NA NA HO HOSODIUM, DISSOLVED 11.0 12.0 120.0 10.0 9.8 12.0 6.2 13.0 NA HASODIUM. TOTAL 13.0 16.0 230,0 14.0 12.0 19.0 8.0 14,0 3.7 8.0SPECIFIC CONDUCTIVITY 401 299 NA 75 184 234 122 168 144 118SULFATE, DISSOLVED HA NA MA NA HA HA MA HA HA NASULFATE, TOTAL NA MA NA NA NA NA NA NA 3.4 8.0TOC 2.0 1.0 6.0 NO 2.0 1.0 2.0 NO 2.0 1.0TURBIDITY 5.6 17.0 HA 5.7 13.0 2.7 , 14.0 97.0 30.0 38.0ZIHC, DISSOLVED HA KA HA NA MA HA HA HA HO HOZINC, TOTAL NA NA NA NA NA HA HA HA HO NO

ALL RESULTS IN PPMNO-BELOW DETECTION LIMITSHA-NOT AHALYZED

ARI032U

Page 145: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

. . KEYSTONE SANITATION Ct., [NC., INORGANIC CHEMICAL ANALYSES

UB: IK BH BH BH BH BH BH BH BH 8HSAMPLE DATE: 04/12/89 04/12/89 04/12/89 04/12/89 04/12/89 04/13/89 04/13/89 04/13/89 04/20/89 04/18/89WELL NUMBER: PN85-12B PN85-12C PN85-13A PN85-13B PN85-13C PN85-1 MW85-21 MU85-22 MW-1 MW-2

ALKALINITY, TOTAL 10.4 124.0 29.0 , 73.6 48.7 10.4 5.2 3.9 NA NAAMMONIA-NITROGEN NO NO ND „ ,' ND ND ND NO NO HO NDARSENIC, DISSOLVED NO NO NO NO NO ND NO NO NA NAARSENIC, TOTAL ND NO NO NO ND ND NO ND NA NABARIUM, DISSOLVED NO 0.10 NO / NO NO NO NO N O N A NABARIUM, TOTAL NO 0.17 0.11 y NO NO NO NO NO NA NACADMIUM, DISSOLVED HD NO ND NO NO NO NO NO HA NACADMIUM, TOTAL NO ND NO \i NO NO NO NO NO HA NACHLORIDE 7.0 8.8 31.0; 38.0 30.0 4.0 5.8 8.5 73.0 82.0CHROMIUM, DISSOLVED HD . NO NO . i NO NO HD HO NO NA NACHROMIUM, TOTAL NO 0.20 NO , NO ND NO NO NO NA NACOO 2.1 16.9 2.1 2.1 4.1 8.1 2.1 NO 38.3 10.1COPPER, DISSOLVED HA NA NA NA NA NA NA HA HA NACOPPER, TOTAL NA NA NA HA HA NA NA NA NA NAFLUOR IDE, DISSOLVED NA NA MA NA KA NA NA NA NA NAFLUORIDE, TOTAL NO 0.21 NO ND HO HD NO NO NA NAIRON, DISSOLVED NA NA NA ,,. , NA NA NA NA NA NO 0.11IRON, TOTAL 0.26 45.00 0.30 ,'. 0.75 0.18 0.14 1.30 1.50 0.86 0.51LEAD, DISSOLVED NO NO HO HO ND HD HD NO NA NALEAD. TOTAL NO 0.07 NO NO 0.05 NO HD NO NA NAMAGNESIUM, DISSOLVED 4.10 15.00 2.10 , 8.60 8.10 3.80 2.10 3.60 NA NAMAGNESIUM, TOTAL 4.90 16.00 2.80 t 9.40 8.80 4.30 3.00 4.50 NA NAMAHGAHESE, TOTAL NO 0.65 NO .;' 0.12 0.31 NO NO HO 2.10 0.28MERCURY, DISSOLVED NO HO NO NO 0.0009 NO NO NO NO NDMERCURY, TOTAL NO NO 0.0007 NO 0.0016 NO NO NO NO NONITRATE-NITROGEN 4.21 1.06 T 5.00 4.90 4.15 2.14 3.42 7.30 0.15 2.80PHENOLICS, TOTAL 0.00 HO NO 0.04 HO HD NO 0.03 0.02 NOpH 6.40 8.00 5.60 ; 6.10 6.20 6.30 5.70 5.70 5.60 5.70POTASSIUM, DISSOLVED 3.1 5.1 1.0 ,..,; 6.3 4.0 2.9 4.0 1.2 NA HAPOTASSIUM, TOTAL 3.8 6.0 1.3 7.1 4.2 3.8 4.8 1.8 NA NASELENIUM. DISSOLVED NO NO NO NO NO NO ND NO NA NASELENIUM, TOTAL NO NO NO NO NO NO NO NO NA NASILVER, DISSOLVED ND ND HD NO NO NO NO NO NA NASILVER. TOTAL NO 0.01 NO NO HD NO NO MO NA NASODIUM. DISSOLVED NA HA HA HA NA NA NA NA 10.0 9.3SODIUM, TOTAL 6.4 18.0 5.0 , 10.0 9.1 4.3 6.6 6.3 13.0 12.0SPECIFIC CONDUCTIVITY 129 338 213 335 259 75 79 102 363 330SULFATE, DISSOLVED NA NA NA NA NA NA HA NA NA NASULFATE, TOTAL 13.7 28.2 5.3 15.3 7.7 4.0 1.7 1.8 NA NATOC NO 1.0 0.0 ,". 1.0 1.0 HO HO NO 16.0 12.0TURBIDITY 13.0 200.0 35.0 26.0 3.6 37.0 . 30.0 23.0 1.5 27.0ZINC, DISSOLVED 0.05 0.06 NO , NO 0.05 ND ND 0.05 NA HAZINC, TOTAL 0.05 0.15 0.10 f, 0.06 0.09 NO NO 0.05 NA . NA

ALL RESULTS IN PPMNO-BELOW DETECTIOH LIMITSMA-NOT ANALYZED

ARI032I5

Page 146: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.INORGANIC CHEMICAL ANALYSES

LAI: BH BH BH BH BH BH BH BH BH BHSAMPLE DATE: 04/18/89 04/20/89 04/18/89 04/20/89 04/20/89 04/20/89 07/17/89 07/18/89 07/17/89 07/17/89WELL NUMBER: MW-3 MU-4 MW-5 MW-6 MW-7 MW-8 MW-1 MW-2 MW-3 MW-4

ALKALIHITY, TOTAL H A K A N A N A H A K A N A M A K A N AAMMONIA-HITROGEN 2.39 NO 0.67 HO HD NO NO NO 4.07 NOARSENIC. DISSOLVED K A M A N A H A N A N A N A M A N A N AARSENIC, TOTAL N A N A N A N A N A N A N A H A N A N ABARIUM, DISSOLVED NA NA NA NA NA NA NA NA NA HABARIUM. TOTAL NA NA NA NA NA NA NA NA NA NACADMIUM, DISSOLVED NA HA HA NA NA NA NA NA MA NACADMIUM. TOTAL NA NA NA NA NA NA NA NA HA NACHLORIDE 1200.0 10.0 24.0 38.0 29.0 29.0 110.0 85.0 1850.0 5.1CHROMIUM, DISSOLVED HA NA HA NA HA HA NA HA HA HACHROMIUM, TOTAL HA NA NA NA NA HA NA NA NA NACOO 2.2 NO 14.1 6.1 2.0 14.2 17.0 8.0 37.7 10.7COPPER, DISSOLVED NA NA NA HA MA NA NA NA NA NACOPPER, TOTAL HA NA HA HA NA NA HA NA NA NAFLUORIDE, DISSOLVED HA HA HA NA HA HA HA NA MA NAFLUORIDE, TOTAL HA HA NA HA HA HA NA HA HA NAIRON, DISSOLVED 11.00 0.53 11.00 0.38 0.40 1.80 0.24 ND 3.60 0.21IRON. TOTAL 19.00 1.50 15.00 3.80 2.10 20.00 0.75 1.50 8.90 1.10LEAD. DISSOLVED HA NA HA HA NA NA HA HA NA NALEAD, TOTAL N A N A H A H A H A K A H A H A N A N AMAGNESIUM. DISSOLVED HA NA NA HA KA HA HA HA NA NAMAGNESIUM, TOTAL HA MA NA NA HA HA HA HA NA NAMANGAKESE, TOTAL 16.00 0.49 0.68 1.80 5.40 0.34 1.90 0.36 6.10 0.13MERCURY, DISSOLVED H D K D K O N D N O H O N O N D N O N DMERCURY, TOTAL H D M O N D K D H O H O N O N D N O N DNITRATE-NITROGEN 0.14 4.40 6.90 3.12 3.65 0.79 0.22 2.42 0.85 5.60PHENOLICS, TOTAL 0.03 0.02 0.02 0.02 0.05 NO NO 0.06 0.09 0,pH 6.70 5.70 6.40 5.90 6.50 5.90 5.30 5.60 6.00 5.VJPOTASSIUM, DISSOLVED HA NA NA HA HA HA HA HA HA MAPOTASSIUM, TOTAL N A N A H A N A N A H A K A N A N A H ASELENIUM, DISSOLVED H A N A N A M A N A K A K A K A H A N ASELENIUM. TOTAL NA HA HA HA NA HA HA KA HA NASILVER. DISSOLVED NA NA HA NA NA NA NA NA NA NASILVER, TOTAL NA UA MA HA NA NA NA KA HA HASODIUM, DISSOLVED 120.0 4.6 7.0 9.7 8.6 9.0 26.0 15.0 17.0 20.0SODIUM, TOTAL 140.0 5.4 7.6 13.0 10.0 12.0 28.0 17.0 18.0 23.0SPECIFIC CONDUCTIVITY 3840 90 203 247 266 290 450 370 4370 91SULFATE, DISSOLVED NA HA HA NA NA NA NA HA NA NASULFATE. TOTAL NA HA HA HA NA NA HA HA HA HATOC 15.0 9.0 10.0 15.0 10.0 11.0 HO NO 8.0 HDTURBIDITY 110.0 4.8 41.0 56.0 49.0 250.0 0.3 1.7 47.0 1.8ZIHC. DISSOLVED HA MA NA HA HA HA NA HA HA NAZIHC, TOTAL HA NA NA HA HA HA HA HA NA NA

ALL RESULTS IN PPMNO-BELOW DETECTION LIMITSHA-HOT ANALYZED

ARI032I6

Page 147: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.', INC,INORGANIC CHEMICAL ANALYSES

LAB: BH BH BH BH 4SAMPLE DATE: , 07/17/89 07/18/89 07/18/891. 07/18/89WELL NUMBER: MU-5 MW-6 MW-7 MW-8

ALKALINITY, TOTAL NA HA NA [ NAAMMONIA-NITROGEN NO NO NO ;: NDARSENIC, DISSOLVED NA NA NA NAARSENIC, TOTAL NA NA NA r NABARIUM, DISSOLVED NA NA NA NABARIUM, TOTAL NA NA NA NACADMIUM, DISSOLVED NA HA NA NACADMIUM. TOTAL NA NA NA NACHLORIDE 28.0 44.0 ; 62.0 53.0CHROMIUM, DISSOLVED NA NA HA HACHROMIUM, TOTAL NA NA NA HACOO 8.9 HO 107.0 NOCOPPER, DISSOLVED NA NA HA MACOPPER, TOTAL NA NA NA NAFLUORIDE, DISSOLVED NA NA NA • NAFLUORIDE, TOTAL NA NA NA f NAIRON, DISSOLVED 6.70 0.11 . 10.00 , 0.10[RON. TOTAL 14.00 7.30 10.00 12.00LEAD. DISSOLVED NA NA NA HALEAD, TOTAL NA NA NA - r . , NAMAGNESIUM, DISSOLVED NA NA NA ,•;, NAMAGNESIUM, TOTAL NA NA NA HAMAHGAHESE, TOTAL 0.94 2.70 3.10 , 0.22MERCURY, DISSOLVED NO NO MO MDMERCURY, TOTAL NO NO NO > NONITRATE-NITROGEN 1.63 0.87 0.81 . 0.65PHENOLICS, TOTAL 0.10 0.00 0.02 0.02pH 5.80 5.60 ; 6.70 ; 6.10POTASSIUM, DISSOLVED NA NA NA r NAPOTASSIUM, TOTAL NA NA NA NASELENIUM, DISSOLVED NA HA NA (..; NASELENIUM, TOTAL MA NA MA NASILVER, DISSOLVED MA NA HA ! NASILVER. TOTAL NA NA NA . NASODIUM, DISSOLVED 7.5 11.0 18.0 9.6SODIUM, TOTAL 7.9 13.0 20.0 • 10.0SPECIFIC CONDUCTIVITY . 182 264 515 276SULFATE, DISSOLVED HA NA NA NASULFATE. TOTAL NA NA HA NATOC ND NO 34.0 NOTURBIDITY 13.0 13.0 50.0 13.0ZINC, DISSOLVED NA NA NA NAZINC, TOTAL NA NA HA HA

ALL RESULTS IN PPMHO-BELOU DETECTION LIMITSMA-MOT ANALYZED

ARI032I7

Page 148: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.VOLATILE ORGANIC ANALYSES DATA .

LABORATORY DHMH DHMH DHMH DKMH DHMH OHMH DHMH OHMH DHMH DHMHSAMPLE DATE 12/07/88 12/07/88 12/07/88 12/07/88 12/07/88 12/06/88 12/06/88 12/06/88 12/06/88 12/06/88SAMPLE LOCATION MATTHIAS CRAWFORO EDDY OAVIS HUFF U-1 W-2 W-3 W-4 U-5

BENZENE N D N D M O M O N O H O N D N D N O N DBROMOMETHAHE H O N O N D I f D H O N O M D N O N D K DCARBON TETRACHLORIDE N O N O N O N D N D N D H D N O H D N DCHLOR08ENZENE NO NO NO NO ND HO ND ND NO MOCHLORODIBROMOMETKAHE NO HD NO ND HO HO NO NO NO NOCHLOROETKANE N O N D M D N O N D N O H D N D H D N DCNLOROMETKANE N O N O N O N O H D N D H O H O N D H O1.2-OI8ROMOMETHANE N O N O N D N D N O N O N O H D N D H O1.2-01CHLOR08ENZENE H A H A N A N A N A H A H A H A H A N A1.3-OICHLOR08ENZENE HA HA HA NA HA HA HA HA HA HA1.4-OtCHLOR08ENZENE H A H A H A N A H A H A H A H A N A H ADICHLOROOIFLUOROMETHAHE NO HO HO NO HO HO ND NO HO HO1 , 1 -0ICHLOROETHAKE N D N D N O N D N O K O N D N O N D K D1.2-D ICHLOROETHAKE NO HO HO NO HO 1 4 N O N O N D1 . 1 - D I CHLOROETHEHE N O H O H D N O N O H D H D N O N O M OCIS-1,2-DICHLOROETHEHE NO NO ND HO NO 3 NO NO NO HOTRAHS-1,2-DICHLOROETHEHE NO HO HO HO NO 3 NO NO ND NO1,2-01 CHLOROPROPANE MA NA HA HA HA HA NA MA HA HAC1S-1.3-OICHLOROPROPENE N O N D N O N O N O N O N O N D N O N DTRAHS*1,3-OICHLOROPROPEHE N O M O N O H D N O N D N O N D N D N OETHYLBENZENE NO NO HD NO HO HO NO NO HO NOMETHYL ETHYL KETOHE N O N O M D H O N O N O N O H O H D M DMETHYLENE CHLORIDE N O H D N D N O N D N O H O H O H D M D4-MCTHTYL-2-PEHTAHOHE HA NA NA HA NA HA HA NA HA NA3-CHLORO-1-PROPENE H A N A N A M A N A M A N A N A N A N A1.1.1,2-TETRACHLOROETHAHE N A N A H A N A H A N A H A H A N A N A1,1,2.2-TETRACHLOROETHANE N O N O H O N O M O W N O N O N O N DTETRACHLOROETHEHE HO HO HO HO MO 2 10 MO NO k .TOLUENE M O M D N O M O N D N O H D H O H O HK_>TRIBROMCMETHANE NO ND HD NO NO NO HO HO HO NO.1,1,1-TRICHLOftOETHAHE HD NO NO HO HO HO HO NO HO ND1,t.2-TR!CHLOROETHAHE N O N D H D N D H O N D N D N O N O K DTRI CHLOROETHEHE HO NO HO NO HO 1 1 HO HO HOTRICHLOROFLUOROMETHAHE N O K D M D N O M D N O N O N O N O H O1,2,3-TRICHLOROPROPAHE NA HA HA NA HA HA NA HA HA NAVINYL CHLORIDE N O N O N O H O M D H O H D N O H D N DXYLEKES, TOTAL H O H O H O N D N O N O H O N D M D N D

ALL RESULTS IN PPBNO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-HOT ANALYZED

ARI032I8

Page 149: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

..KEYSTONE SANITATION CO., INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY DHMH DHMH DHMH DHMH OHMH Jj'i OHMH OHHH DHMH OHMH DHMHSAMPLE DATE 12/06/88 12/06/83 12/06/88 12/06/88 12/06/68 12/06/88 12/06/88 12/06/88 12/06/83 12/06/88SAMPLE LOCATION W-6 W-7 W-8, W-9 S-1 S-2 S-3 S-4 8-5 1-6

BENZENE NO NO ND -,, HO NO NO ND ND NO NOBROMOMETHANE NO ND NO ^ NO NO HD ND NO NO NDCARBON TETRACHLORIDE NO NO NO ,'. NO NO NO NO HD NO NOCHLOR06ENZENE NO NO NO ), ND NO NO HD NO NO NDCHLOROOIBRQMOMETKANE NO NO HD ND NO ND ND NO NO NOCMLOROCTHAHE HD . NO NO ND ND NO ND ND NO NDCHLOfiOMETKANE ND NO NO / NO ND HO NO NO HD ND1,2-DIBROMOMETKANE NO NO NO NO HD HO HD HD NO NO1,2-OICHLOROBEHZENE NA NA NA NA NA NA NA NA NA HA1,3-DICHLOROSENZENE KA NA HA . HA HA NA NA HA HA NA1,4-DICHLOROBENZEKE HA HA HA +l NA NA HA HA HA NA HADICHLOROOIFLUOROMETKANE NO NO NO MD NO NO HO NO NO NO1,1-DICNLOROETHANE .NO HD HD Kp NO HO NO NO NO NO1,2-D1CHLOROETHANE MO MD NO NO NO HO HD HD NO NO1,1-DICHLOROETHENE ND NO HD ND NO NO HO NO HO NOCIS-1,2-DICHLOROETHENE HD NO NO , NO NO HD NO 1 2 NOTRANS-1,2-01CHLOROETHENE NO NO HD HD HD HO HD 1 2 NO1,2-DICHLOROPROPANE HA NA HA (U NA NA HA HA NA NACIS-1.3-OICHLOROPROPENE NO NO NO , NO HO HO NO NO NO NOTRAMS-1,3-D1CHLOROPROPENE ND HO M O N O NO HD HO ND ND NOETHYLBENZENE NO NO NO NO NO MO NO ND NO NOMETHYL ETHYL KETONE NO NO NO NO NO NO NO HO NO NOMETHYLEKE CHLORIDE NO NO KD KD MO HO HO HO NO NO4-METHTYL-2-PENTAHONE NA NA NA HA HA HA NA NA NA HA3-CHLORO-1-PROPENE NA NA NA NA NA NA HA HA NA NA1,1,1,2-TETRACHLOROETHAHE MA NA NA HA NA HA HA HA NA NA1,1,2,2-TETRACHLOROETHANE HD NO , NO H HO ND NO NO NO NO NDTETRACHLOROETHENE NO ND NO "' NO ND NO HD 1 NO 4TOLUENE NO NO HO , NO ND NO NO HD HO NOTR1SROMOMETHANE HO NO NO Xr NO , NO. NO NO ND NO NO1.1,1-TRICHLORC€TKANE NO NO HO MO NO HO HD HO NO NO1,1,2-TRICHLOROETHANE NO MO NO NO NO NO NO NO ND NOTRICHLOROETHENE NO NO HO ND NO NO ND NO NO HOTRICKLOROFLUOROMETHANE NO NO NO HO NO NO HO NO ND NO1,2,3-TRICHLOROPROPANE NA NA NA , NA NA NA NA NA NA NAVINYL CHLORIDE ND HO NO i.''. MO NO HO HO HO ND NDXYLENES,TOTAL NO NO ND MO MO NO NO MO NO ND

ALL RESULTS IN PPBNO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELNA-NOT ANALYZED

ARI032J9

Page 150: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.VOLATILE ORGANIC ANALYSES DATA , j

LABORATORY DHMH OHMH DHMH DHMH DHHH DHMH DHMH OHMH DHMH DHMHSAMPLE DATE 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/29/89 03/29/89 03/29/89 03/29/89SAMPLE LOCATION U-5 W-6 W-7 W-8 W-9 S-1 S-2 S-3 S-4 5-5

BENZENE H O N O N O N D N O N O N O H D N D N O8ROMOMETHANE N O H O H D K O N O N O H O H O N O H DCARBON TETRACHLORIDE N O H O H D N O N O N O N D N O N O N DCHLOROBENZENE N O N O H O H O N D N O H O N O N O N OCHLORODIBROMOMETHANE H O N O N O H O H O N O N O N O N D N DCHLOROETHAKE HO NO HO ND ND HO NO NO NO NDCHLQROMETHAHE N O N O N D M O N O N D N O H O N O H O1,2-OIBROMOMETHAHE HD HO HO MD HO NO HO NO NO HO1,2-DICHLOROSENZENE NA NA HA NA HA HA HA HA NA HA1,3-01CHLOR08ENZENE NA NA NA NA HA HA HA NA KA NA1.4-OICNLOR08ENZENE NA HA HA HA NA NA MA NA HA NADICHLORCOIFLUORGMETHANE HO ND NO NO NO NO ND HO ND HD1.1-D1CHLOROETHAHE NO NO HO ND NO NO. NO ND HD NO1.2-DICHLOROETHANE N D N O H O N O H O N O N O H O H D N O1 , t - D I CHLOROETHEHE N O N O N O N O M D N D N O N D H D N DCIS-1,2-DICHLOROCTHENE N D N O N O H D H D N O N O N D N O 3TRAHS-1.2-01 CHLOROETHEHE ND HO HO HO MO HO ND NO ND 31,2-OICHLOROPROPANE HA HA NA NA HA HA HA NA NA HAC1S-1,3-01CHLOROPROPEHE H O N D M O N D N D M O N O N O N O H DTRANS-1.3-OICHLOROPROPEHE H O H D N O H O H O M O N D N O N D N DETHYLBENZEHE NO NO HO ND HD HO NO NO ND HOMETHYL ETHYL KETONE H O N O H O N D N O H D N D K D N O N DMETHYLEHE CHLORIDE HO HD NO HD ND HO HO NO ND HD4-METHTYL-2-PENTANOHE HA KA KA HA NA HA HA NA KA MA3-CHLORO-t-PROPENE NA NA KA KA HA KA KA H A - H A HA1,1.1,2-TETRACHLOROETKANE NA HA HA NA NA NA KA KA HA HA1,1.2,2-TETRACHLOROETHAHE H O K D N O N O K O N D N D K D N O ' "TETRACHLOROETHEHE HD NO NO HO HO NO NO ND 2 , ,TOLUENE N O N O N O N O N O K D K O H D N O \ ~ STR1BROMGMETHANE N O N D N D H O K O N O K O N O N O N O1,1,1-TRICHLOROCTHANE N D N O H O N O N O H O N O M O K D K O1.1,2-TRICHLOROETHAHE N O N O N D N O N O H O N O N O K D M )TR1CHLOROETHEHE N O N O H O N O H O N O K O N O K D 3TR1CHLOKOFLUOROMETHAKE HO HO HD HO NO NO ND NO NO KD1,2,3-TRICHLOROPROPANE HA HA HA HA KA KA HA HA KA NAVINYL CHLORIDE N O N O K O H D H O N O H O H D N O N OXYLEHES, TOTAL N O H D H O N O M O H O H O H O N O N O

ALL RESULTS IN PPBNO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-HOT ANALYZED

'03220

Page 151: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.. INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY DHMH OHHH DHMH .., DHMH DHHH OHMH DHMH DNMH DHMH DHMHSAMPLE DATE 03/29/89 03/29/89 03/29/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 03/28/89 05/09/89SAMPLE LOCATION S-6 S-8 J-9 MATTHIAS CRAWFORO EDDY DAVIS CONAUAY HUFF IECHTEL.J

IENZENE NO H O M O ND HO NO NO ND NO NOBROMOMETHANE ND NO HO HD HD HO ND MO NO NDCARBON TETRACHLORIDE NO NO NO NC HO NO NO HD ND NOCHLOROBENZENE NO NO NO NO ND ND HO HO NO NOCHLOROOIBROMOMETHAHE NO NO NO ND NO NO NO NO NO NOCNLOROETHANE NO ND MO "I, NO NO HD HO HO HO NDCHLOROMETHANE NO NO NO ND NO NO ND HD HO NO1,2-DIBROMOMETHANE NO NO NO KD ND NO NO NO MO NO1,2-01 CHLOROBENZENE NA NA NA KA NA NA NA NA NA NA1,3-01 CHLOROBENZENE HA NA NA I HA ! NA NA HA NA NA NA1,4-DICNLOROBENZENE NA HA HA MA MA HA HA HA NA HAOICHLORQOIFLUOROMETKANE NO NO NO NO NO ND NO NO NO NO1.1-OICHLOROETHANE HD NO NO ; NO HO HO HO HO HD NO1.2-OICHLOROlETHANE NO NO NO NO NO NO NO ND NO NO1,1-01 CHLOROETHEHE NO ND MO NO NO ND NO NO NO NOCIS-1,2-DICHLOROETHENE ND NO NO .",: NO ND ND ND HD . HO NOTRANS-1,2'OICNLOROETHENE ND ND NO MO NO NO NO NO NO NO1,2-DICHLOROPROPAHE HA NA HA KA MA NA NA HA NA HACIS-1,3-D1CHLOROPROPENE HD HD ND :, NO NO ND NO , NO NO NOTRANS-1.3-DICHLOROPROPENE NO NO HO ND NO M O N O HD NO NDETHYLBENZENE NO NO .. NO HD NO NO NO NO NO NOMETHYL ETHYL KETONE HO NO NO HO NO NO NO NO NO NOMETKYLENE CHLORIDE NO NO NO NC NO NO ND NO NO NO4-METHTYL-2-PENTANOHE HA NA NA NA MA HA HA NA NA NA3-CNLORO-1-PROPENE NA NA NA NA NA NA NA NA NA NA1,1,1,2-TETRACHLOROETHANE NA HA NA HA HA HA HA NA NA NA1,1,2,2-TETRACHLOROETHAHE ND NO NO •'.''" NO ND HO HO ND ND NOTETRACHLOROETHENE NO 2 NO KO HO HO ND NO NO NOTOLUENE NO HD HO •'" ND HD NO NO NO NO HOTRIBROMOMETHANE NO NO NO L ND NO NO HD NO NO NO •1,1.1-TRICHLOROETHANE HD NO NO ; NO HD ND NO HO MO 21,1,2-TRICHLOROETHANE NO NO NO, NO MO NO ND NO NO NDTRICHLOROETHENE ND ND ND HO HD HO HO NO MO NOTRICHLOROFLUOROMETHANE HO NO HO ; HO NO NO NO NO NO NO1,2,3-TRICHLOROPROPANE NA NA HA NA HA HA HA NA HA HAVINYL CHLORIDE NO NO M O N O NO NO NO NO NO NOXYLENES, TOTAL HO NO KO MD MO HO HO ND NO NO

ALL RESULTS IN PPBNO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-NOT ANALYZED

ARI0322J

Page 152: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., IHC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY OHMH OHMH DHMH DHMH OHMH DHMH DHMH DHHHSAMPLE DATE 05/09/89 05/09/89 05/09/89 05/09/89 03/28/89 03/28/89 03/28/89 03/28/89SAMPLE LOCATION HARMAN BECHTCL.R POWERS BOUEH W-1 W*2 W-3 W-4

BENZEHE N O M D N O N D N O H D N O H DBROMOMETHANE M O H O N O N D N D N D N D N DCARSON TETRACHLORIOE ND HO HO HO NO NO ND NOCHLOR08ENZENE N O M D M O K D M O N O N D N OCHLOROOtBROMOMETHANE H O N D N D N O N O N O N O N OCHLOROETHANE H O K D H D N O H O N O K D N OCHLOROMCTHANE N O N O N D N D N O N O H O H O1.2-DI8ROMCMETHANE N O N O N D H D N O N O N O N O1,2-OlCHLOftOBEHZENE H A M A N A N A H A H A H A H A,3-DlCHLOROBENZENE HA NA NA NA KA HA HA HA.4-DICHLOROBEN2ENE HA NA NA NA NA HA NA KAICHLORCOIFLUORCMETHANE H O K D K O K D N D N O K O M O.1-DICHLOROETHAKE N O N O H O N O N O N O H O N O.2-DICHLOROETHANE N O N O M O N O K O H O N O N O. 1 - D ICHLOROETHENE N D N O H O M O N D N O N O H O

CIS-1,2-OICHLOROETHEHE NO MD NO ND 2 1 NO HDTRAHS-1,2-01CHLOROETHEHE NO HO NO HO 2 1 MO ND1,2-OICHLOROPROPAME NA NA HA HA HA HA HA HACIS-1,3-DICHLOROPROPEKE H O H O N O N D N O N O N O N OTRAKS-1.3-01CHLOROPROPENE K D H O N O H D H D N O N D N OETHYLBENZEHE H O H O N O N O N O N O H O N OMETHYL ETHYL KETONE N O N D N D N O N O H O H O N DMETHYLENE CHLORIDE NO NO NO HO WHO NO NO4-METHTYL-2-PEHTANOHE HA MA HA HA NA HA HA MA3-CHLORO-1-PROPEHE HA HA HA NA HA NA HA HA1,1.1,2'TETRACHLOROETHANE HA HA NA HA HA NA NA HA1,1,2.2-TETRACHLOROETHANE HO NO NO NO NO NO NO NOTETRACHLOROETHENE HO NO HO HO 2 2 M O N OTOLUENE N D K O H D N D N O K O M D N OTRIBROMCMETHAHE N O H O H D N O N O N O H O N O1,1,1-TRICHLOROETHANE N O N O N O N O N O M O N D N O1,1,2-TRICHLOROETHAHE H O H D N O H O M O H O H O N OTRICHLOROETHENE N O N O N O K D N O N O N D N OTRICHLOROFLUOROMETHANE H D N O N O H D N D N O N D H D1,2,3-TRICHLOROPROPAHE HA HA HA HA NA NA NA HAVINYL CHLORIDE N O N O H O H D N D N O N O N OXYLEHES. TOTAL N D H O N O H O N O K O N O N O

ALL RESULTS IN PPBNO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-NOT AHALYZED

ARI03222

Page 153: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY: 8H BH BH BH BH BH BH BH BH IHSAMPLE DATE: 01/03/89 01/03/89 01/03/89 01/03/89 01/03/89 04/10/89 04/10/89 04/10/89 04/10/89 04/10/89WELL NUMBER: S-1 S-2 S-3 S-4 S-6 S-1 S-2 S-3 S-4 S-6

BENZENE HD MD NO '"''' NO NO HO HO NO ND HDBROMOMETHANE HD NO NO NO NO ND NO ND ND HDCARBON TETRACHLORIDE ND NO NO NO NO NO ND ND ND HOCHLOROBENZENE NO ND NO NO NO ND NO NO NO NDCHLORCOIBROMOMETHANE HO HO ND NO HO HO HO ND ND NOCHLOROETHANE ND NO NO ' NO NO NO ND ND ND NDCKLOROMETHANE KD HO HO NO NO NO NO NO ND NO1.2-DIBROMOETKANE H O N O N D N D N O N D N D N O N O N D1,2-DICHLOROBENZENE NO NO NO ' NO HD HO HO ND ND ND1,3-DlCHLOROBEHZENE NO ND NO NO NO NO HD HO NO NO1,4-OICHLOROBENZENE HO MO KD NO NO NO NO NO ND NOOICHLORODIFLUOROMETHANE ND NO NO NO ND ND ND ND HD KD1,1-OICHLOROETHANE NO NO ND NO ND ND HO HO ND NO1,2-OICHLOROETHANE HD HO HO HD KO ND HD ND ND NO1,1-OICHLOROETHENE KO NO HO MD NO NO NO NO NO HOCIS-1,2-DICHLOROETHENE ND NO MO HD HD HD HO NO ND NOTRANS-1,2-OICHLOROETKENE NO HD KD ND NO NO NO HD ND HO1,2-DICHLOROPROPAHE HD MO HO MO NO NO HD ND NO HDCIS-1,3-DICHLOROPRQPENE NO NO NO HO NO NO NO ND HD NOTRANS-1,3-OICHLOROPROPENE ND NO NO HD NO NO NO NO HD NOETHYLBENZENE NO HO NO HO NO HD HO HO HO NOMETHYL ETHYL KETONE HD NO MO NO NO NO ND NO NO NDMETHYLENE CHLORIDE NO 'NO HO ND NO NO ND ND HO ND4-HETHYL-2-PENTANOHE HO NO HO NO NO NO NO HD NO HO3-CHLORO-1-PROPENE NO HD ND NO HD HD NO HO NO NO1,1,1,2-TETRACHLOROETHANE NO ND NO HO HD HD HD HO ND NO1,1,2,2-TETRACHLOROETHAHE HO NO NO HD NO NO NO ND HD NOTETRACHLOROETHENE HO NO HD MO HD NO NO NO NO NOTOLUENE HO NO HD HO HO HO HO HD HO NOTRIBROMOMETHANE HD HD NO MD NO NO NO ND ND HD .1,1.1-TRICHLOROETHANE ND NO HO HD NO NO NO NO NO NO1,1,2-TRICHLOROETHANE KD NO NO HO NO ND NO NO ND HOTRICHLOROETHENE ND NO NO ">' HO HD NO HO HD HD NOTRICHJLOROFLUOROMETHAHE HO NO MO HO MD NO NO NO NO HD1.2,3-TRICHLOROPROPAHE HD HD HO NO MO HO HO ND HO NOVINYL CHLORIDE ND NO NO HO HD HO HO NO NO HD

ALL RESULTS IH PPBHO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-NOT ANALYZED

ARI03223

Page 154: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY: BH BH BH BH BH BH BH BH BH BHSAMPLE DATE: 04/10/89 04/11/89 04/11/89 04/11/89 04/11/89 04/11/89 04/11/89 04/12/89 04/12/89 04/12/89WELL NUMBER: PN85-2A PN8S-3A PH85-10A PK8S-11A PH8S-11B PH85-11C PN85-12A PN85-12B PN85-12C PN85-13A

BEHZEKE N D N O N O N D H O N D M D N D N D N OBRQMCMETKANE HO NO NO NO HO NO HO NO NO NDCARBON TETRACHLOfttDE NO HO NO NO HD KO NO MD NO NOCHLOR08ENZENE N O N O H O N O N D N D N O N D N O N OCHLORODIBROMOMETHAHE HO NO NO NO ND ND ND M O N O KDCHLOROETHANE NO NO NO ND HO NO ND HO HO NOCHLOROMETHANE N O N O N D H D H O N O H D N O N D K Q,2-OIBROMOETHAHE HO NO NOW HD NO MO NO ND NO,2-01CHLOROBENZENE N O N O N O M D N O M D N D N O H D N O,3-DICHLOROBENZENE NO NO NO ND HO M O N O ND ND KO,4-DICHLOROBEHZENE HO HO NO ND NO NO HO HD NO NOICHLOROD1FLUOROMETHAHE HO NO MO NO NO NO ND HD NO HO,1-01 CHLOROETHANE HO ND HO. NO NO NO MD NO HO 31,2-OICHLOROETHANE N O N O N O M O H O N O N O N D M O H D,1-OICHLOROETHENE HD HO NO HO ND M O N O MD HD ND

CIS-1.2-OICHLOROETHEHE ND HO ND ND NO HO NO NO NO 21TRANS-1,2-01CHLOROETHENE N O N O M O N D M O N D N O N D N D 2 11,2-OICHLOROPROPANE H O H O N D H O N O H O H O H D N O N OCIS-1,3-OICHLOROPROPENE H O N O H O N O M D N O N O K D N O N OTRAHS-1,3-OICHLOROPROPENE HO NO HD NO ND HO NO NO MO HOETHYLBEHZEKE H O N O H D N O N D H O N O N O H O K OMETHYL ETHYL KETONE N O N D N D N D N D H D N O M D K D N DMETHYLENE CHLORIDE H O N O N O N O H D N O N O N O K D 5 44-METHYL-2-PENTANONE N D N O N O N D N O N O N D N D K D N O3-CHLORO-1-PROPENE N O M O N D N O N O N D K D M D K D H Q1.1,1.2-TETRACNLOROETHAHE H O N O N D H D M O N O N O K O K O H O1.1,2,2-TETRACHLOROETHAHE H O H O N O N O H O H O N O N O M D H DTETRACHLOROETHENE H O M D N O H O H D H O N O N D N D 2 7TOLUENE HO HO MO KO 12 HO HO HO NOTRIBROMOMETHANE NO NO NO NO NO MO NO NO HO ND1,1,1-TRICHLOROETHAHE HO NO NO KO NO ND NO HD M O N O1,1,2-TRICHLOROETHANE H O N O N O K D N D K O H O H O H O K OT R 1 CHLOROETHENE N O H O N O K D N O K O N O N O N D 3 3TRICHLOROFLUOROMETHANE HD NO HO KD HO KO HO KO KO HO1.2.3-TRICHLOROPROPAHE H O N O N O N O N O N O N O N O H O N D

ALL RESULTS IN PPBNO-NOT DETECTED ABOVE MINIMUM DETECTION LEVELHA-HOT ANALYZED

ARI03221*

Page 155: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO.JifNC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY: IN BH , BH BH BH BH BH BH IH LANCASTERSAMPLE DATE: 04/12/89 04/12/89 04/13/89 04/13/89 04/13/89 04/14/89 04/14/89 04/14/89 04/14/89 04/20/89WELL NUMBER: PN85-13B PH85-13C PN85-1 .MW85-21 MW85-22 OW-1 OW-2 OW-3 OW-4 MW-1

BENZENE NO HO ND ND ND 14 NO NO ND 16BROMOMETHANE ND NO NO HD NO ND ND NO NO NACARBON TETRACHLOR1DE NO NO MO ,.,. NO NO NO ND MD NO NACHLOROBENZENE ND HD NO NO NO NO ND ND NO NACHLORODIBROMOMETHANE NO NO NO NO ND ND NO HO N O N ACNLOROETHANE HD NO HO ND NO 20 NO NO NO NACHLOROMETHANE NO ND NO NO ND NO ND ND NO NA1,2-DIBROMOETHANE HD MO ND KO NO ND NO NO NO. NO1,2-DICNLOROBENZENE NO NO NO ,, NO ND ND HD NO NO NA1,3-OICHLOROBENZENE HO ND HO MD NO NO NO NO ND HA1,4-01CHLOR08ENZENE HD HO NO HO HD ND HD HD NO MAOICHLOROOIFLUOROMETHANE 20 NO NO MC NO NO NO NO HO HA1,1-DICHLOROETNANE 24 22 NO NC HD 69 9 NO 38 521,2-OICHLOROETHANE NO NO NO ND KO NO HO HD NO NO1,1-01 CHLOROETHENE ND ND NO V NO NO 8 NO NO NO 18CIS-1,2-OICHLOROETHENE 17 ND NO NO NO NA NA NA NA 150TRANS-1.2-DICHLOROETHEHE 17 15 ND NO ND 460 7 8 82 31,2-OICHLOROPROPAHE NOW HO MD ND NO ND NO NO NACIS-1.3-OICHLOROPROPENE . NO ND NO NO HD HO NO ND NO HA .TRANS-1,3-DICHLOROPROPENE NO NO NO NO NO NO NO MO NO NAETHYL8EHZENE HO HO .. MO HO ND ND NO NO ND NOMETHYL ETHYL KETONE NO NO HO . NO NO HA NA NA NA NAMETHYLENE CHLORIDE 41. 47 NO HO ND 66 NO 48 94-METHYL-2-PEMTANOHE NO ND NO '„•' ,„ NO NO NO ND HO NO HA3-CHLORO-1 -PROPENE HD NO NO ,;,, ND ND NO NO ND NO NA1,1,1,2-TETRACHLOROETHANE NO ND HO MO MO ND NO NO NO NA1,1,2,2-TETRACHLOROETHANE NO NO NO .[. NO ND NO NO HD ND NATETRACHLOROETHENE 23 14 NO . NO NO 40 ND NO 34 67TOLUEHE NO NO NO !,, ND ND ND NO NO NO NOTRI BROMOMETHANE NO ND ND HO MO NO NO ND NO HA -1.1.1-TRICHLOROETHANE NO NO NO NO ND 27 NO NO 14 421,1,2-TRICHLOROETHANE ND HD ND HO ND NO HO ND NO HATRI CHLOROETHEHE 23 21 HO NO ND 120 8 7 33 110TRICHLOROFLUOROMETHANE NO NO NO ; , ND NO NO NO ND NO NA1.2,3-TRICHLOROPROPANE NO , NO NO HO HO HD HD NO NO NAVINYL CHLORIDE ND ND NO NO NO 70 NO NO NO 73XYLENES, TOTAL NO NO HO HO HD HO HO NO NO NO

ALL RESULTS IN PPBND-NOT DETECTED ABOVE MINIMUM DETECTION LEVELNA-NOT ANALYZED

ARI03225

Page 156: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION CO., INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY: LAHCASTER LAHCASTER LAHCASTER LAHCASTER LANCASTER LAHCASTER LAHCASTER LANCASTER LANCASTER LANCASTERSAMPLE DATE: 04/18/89 04/18/89 04/20/89 04/18/89 04/20/89 04/20/89 04/18/89 07/17/89 07/18/89 07/18/89WELL NUMBER: MW-2 MU-3 HW-4 MW-5 MW-6 MW-7 MW-8 MW-1 HW-2 MW-3

BENZENE 1 5 N O H O N O M O N O 1 6 1 6BROMOMETHAHr. K A K A H A K A K A N A H A N A H A K ACARBON TETR.4CHLOR1DE N A H A N A N A K A N A N A N A N A N ACHLOROBENZENE K A H A M A N A N A H A H A H A H A H ACHLOROOIBRCHOMETHAHE H A H A H A H A N A M A H A H A H A H ACHLOROETHANE H A H A K A H A H A H A N A H A H A N ACHLOROMETHANE KA HA HA HA HA NA HA NA NA HA.2-OIBROHOETHANE K D N D N O H D H O N D N O M D N D N O,2-OICHLOR08ENZENE NA HA HA HA NA HA NA HA MA HA,3-OlCHLOROBEHZENE NA NA HA HA MA HA NA NA HA HA.4-D1CHLOR08EHZEHE HA HA NA HA HA NA HA HA NA NAICHLOROD t FLUOROMETHANE HA NA NA MA HA NA HA NA NA NA.1-DICHLOROETHANE 1 N O H O 2 2 4 4 2 6 8 2 N D,2-D!CHLORO£TMAHE NO ND NO ND 1 KO NO HO NO ND, 1 -DICHLOROETHENE HD KD NO KD HD 2 ND 17 KD ND

CIS-t,2-DICHLOROETHENE 6 2 HD 1 10 ND 1 110 9 2TRAHS-1.2-01CHLOROETHENE HD KO NO NO NO HO KO ND HO NO1,2-01 CHLOROPROPANE HA HA HA HA HA NA KA NA NA NACIS-1,3-DICHLOflOPROPENE NA NA NA NA NA NA NA NA NA MATRANS-1,3-D1CHLOROPROPENE NA KA KA KA NA HA NA MA KA HAETHYL8EHZEHE N D K O N O N O K D M O H O N D N O H DMETHYL ETHYL KETONE HA NA HA HA HA HA HA NA HA HAMETHYLEKE CHLORIDE NO KD HO MO 26 39 3 7 1 14-METHYL-2-PENTANONE NA HA NA HA NA HA HA HA HA HA3-CHLORO-1-PROPENE HA NA HA HA HA HA HA HA NA NA1.1,1,2-TETRACHLOROETHANE HA NA NA HA HA HA HA HA NA HA1.1,2,2-TETRACHLOROETHANE NA HA HA HA HA HA HA NA NA HATETRACHLOROETHENE 3 2 22 8 18 2 NO 40 4TOLUENE HO HO HO NO NO NO NO HD NO ^ >TRI BROMOMETHANE HA HA HA KA HA NA HA HA HA MA"1,1,1-TRICHLOROETKAHE HO NO 14 1 3 56 HO 60 HO HO1.1,2-TRICHLOROETHANE HA HA NA NA KA NA HA NA HA HATRI CHLOROETHENE 1 2 1 2 21 8 19 37 2 2TRICHLOROFLUOROMETHAHE HA NA HA HA HA NA HA HA HA UA1,2,3-TRICHLOROPROPANE HA HA MA MA NA MA HA HA HA HAVIHYL CHLORIDE 11 HO HO MO 4 HO 370 14 1XYLENES, TOTAL H O N D H D N O H O N O H D N O N D N D

ALL RESULTS IH PPBNO-NOT DETECTED ABOVE HINIHUM DETECTION LEVELNA-NOT ANALYZED

ARI03226

Page 157: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

KEYSTONE SANITATION c6., INC.VOLATILE ORGANIC ANALYSES DATA

LABORATORY: LANCASTER LANCASTER LANCASTER LANCASTER LANCASTER IN BH BHSAMPLE DATE: 07/18/89 07/18/89 07/18/89 07/18/89 07/18/89 07/18/89 07/18/89 07/18/89WELL NUMBER: MW-4 MW-5 NW-6 MW-7 MU-fl QU-1 OW-2 OW-3

BENZENE NO 1 NO NO NO 8 3 7BROMOMETHANE NA NA HA NA NA NO KO KDCARBOK TETRACHLOR1DE NA HA NA NA NA HO HO HOCHLOROBENZENE NA NA NA NA NA NO ND NOCHLOROD18ROKOHETHANE KA NA NA HA NA NO NO NOCHLOROETHANE NA NA NA NA NA 12 10 14CHLOROMETHANE NA NA NA NA NA ND NO NO1,2-DIBROMOETHANE NO NO NO NO NO NA NA NA1,2-01 CHLOROBENZENE NA NA NA NA HA NA HA HA1,3-DICHLOROBENZENE HA NA NA NA HA NA NA NA1,4-DICHLOROBENZENE NA NA NA NA NA NA NA NADICHLOROO t FLUOROMETHANE NA NA NA NA NA NA NA NA1,1-D I CHLOROETHANE HO 6 33 10 2 56 30 391,2-DI CHLOROETHANE NO ND 1 NO ND HD 1 21,1-DICHLOROETHEHE 1 2 NO 2 ND 5 2 2CIS-1,2-DICHLOROETHENE HO 5 17 HO 1 ND NA NATRANS-1,2-OICHLOROETKENE NO 1 NO ND ND 94 27 611,2-01 CHLOROPROPAHE NA NA NA NA NA 1 NO KDCIS-1,3-DICHLOROPROPENE HA HA HA NA NA ND HD NOTRANS-1.3-OICHLOROPROPENE NA MA NA HA NA NO HO HDETHYLBENZENE NO MD NO ND NO NO NO NDMETHYL ETHYL KETONE HA NA HA NA NA HA HA NAMETHYLENE CHLORIDE HD 1 29 2 2 2 9 34-METHYL-2-PEHTANOHE HA NA HA MA HA HA NA NA3-CHLORO-1-PROPEHE NA HA KA KA NA NA HA NA1,1,1,2-TETRACHLOROETHANE NA NA NA NA NA NA NA NA1,1,2,2-TETRACHLOROETHAHE NA NA NA i, NA NA NO NO HDTETRACHLOROETHENE 23 13 21 2 NO 14 7 1TOLUENE HD HO NO 17 ND NO HO NOTRI BROMOMETHANE NA HA MA NA NA HO HD HO1,1,1-TRI CHLOROETHANE 16 4 3 28 NO 16 4 HO1,1,2-TRICHLOROETHAME NA HA NA NA NA NO HO NOTRI CHLOROETHEHE 1 4 23 3 HD 28 17 24TR ICHLOROFLUOROMETKANE HA NA HA HA HA NA NA NA1,2,3-TRlCHLOROPROPANE NA NA MA NA NA NA NA NAVINYL CHLORIDE NO 4 62 3 16 11 22XYLENES. TOTAL ND NO KO 1 NO NA NA KA

ALL RESULTS IN PP8NO-HOT DETECTED ABOVE MINIMUM DETECTION LEVELKA-NOT ANALYZED

ARI03227

Page 158: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

APPENDIX F

SAMPLING QUALITY ASSURANCE PLAN

^103228

Page 159: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

THE SAMPLING PLAN

Many factors are Important in the development of a sampling plan. Before theplan can be written, site-specific information must be gathered to ensure thatthe plan is logical, will meet the required objectives, and that the course ofaction laid out 1s achievable, (In emergency response sampling episodes, asampling plan may be formulated by coordination between command centerpersonnel and the technical support team.)

A. SITE HISTORY , !

The first step In a site investigation should be the gathering ofbackground Information. Information about the history of activity at asite can be extremely useful th planning sampling events. By revealingwhat materials were handled on isite, a file search may provide guidance inchoosing which parameters to include for analysis. A thorough file searchmay reveal what areas of a site were used for specific processes(manufacturing, storage and/or 'disposal) and will help In the logicalplacement of sampling locations. Additionally, while caution must stillbe used, judgments regarding health and safety requirements can be made.When no information is available, the field personnel must assume thatworst case conditions exist and take proper precautions to ensure safety.

During the pre-sampling site visit additional background information maybe gathered. Labels and DOT numbers on drums and tanks may be useful.Files found on site may include information about materials that weremanufactured, stored or disposed of on-site. Product names may bedetermined from shipping labels or manifests, Any and all informationwill be useful in sampling plan preparation, and in formulating a site-specific Health and Safety Plan. ?

B. DEFINING THE PHYSICAL ENVIRONMENT

Equal in importance to finding out what may be on site is determiningwhere it is most likely to be located. The fate of environmentalcontaminants is dictated by the source, the characteristics of thecontaminant itself, and, perhaps most importantly, by the physicalenvironmental system into, which it Is released. Contaminants move atvarying rates and to varying degrees if they are released into differentkinds of soil. Defining what kind of environmental system the site is apart of is extremely Important ^to the success of achieving the samplingobjectives. An investigation into the local geology, hydrology (includingflow rates of nearby surface waters, average depth to ground water andflow direction, identification of areas of recharge, etc.), andclimatology is necessary. The biological system should be assessed.Stressed vegetation may serve as !an Indicator for contaminant migration toa particular area. . >;f

Overall, by defining the physical environment the fate of contaminants canbe predicted. Migration pathways can be identified assuring the sampleswill be collected in the most appropriate area.

'

ARI03229F-i

Page 160: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

C. SAMPLING OBJECTIVES

There are a wide variety of reasons for taking samples and differentsampling strategies for different situations. It 1s important that thepurpose of the sampling be identified before field work begins. Forexample, samples can be collected to determine the existence and definethe extent of contamination at a site, to allow waste characterization andclassification for disposal or recovery, or to determine compliance withexi st1ng regulations promulgated by the di fferent regulatory agencies.Once the objective 1s known, decisions about parameters to be analyzedfor, quality control samples, sample location and frequency, etc., can bemade more confidently. Defining these sampling objectives is important toassure that the sampling plan is complete. For example, sampling is oftenconducted to gather data that will be the basis for remedial decisions.Because of the potential threat to health and environment and high costsusually associated with site remediation, strict quality assurancemeasures are instituted. In such a case, the objective of the samplinghelps to dictate what will be included in the sampling plan.

D. THE SAMPLING PLAN

1. The Basics

The purpose of developing a sampling plan is to detail a "plan ofaction". The person writing the plan must be very familiar with thesite specific conditions and those implementing the plan must be veryfamiliar with the plan's contents. A properly prepared sampling planthat is correctly Implemented will allow the objective of thesampling to be met, help avoid confusion in the field, preservehealth and safety, and ultimately save time and money.

In the development of the sampling plan other pre-sampling activitiesmust be heavily relied upon. Some factors to be taken into accountinclude:

history of activities at the site (including locations ofbuildings, tanks, etc., processes and materials for manufacture,storage, disposal)

physical/chemical properties and hazardous characteristics ofmaterials involved

topographic, geologic and hydrologic characteristics of the site(including surface water and groundwater, soil types, etc.)

meteorologi c condi ti ons (i ncludi ng temperature, air pressure,precipitation, wind velocity and seasonal variations)

flora and fauna of the area (including Identification ofsensitive environments and/or species, stressed vegetation,potential for bioaccumulation and biotransformation in the plantand animal life, especially agricultural)

ARI03230F-2

Page 161: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

. geographic and demographic Information (Including population andproximity to site, public health threats)

These factors offer, an overview of information that must beconsidered for a sampling plan to be complete. The more Informationthat 1s obtained, the more that will be known about the source,movement, and concentrations of contaminants in the media to besampled. With this knowledge, it will be easier to write a complete,site specific sampling plan.

2. Type of Samplesa. Environmental and Waste Samples

Environmental: samples of naturally occurring matrices such assoil, sediment, ground water, surface water and air.

Waste: samples which' are comprised of process wastes or otherman-made waste materials.The Importance in making the distinction between types of samplesis for choosing sampling equipment and material of construction,personal safety precautions, and complying with transportationrequirements. j .

Environmental samples and waste samples have the potential .tocontain significant amounts of hazardous materials. Since thesesamples pose a safety threat, they should be designated, handledand shipped as hazardous according to Department ofTransportation regulations, ,or in the case of some particularcontaminants or wastes, as highly hazardous.

b. Grab v. Composite •/',' '•--'Grab sample: a discrete aliquot that is representative of onespecific sample site at a specific point in time. Since theentire sample is collected at one particular point and all at onetime, a grab sample is representative only of those staticconditions. If the source or condition is fairly consistent overa period of time and/or geographical area, the grab sample can beconsidered to be fairly representative. However for sources thatvary greatly over time, , distance or area (e.g., release ofcontaminants into moving water or transported via air) therepresentativeness of a-grab sample Is not as great.Composite sample: a non-discrete sample composed of more thanone specific, aliquot collected at various sampling points and/orat different points Jii time. Composite samples may give an"average" concentration:or composition over time-or area. Whencollecting specific samples at hazardous waste sites, only grab

t ; sampling should be employed. By the same token, can one grab^^ sample be considered representative of an area?

ARI0323F-3

Page 162: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Compositing samples poses a potential safety risk when samples ofunknown content are combined. Changes in the chemical nature ofthe sample may occur as a result of this combination causing thesample to be non-representative of actual field conditions.Composite samples cannot be representative of the material that1s being sampled since the compositing procedure cannot beduplicated with any great degree of reproducibil ity.Additionally, contaminants in one aliquot of sample may be maskedor diluted when this portion is composited with other, cleanerallquots. Deciding on grab versus composite 1s a site specificjudgment call.

3. Choosing Locations, Numbers and Methods For Sampling

When choosing the location of sampling points, several factors comeinto play. The objective of the sampling event is Important.Samples are sometimes collected to characterize a site for whichlimited background Information 1s available and/or obviouscontaminated areas do not exist. In such a case, a random samplingscheme may be useful. Random sampling depends on the theory ofrandom chance probabilities to choose the most representative sample.This process Is utilized when there are numerous available samplinglocations and there are no satisfactory reasons for choosing onelocation over another. Tables of random numbers are readilyavailable from many sources and should be used to eliminate any bias 'of the sample collector 1f the random approach 1s used. ^—'More Importantly, when choosing sample locations, a consideration ofthe site's physical environmental setting and how these factors caninfluence the concentration and movement of the material of concernshould be made. Sampling at hazardous waste sites Is usuallyconducted in attempt to discover contamination and to define Itsextent and variability. With such an objective, 1t 1s most logicalto choose sample locations that will yield the most Information aboutsite conditions. Here, judgment (or biased) sampling should beemployed. Biased samples are those collected at locations that werechosen based on historical Information, knowledge about the behaviorof the contaminant(s), and/or knowledge about the effects of thephysical system on the contaminants' fate. For example, samples maybe collected in a drainage ditch next to a drum storage area or soilsamples for volatile organic analysis may be collected at a depth of12-18" rather than at the surface. Both of these situations areexamples of how sound scientific judgment comes Into play whenchoosing sample locations.

Often, biased and random sampling techniques can be used together tothoroughly address an entire site. Some samples may be biased topotentially contaminated areas (e.g., stained soil, former process ordisposal areas) or potentially Impacted areas (e.g., areas ofstressed vegetation, sediment downstream from discharge pipe). Inareas less likely to be contaminated or areas with little available ^>background information, random samples may be used to allow adequateassessment of the entire site.

flRI03232

Page 163: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

The determination of the number of samples needed to characterize asite is also dependent upon the objectives and the site specificconditions. For example, if the objective of the event 1s todetermine whether the site is contaminated, a limited number ofsamples, from properly chosen locations, , will yield usefulinformation. If, however; the site 1s known to be contaminated anddelineation of the contamination 1s the objective, a greater numberof samples may be needed. In many cases statistical considerationscan be helpful 1n determining sampling strategyOnce the appropriate numbers and locations have been chosen,consideration must be given to what collection method will be used toassure that a representative sample is obtained. In some Instances,there are very few options available on the best way to collect asample. In other Instances, site specific conditions may dictatethat only one approach will work, even though that method may be notthe preferred method. In all .cases the construction material of thesampling device, Us .design, decontamination, and proper use arecritical. Use of a device constructed of undesirable material maycompromise sample qualltyjby the material leaching Into the sample orabsorbing materials from the sample after repeated use anddecontamination. Sampler design 1s also important. For example, aground water sampling device that aerates the sample duringcollection will yield avsample that is not representative of actualconditions.Further, decontamination of the chosen device must be considered.The sampler must be resistant to the decontamination solvents andshould be fairly simple to allow ease of cleaning and assure thoroughdecontamination. ;

Finally, even the most .well designed, constructed and cleanedsampling device will yield a non-representative sample if usedimproperly. All personnel Involved in sample collection shouldreceive training on the use and care of different sampling equipment.

Quality Assurance Considerations.

As an additional measure, of control to assure that the sampledelivered to the lab For analysis 1s representative of siteconditions, quality assurance measures must be associated with eachsampling and analysis, event. The sampling plan should outline howthe quality of the samples will be assured. This will include, butnot be limited to: laboratory SOP, sample bottle preparation,equipment decontamination,: trip blanks, field blanks, duplicates,split samples, performance evaluation samples, sample preservationand handling, and chain of custody.

ARI03233r-s

Page 164: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

QUALITY ASSURANCE

A. INTRODUCTION

This section of the manual provides the user with quality assurancerequirements and procedures for conducting environmental measurementsampling episodes. In order to generate analytical data of known anddefensible quality, adherence to established quality assurance protocol Isnecessary. This will ensure that samples obtained in the field arerepresentative of the particular environment from which they have beencollected and are of satisfactory quality and quantity to meet the projectobjectives.

The importance of the environmental sample collection process andassociated analytical data Is demonstrated through Integration of thisinformation Into the decision-making process. All phases of siteremediation rely on the provision of accurate analytical data. Thesephases Include an Initial site evaluation, remedial investigation anddesign phases, human and environmental risk assessments, determination oftreatment effectiveness, remedial alternative selection and cost/benefitanalysis, and finally, monitoring the results of the remedial actionselected.

The fol1owing qua!ity assurance requirements have been establ1 shed tomaintain sample Integrity . to as great an extent as possible and areapplicable for most hazardous site Investigations. Their prime objectiveis maintaining the physical form and chemical composition of the sampleand preventing contamination from other sources or changes in contaminantconcentration. To meet this objective there must be a measure of controlover all sample handling procedures beginning with sample containercleaning procedures and ending with laboratory analysis. This sectionfocuses on the first half of the control process - the procedures leadingup to and ending with sample packaging and transport to the laboratory.

B. SAMPLE CONTAINERS

Prior to the collection of a sample, consideration must be given to thetype of container that will be used to store and transport the sample.The laboratory performing the analysis is usually responsible forproviding sampling personnel with the proper sample containers. Theirselection is based on the sample matrix, potential contaminants to beencountered, analytical methods requested, and the laboratory's internalquality assurance requirements.

1. Reactivity of Container Material with Sample

Choosing the proper composition of sample containers will help toensure that the chemical and physical integrity of the sample ismaintained. For sampling potentially hazardous material, glass Isthe recommended container type because it is chemically Inert to mostsubstances. Plastic containers are not recommended for mosthazardous wastes because the potential exists for contaminants toadsorb to the surface of the plastic or for the plastisizers to leachinto the sample.

F-o

Page 165: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

In some instances, however, the sample characteristics or analytes ofInterest may dictate that plastic containers be used Instead ofglass. Because some metals species will adhere to the sides of glasscontainers in an aqueous matrix, plastic bottles must be used forsamples collected for metals analysis. In addition, acid 1s added tofiltered samples to prevent precipitation on the sides of the bottle.A separate, plastic container should accompany glass containers 1fmetals analysis Is to be performed along with other analyses.Likewise, other sample characteristics may dictate that glass cannotbe used. For example, in the case of a strong alkali waste orhydrofluoric solution, plastic containers may be more suitablebecause glass containers may be etched by these compounds and createabsorbtive sites on the container surface.

2. " Volume of the Container

The volume of sample to be collected will be dictated by the analysisbeing performed and the sample matrix. The laboratory must supplybottles of sufficient volume to perform the required analysis. Inmost cases, the methodology dictates the volume of sample materialrequired to complete the analysis. However, individual labs mayprovide larger volume containers for various analytes to ensuresufficient quantities for duplicates or other quality control checks,particularly when analyzing for drinking water standards.

To facilitate transfer of the sample from the sampler into thecontainer and to minimize spillage and sample disturbance, wide-mouthcontainers are recommended. L Aqueous volatile organic samples mustbe placed into 40 ml PTFE (e.g.; Teflon ) septum vials. Non-aqueousvolatile organic samples should be collected in the same type of vialor in four ounce wide-mouth jars provided by the laboratory. Thesejars should have PTFE lined screw caps and should be filled to therim prior to closing the cap.

3. Color of Container

Whenever possible, amber glass containers should be used to preventphotodegradation of the sample, except when samples are beingcollected for metals analysis. If amber containers are notavailable, then containers holding samples should be protected fromlight (e.g., wrapping in aluminum foil).

4. Container Closures . ; / ,

Container closures should screw on and off the containers and form aleak-proof seal. Closures^should be constructed of a material whichis inert with respect to the sampled material, such as PTFE (e.g..Teflon R). Alternately, the closure may be separated from the sampleby a closure liner that is Inert to the sample materialsuch as PTFEsheeting. •„;-,

F;7 '03235

Page 166: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

5. Decontamination of Sample Containers and Chain of Custody

Sample containers must be laboratory cleaned, preferably by thelaboratory performing the analysis. Chain of custody accompanies thebottles during transportation to the field, sample collection,transportation back to the lab, analysis and final disposal of thesample. The sample bottles should be prepared for shipmentaccompanied by the chain of custody and the cooler or shuttlecontaining them should be custody sealed.

6. Sample Bottle Storage and TransportNo matter where the sample bottles are, whether at the lab waiting tobe packed for shipment or in the field waiting to be filled withsample, care must be taken to avoid contamination. Sample' shuttles,or coolers, and sample bottles themselves must be stored andtransported in clean environments. Sample bottles and clean samplingequipment must never be stored near solvents, gasoline, or otherequipment that 1s a potential source of cross contamination. Whenunder chain of custody, sample bottles must be secured In lockedvehicles, custody sealed in shuttles or in the presence of authorizedpersonnel.

C. DECONTAMINATION OF SAMPLING EQUIPMENT

The following sampling equipment cleaning procedures are standardrequirements of the Hazardous Waste Program. Also Included are proceduresfor cleaning heavy equipment and disposal of decontamination fluids anddrill cuttings. An Important aspect of the decontamination processdeals with the decontamination of field sampling equipment. Improperlycleaned and prepared sampling equipment can lead to misinterpretation ofenvironmental data due to interference caused by cross-contamination.

1. Laboratory Decontamination

In order to minimize cross-contamination and avoid the need for fieldcleaning, it 1s required that bailers used to collect groundwatersamples be laboratory cleaned, packaged, and dedicated for use at onesample location for each day of sampling. This process 1s alsorecommended for other types of sampling equipment. For Instance, ifsix wells were to be sampled for dissolved metals, the laboratorywould be asked to prepare six PTFE well bailers and six filter kitsfor a day's field activities. Note: It 1s recommended that extrasampling devices (bailers, filters, etc.) be available on site in theevent problems occur which prohibit the use of a particularinstrument. When samples are returned to the laboratory, the bailersand filtering devices are also returned so that they can be cleanedand prepared for the next sampling event. It 1s preferred that thelab performing the analysis be the same lab that prepared thesampling equipment. This cannot always be arranged, therefore, makecertain the laboratory analyzing the samples will accept samplescollected with field equipment not prepared at their laboratory.

ARI03236F-8

Page 167: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Also, the cleaning procedure of the laboratory preparing the samplingequipment must be demonstrated to be effective.After this procedure has been completed, the sampling device shouldbe wrapped In cleaned aluminum foil or equivalent material.

, MtSampling equipment should remain in the wrapping material until it 1sused in the field. It should also be stored In an area where nocross-contamination will -occur and handled as little as possibleprior to use. Disposable gloves should be worn at all times whenhandling cleaned sampling equipment. Sampling equipment must neverbe placed near solvents, gasoline, or other equipment and/ormaterials that may Impact the integrity of prepared samplingInstruments. v

2. Field Decontamination

In the event that laboratory cleaning Is not an option or notfeasible, a field cleaning procedure must be used in order to reducethe chances of cross-contamination between sample locations. Severalcriteria are used to judge-whether field decontamination proceduresare appropriate. These are:

Cost: It may be too expensive to procure and prepare laboratorycleaned sampling devices of a particular type for one samplingepisode.

Large number of sample locations scheduled In a one-day samplingevent. •Matrix of sample: Dedicated sampling equipment is alwayspreferred for all matrices, however, soil sampling equipment suchas split spoons and hand augers may be more amenable to fielddecontamination (groundwater sampling equipment must belaboratory cleaned and dedicated to a sampling point per day ofsampling).

Episode logistics: • "^It may be Impractical to lab clean anddedicate sampling equipment in a short-term emergency situationbecause of time and administrative constraints. Additionally itmay be Impractical to spend time decontaminating inexpensiveequipment, such is cleaning one stainless steel trowel betweeneach sampling point when twenty laboratory cleaned trowels couldbe used more efficiently.

-f .i "i i , i .

Selection of a location for a field equipment decontamination stationis also Important, tt should be located away from the source ofcontamination so as not to adversely impact the decontaminationprocedure and close enough to the sampling teams to keep equipmenthandling to a minimum. By utilizing several of one type of sampler,decontamination teams can rotate equipment more effectively.

F.9 AR I 03237

Page 168: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

- DECONTAMINATION PROCEDURE .

The first step, a detergent (e.g., Alconox) and water wash, 1s toremove all visible participate matter and residual oils and grease.(This may be preceded by a steam or high pressure water wash tofacilitate residuals removal.) This 1s followed by a tap water rinseand a distilled/deionized water rinse to remove the detergent. Anacidic rinse, Included If metals samples are to be collected,provides a low pH media for trace metals removal. It 1s followed byanother distnied/deionized water rinse. If the sample 1s not to beanalyzed for metals, this step can be omitted. Next, a high puritysolvent rinse 1s designated for trace organics removal. Acetone hasbeen chosen because it Is an excellent solvent miscible in water andis not a targeted analyte in Priority Pollutant Analysis. If acetoneis known to be a contaminant at a given site or Target Compound Listanalysis 1s to be performed, another solvent such as methanol, may besubstituted. The solvent must be allowed to evaporate and then afinal distilled/deionized water rinse 1s performed. This rinseremoves any residual traces of the solvent.- ALTERNATE DECONTAMINATION SOLUTIONS

In addition to the previously stated solutions utilized fordecontamination purposes, the following solutions have been found tobe effective In removing contaminants from field sampling equipment.Solution #1 (With DER or EPA pre-approval)

5% TSP (Tr1sod1um Phosphate) (e.g., Tide)

Concentration: Mb./2 1/2 Gal. HjOUsage: Solvents, oils, PCB's, general purpose cleaning agent

Solution #2

5% TSP/5% Baking Soda

Concentration: 1 Ib. each/2 1/2 Gal. H?0Usage: Solvents, Organics, Metals, Adas

Solution #3

10% HTH Sodium Hypochlorite (Pool Chlorine)

Concentration: 2 Ib. HTH/2 1/2 Gal. H20Usage: Pesticides, D1ox1ns, Heavy Metals, Chlorinated Organics,

Phenols, Cyanides, Ammoniums, and Biologicals

Solution #4

Dilute HC1 \^j

Concentration: 4 oz./Gal. H?0Usage: Organics, Solvents, PCB'S

ARI03238F-10

Page 169: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Solvent #5 Soap PasteConcentration: Tr1sod1um Phosphate (Tide)/enough water to form a

past consistency or 5% TSP type solutionUsage: Radionuclides

When using field decontamination, It 1s advisable to start samplingIn the area of the site with the lowest contaminant probability andproceed through to the areas of highest known or suspectedcontamination.

3. Decontamination of Submersible PumpsWhen submersible pumps are used to evacuate stagnant groundwater inthe well casing, they should be cleaned and flushed between uses.This cleaning process consists of an external detergent wash and tapwater rinse, or steam cleaning, of pump casing, hose, and cables.Water may also be pressure; flushed through the discharge end of thepump to the Intake screen while the pump 1s in a vertical position.Always disconnect the pump from power source before handling.Surface pumps (centrifugal and diaphragm) used for well evacuationneed not be cleaned between well locations. However, a new length ofpolyethylene tubing must be used for each well and discarded afteruse. The pump and hose should always be placed on clean polyethylenesheeting to avoid contact with the ground surface.

4. Decontamination of Heavy Equipment

Other equipment and material associated with sampling episodes arerequired to be cleaned prior to usage. Items such as drill rigs,well casing, auger flights, and backhoes all present potentialsources of Interference to 'environmental samples. These items maycome 1 n contact wi th the mater 1 al s ad j acent to the mat ri x be 1 ngsampled or may be attached to actual sampling equipment which hasbeen previously cleaned.

• Heavy equipment may .potentially retain contaminants from othersources such as roadways or storage areas or have soil material fromprevious job sites that have !riot been removed. For these reasons itis most Important that these !1tems be cleaned prior to usage during ahazardous waste site Investigation.Two options are available to accomplish cleaning of heavy equipment:steam cleaning and manual scrubbing. The use of a steam generatorcan remove visible debris and has several advantages. Steamgenerators provide a high pressure medium which is very effective forresiduals removal. They are also efficient In terms of ease ofhandling and generate low volumes of wash solutions.Potential disadvantages Include the need for a fixed or portablepower source and they may not be cost effective for use on smallpieces of equipment or for one day sampling events.

ARI03239

Page 170: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

EQUIPMENT DECONTAMINATION(Laboratory and Field)

A. Whenever feasible, all field sampling equipment must be laboratorycleaned, wrapped, and dedicated to a particular sampling point.

B. The field sampling equipment cleaning and decontamination procedures areas follows:

1. Non-phosphate detergent or alconox plus tap water wash2. Tap water rinse, repeat3. Distilled/deionized water rinse4. 10% nitric acid rinse* (trace metal or higher grade 303 or 20% acetic

add diluted with dlstilled/deionized H20)5. D1stilled/de1on1zed water rinse*6. Acetone (pesticide grade) rinse** Allow to air dry and rinse again7. Total air dry or pure nitrogen blow out**8. Distilled/deionlzed water rinse**

* Only If sample 1s to be analyzed for metals.** Only 1f sample 1s to be analyzed for organics.

C. Wherever possible samplers should be numbered in a manner that will notaffect their Integrity and wrapped in a material (e.g., aluminum foil)that has either been autoclaved or cleaned in the same manner as thesampler. Equipment should be custody sealed and Information concerningdecontamination methodology, date, time, and personnel should be recordedin the field log book.

D. The use of distilled/deionized water commonly available from commercialvendors may be acceptable for sampling equipment decontamination providedthat it has been verified by laboratory analysis that the water has beendistilled and deioniZed.

E. Hexane is not a necessary solvent for dioxin, PCS, or other chlorinatedorganic sampling. The cleaning procedure outlined above 1s adequate forall sampling episodes. A second option Involves manual scrubbing ofequipment using a non-phosphate soap solution followed by a thorough waterrinse. This procedure can be as effective as steam cleaning or preferredin situations where steam cleaning falls to remove visible materials.Disadvantages to manual scrubbing are that it 1s labor intensive and itgenerates large volumes of wash and rinse solutions.

F-12

Page 171: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

The following requirements for cleaning heavy equipment should beincorporated into Field Sampling - Quality Assurance Project Plans whereapplicable: • • ;

•5. Decontamination of Backhoes/Drlll Rigs••I1'- '•

These Items should be thoroughly steam cleaned or manually scrubbedupon Initial arrival on site and in between drilling or excavationlocations. After the Initial washing, cleaning may be reduced tothose areas that are in close proximity to materials being sampled.The backhoe bucket and extension arm should be cleaned in betweentest pit locations and excavations. Drill rig items such as augerflights, drill rods, and drill bits should be cleaned in betweensample locations. When' she! by tubes or split spoons are used tocollect samples that will ppt undergo chemical analysis, they shouldalso be steam cleaned or scrubbed In between each sample point. Rigswith leaking oil seals and hydraulic systems should not be allowedon-site until repaired and cleaned.

6. Decontamination of Monitor Well Casing and ScreenField cleaning of well casing should consist of a manual scrubbing toremove foreign material and steam cleaning, inside and out, until alltraces of oil and grease are removed. This material should then bestored in such a manner so as to preserve it In this condition.Special attention to threaded joints may be necessary to removecutting oil or weld burn residues.

7, Cleaning Location ;

It 1s preferred, given site specific conditions, that cleaning of allheavy equipment take place in one central location on site. Adesignated area or decontamination pad should be established toconduct all cleaning and provisions for containment of wash solutionsmust also be made. All equipment such as drill rigs, backhoes, andother mobile equipment should receive an initial cleaning prior touse at a hazardous waste site. The frequency of subsequent cleaningswhile on site will depend on how the equipment is actually used inrelation to taking environmental samples. Unless otherwise specifiedand approved, all wash/rinse solutions should be collected andcontained on site. The -actual fate of this material will bedetermined after review of analytical data generated from samples andon site discharge impacts have been evaluated.

' • :: \ '.',„0. MEASURES OF QUALITY ASSURANCE AND QUALITY CONTROL

QA/QC samples are Intended to! 'provide control over the collection ofenvironmental measurements and subsequent review, interpretation, andvalidation of generated analytical data. The various types of blanksamples related to QA/QC concerns such as packaging, handling, preparationand actual procurement of samples from field locations are discussedbelow.

(Ml AR I 032U I

Page 172: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

1. Trip Blanks (Travel Blanks)

The primary purpose of this type of blank 1s to detect additionalsources of contamination that might potentially Influence contaminantvalues reported In actual samples both quantitatively andqual1tat1vely. The fol1owlng have been 1dent1f1ed as potent i alsources of contamination.

Laboratory reagent waterSample containersCross contamination in shipmentAmbient air or contact with analytical instrumentation duringpreparation and analysis at the laboratoryLaboratory reagents used in analytical procedures

A trip blank consists of a set of sample bottles filled at thelaboratory with laboratory demonstrated analyte-free water.Documentation that this water 1s analyte free should be availableupon request. This water must originate from one common source andphysical location within the laboratory and must be the same water asthe method blank water used by the laboratory performing theanalysis. Trip blanks should be handled, transported, and analyzedin the same manner as the samples acquired that day, except that thesample containers themselves are not opened in the field. Rather,they Just travel with the sample collector. Trip blanks mustaccompany samples at a rate of one per shipment or two day samplingevent. Each sample matrix requlres a tr1 p blank at this rate.Individual sample matrices and associated blanks must be packaged inseparate sample shuttles prior to shipment back to the lab. Tripblanks must return to the lab with the same set of bottles theyaccompanied to the field.

The purpose of a trip blank 1s to place a mechanism of control onsample bottle preparation and blank water quality as well as samplehandling. The trip blank travels to the site with the empty samplebottles and back from the site with the collected samples in aneffort to simulate sample handling conditions. Contaminated tripblanks may Indicate inadequate bottle cleaning or blank water ofquestionable quality.

2. Field Blank (Field Rinsate Blank)

The primary purpose of this type of blank Is to provide an additionalcheck on possible sources of contamination beyond that which isintended for trip blanks. A field blank serves the same purpose as atrip blank and 1s also used to Indicate potential contamination fromambient air (field blank) and from sampling Instruments used tocollect and transfer samples from point of collection Into samplecontainers (field rinsate blank), and from filtration equipment.A field blank is created using two identical sets of laboratorycleaned sample containers. One set of containers 1s empty and willserve as the sample containers to be analyzed. The second set ofcontainers are filled at the laboratory with laboratory demonstrated

F-14 ARI032i*2

Page 173: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

V^y analyte-free water (documentation to be made available upon request).This water must originate from one common source and physicallocation within the laboratory and must be the same water as themethod blank water used J>y the laboratory performing the analysis.Field blanks should be handled*- transported, and analyzed in the samemanner as the samples acquired that day. At the field location, inthe most contaminated area, this analyte free water Is passed throughclean sample equipment and placed in the empty sample container foranalysis. (Note: It may be necessary for the lab to provide extra,full volatile organics vials to ensure sufficient volume of blankwater to eliminate headspace.) The reason for performing field blanksin the most contaminated area 1s to attempt to simulate a worst casescenario regarding ambient tir contributions to sample contamination.Field blanks must be performed at a rate of one per day per samplematrix regardless of whether samples are shipped that day. Fieldblanks must return to the lab with the same set of sample bottlesthey accompanied to the field. Field blanks must be packaged withtheir associated matrix.? vThe purpose of a field blank 1s to place a mechanism of control onsample handling, storage, and shipment. The field blank travels andis stored with the samples, and is thereby representative of affectson sample quality. By being opened in the field and transferred overa cleaned sampling device (where applicable), the field blank is alsoIndicative of ambient conditions and/or equipment conditions that may

l , potentially affect the quality of the associated samples. When field^^ blanks are required for samples collected directly Into laboratory

provided sample containers (e.g., potable wells and surface water),the full set of blank water containers should be poured directly Intothe Identical empty set of containers.

3. Analytical Requirements for Hank -Samples -a* Trio blanks - Trip blanks for all matrices must be prepared and

analyzed for volatile organics. If samples collected that dayare not being analyzed for volatile organics or if otherparameters are of concern, then the Inclusion of a trip blank andselection of analytical parameters is at the discretion of theproject manager.

b. Field blanks - Field blanks for all matrices must be analyzed forthe same parameters -as. the samples collected that day (ifrequired). Exceptions to this requirement must be approved by theproject manager (e.g., potable wells or surface water samplescollected directly Into $ample containers).It 1s Important to note that both trip and field blanks are onlycapable of determining that; contamination of samples mav haveoccurred from additional sources other than the actualenvironmental matrix being Investigated and cannot Identify, but

^ may suggest, possible sources of additional contaminant^-^ contribution to the reported analytical values.

AR1032U3F-15

Page 174: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Duplicate Samples Obtained in the Field - Collection of duplicatesamples provides for the evaluation of the laboratory'sperformance by comparing analytical results of two samples fromthe same location. Duplicate samples are to be Included for eachmatrix at a minimum rate of five percent (5%). If less thantwenty samples are taken during a particular sampling episode,then one duplicate should be performed. Duplicate requirementsmay be waived depending on the particular regulatory program orremedial phase Involved.

1. Aqueous Matrix

Duplicates of water samples (potable well, monitor well,surface water) should be obtained by alternately f1111ngsample containers from the same sampling device for eachparameter. Samples for volatile organics analysis frommonitor wells should be filled from the same bailer full ofwater whenever possible and be the first set of containersf111ed. When other sampli ng devi ces are used (bladderpumps), the vials for volatile organics should be alternatelyfilled.

11. Non-Aqueous Matrix

Obtaining duplicate samples in a soil or sediment matrixrequires homogenlzation of the sample aliquot prior tof111i ng sample centalners. Regardless, volatile organicsamples must always be taken from undisturbed discretelocations or Intervals prior to compositing or mixing thesample. This practice 1s necessary to prevent loss ofvolatile constituents and to preserve, to the extentpracticable, the physical integrity of the volatile fraction.Homogenlzat i on of the sample for remaln i ng parameters i snecessary to generate two equally representative samples.Moisture content, particle size, and adsorption properties ofvarious soils, sediments, and waste materials may Inhibit theability to achieve complete mixing prior to filling samplecontainers.

Homogenlzation should be accomplished by filling a properlydecontaminated stainless steel tray or bowl with the sampleand mixing it with a decontaminated stainless steel or teflonInstrument. The extent of mixing required will depend on thenature of the sample and should be done to minimize handlingand atmospheric exposure and achieve a consistent physicalappearance prior to filling sample containers.

Once mixing is completed the sample should be divided in halfand containers should be filled by scooping sample materialalternately from each half.

Several laboratory methodologies for compositing samplespublished by ASTM have been suggested for use in the field;however, they were not specifically designed for

ARI032H

Page 175: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

\j homogenlzation of known or suspected hazardous materials and^"^ often must be "modified" to be useful. They tend to assume a

uniform sample exists to begin with and their Intent may beto calculate average grain size, predict weight to volumeratios, or to reduce the size of a sample to one moreconvenient for handling and analysis. They also tend toassume a much larger volume of material will be subject tothe particular methodology. Therefore, these methods are notrecommended for generating duplicate samples In the field.

d. Background Samples - When background samples are required forcomparison of site conditions to the surrounding environment theyshould be collected and handled In the same manner as all othersamples. Requirements for Inclusion of background samples aredetermined on a program and/or case by case basis.

E. SAMPLE PRESERVATION REQUIREMENTS

Certain analytical methodologies for specific analytes require chemicaladditives in order to stabilize and maintain sample integrity. Generallythis is accomplished under two scenarios:

- ' - '?'"'•• i: . -

Sample bottles are preserved at the laboratory prior to shipment Intothe field or,

i - Preservatives are added 1n the field immediately after the samples^-/ are collected.

Many laboratories provide pre-preserved bottles as a matter of convenienceand to help ensure that samples will be preserved Immediately uponcollection. A problem associated with this method arises if not enoughsample was able to be collected, resulting in too much preservative in thesample. More commonly encountered problems with this method include thepossibility of insufficient preservative provided to achieve the desiredpH level or the need for additional preservation due to chemical reactionscaused by the addition of sample;liquids to pre-preserved bottles. Theuse of pre-preserved bottles is acceptable; however, field sampling teamsshould always be prepared to add additional preservatives to samples ifthe aforementioned situations should occur.When samples are preserved after collection, special care must be taken.The transportation and handling of concentrated acids into the fieldrequires additional preparation and adherence to appropriate preservationprocedures. All preservation acids used in the field should be tracemetal or higher grade.

The following guidelines are -recommended to achieve safe, accuratepreservation of samples in the field. •

1. Sampling teams must be properly equipped to conduct preservation ofsamples in the field. To accomplish this task the following items

V_y are necessary: , :

Page 176: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Preservatives 1n reagent resistant containers with their contentand concentration clearly labeledLitmus paperCarrying case clearly labeled and constructed of appropriatematerial to facilitate safe transportation of preservatives invehicles and in the field.

2. Sampling teams must also be properly equipped with appropriate healthand safety equipment. Use of and Immediate access to the followingitems are strongly recommended:

Protective gogglesDisposable glovesLab apron

- First aid kitPortable eye wash stationContainerized tap water for immediate flushing 1f spillage occursonto clothingPowdered sodium bicarbonate for acid neutralization

3. A level surface area should be designated to conduct preservation,filtration and packing activities. A clean sheet of plastic sheeting

. should be placed over the area and secured.

4. STATISTICS OF SAMPLING

A. INTRODUCTION

This section gives an overview of how statistical methods can beutilized to design sampling networks and analyze environmental data.Statistics Is the branch of science which can be applied to thecollection, analysis and Interpretation of data. Statistical methodscan be used to help choose sampling points, to help choose anappropriate number of samples, to evaluate the data generated fromsampling and to Interpret the significance of the data. However,caution must be used in applying statistical methods to environmentaland/or hazardous waste sampling.

The distribution of contaminants is Influenced by three majorfactors: the source of contamination, the behavior of the contaminantin the environment and the migratory pathways that are dictated bythe physical characteristics of the site. Because of these physicaland chemical laws that control the fate and transport of pollutants,contaminants at waste sites may be non-normally distributed.Commonly, samples collected closer together are more alike, whereasthose more distant can be highly variable. Data generated from suchsampling and analysis often includes values below method detectionlimits and some relatively high values. Thus, the data are oftentruncated, positively skewed and spatially correlated. Samplingapproaches and statistical analyses of the sampling results shouldtake these features into account.

F.18 ARI032l*6

Page 177: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

B. PRELIMINARY CONSIDERATIONS :

In order to use statistics 1n the Interpretation and evaluation ofdata, that data must;meet certain criteria. Primarily, the data mustbe generated from sample locations that were chosen in considerationof the statistical evaluation techniques to be used. Samples shouldnot be collected In .blind anticipation that some statistical testwill be available for data analysis. Instead, the sampling networkdesign should Include not only the methodology and rationale forchoosing sample locations but the possible estimation procedures, orformulas, to be used for data evaluation and Interpretation, Thedata must also be of sufficient quality to be representative of thecontaminants found on .site, and of sufficient number to allowdetermination of the variability of contaminants present.The choice of a sample network design should be a collaborativeeffort. It Is Important; for those designing the sample network toget Input from those executing the sampling and those who will usethe data. The data user should specify what parameters will beanalyzed for, what detection levels and quality assurance criteriaare needed, what levels of reliability and validity are needed andwhat restrictions exist with respect to time and money. Thosepersons involved in executing the sampling plan should supply Inputabout the feasibility of Implementing various methods, and offeralternative methods 1f necessary. Sampling personnel can alsofurnish Information about costs for personnel, time required forexecution and necessary materials. With this Information, the persondesigning the sampling network can propose a design which will meetthe required specifications,

C. TYPES OF SAMPLING NETWORKS :i

1. Simple Random • J ', !"

A random sample may be defined as a sample drawn in such a way as toensure that every locatlbn has an equal chance of being sampled. Itis Important to note that the term "random" as applied to a samplerefers only to how the location for each sample is chosen and does•not guarantee that the sample Is representative of the entire site.Additionally, random sampling does not guarantee that the sampleswill be distributed across, the area of the site 1n any specificlayout/pattern.

2. Systematic : ;

Systematic sampling 1s when every KTH individual in the population 1sIncluded In the sample. As applied to environmental sampling, someexamples of systematic sampling may be collecting soil samples atevery node of an Imaginary grid, collecting split spoon samples at 5foot intervals within a borehole, or including a duplicate sample forevery twenty environmental Samples collected.

AR I 0321*7

Page 178: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

3. Stratified

Stratified sampling 1s sampling in which the population, or site, isdivided Into mutually exclusive and exhaustive strata and simplerandom sampling or systematic sampling 1s performed in each strata.For purposes of environmental sampling stratified sampling 1s oftenan effective cost-reduction strategy. The site can be divided Intosub-areas, units or "strata". These strata can be chosen based onseveral criteria. The strata may be expected to differ from eachother w1 th respect to contami nat 1 on, so that each un 11 1s morehomogeneous than the site as a whole would be. The strata can alsobe chosen based on areas where the data users want to make separatecleanup decisions.

4. Biased

The collection of samples only in certain regions, to the exclusionof others^ constitutes biased sampling. Most often, the criteria forchoosing the location for a biased sample is based on the level ofcontamination expected.

D. USING STATISTICS

Using statistics to design a sampling plan or to assess data can beextremely complex. Accurate application of statistical methods should onlybe attempted with the Input from a person trained In statistics. Thereare several reasons for such a cautious approach. The normality of thedistribution and spatial correlation are Important in determining whatstatistical tests will apply to a site and what validity they will have.For instance, determining the normality of data is important in decidingbetween parametric techniques (such as t-tests, F-tests, ANOVAs, etc.) andnon-parametric techniques (such as Mann-Whitney tests, Krushal-Wallistests, etc.). Additionally, the objectives of the study must beconsidered to assure that the plan generates data that will meet theuser's needs (e.g., to confirm contamination or to locate all hot spots,each will have a different design).

Objectives

1. To Determine the Presence (or suggest the possible absence) ofContamination.

The first round of samples collected at a site should be biased.Samples should be collected in locations where contaminants arebelieved to have been released or locations to which they could beexpected to migrate. This sampling has several goals:

to confirm the presence or absence of contamination (Note: Ifcontamination is discovered via biased samples, the site cannotbe considered "characterized" but rather, only those specificareas sampled have been characterized. Likewise if nocontamination is revealed from biased sampling, the absence ofcontamination has not been proven.)

F.2Q ARI032U8

Page 179: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

_y . to provide Information about contaminant location and variabilityby using biased samples/ to provide the most information with theleast number of samples; to keep the number of samples, andassociated costs, low (usually less than 30 samples)to aid in the identification of strata that need to be furtherevaluated and allow Identification of potential problems in thesignificant strata (e.g. contaminated stream or soil, specificon-slte waste, two different aquifers)

- to allow identification of migratory pathways for contaminants tomove off-site (e.g. areas of runoff, drainage systems, leachateseeps, outfalls, transportation routes)

2. To Characterize Overall Level Of Contamination

Often, one of the objectives is to estimate the level ofcontamination across the whole site or for a specific area of thesite. Depending on"the context the "level of contamination" may bedescribed by various statistical parameters - for example, the mean,median or an upper percentile. The sampling technique should not bebiased and the number of samples should take into consideration theprecision desired for the parameter being estimated.

/" - . . • • .V_y When an additional objective 1s to compare one of these parameters

for the site to the analogous parameter estimated for an areaconsidered to be at "background", the number of samples to becollected should be determined based on the power selected for thestatistical test.

Note that, In contrast, when the Intent of the sampling is findingindividual hot spots, the;number of samples (or grid size) is basedon the size hot spot you wish to find and the desired certainty offinding them. " L ,

3. To Delineate Contamination - The Role of Geostatistics

The delineation of contaminant extent poses unique problems. Thestatistical applications of parametric and non-parametric techniquesare useful in the determination of contaminant presence, generallocation and variability. These methods can be used to tell us whatconcentrations we are dealing with and how certain we can be thatthese concentrations represent actual conditions. What theapplication of parametric and non-parametric statistics toconcentration data cannot tell us however Is how confident we areabout the exact locations of the contamination. To gain this spatialperspective geostatistlcs can be very useful.Geostatistics uses the relationships between sampling locations (e.g.

i y variability of contaminant concentration, distance between points) to^^ draw conclusions about concentrations at locations lying between

those points. For hazardous waste sampling where the variables arelikely to be spatially correlated, a systematic (grid) sampling

Page 180: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

approach 1s recommended. The number of samples taken on this grid,as with any Instance where a grid 1s used, 1s determined by thevariability of the contaminant concentrations at the site and thedegree of uncertainty .In the location that 1s acceptable to the datauser. The number of samples needed can be reduced by usinggeostatistical tools (e.g. semlvarlogram, kriging) that analyze therelationship between the correlated samples.The semivariogram 1 s a tool that shows the relationships betweenobservations at sampling points based on the distance from eachsample to the other samples. Using the semlvarlogram as a guide, thespacing of sampling points, or the grid size, can be determined.This tool allows the optimum grid size to be chosen; to sample atcloser distance would provide little new Information while greaterspacing carries the risk of missing a change in contaminant levels.

Another geostatistical tool, a technique called kriging, interpolatesconcentration values for locations between sampling points. Krigingallows the generation of a contour map whose Isopleths trace thelines of equal contaminant value. Just as a topographic map depictslandscape elevation, an isomap generated through kriging depicts thelocation of various concentration levels. A three dimensionalrepresentation of data can also be achieved by using computersoftware with this graphical capability.Using the range of correlation, the error of estimation for the ^>*Interpolated values can be computed by kriging. By mapping thesestandard error estimates the level of confidence associated with theInterpolated values becomes known.By using the contour map, its three dimensional representation andthe map of error estimates, a decision maker can determine areas ofthe site requiring cleanup, further sampling or no action. An arearequiring cleanup would be represented, by pollution concentrationsabove a chosen action level and standard errors below a chosenacceptable level. Further investigation would be warranted for anarea with high levels of associated error, whether concentrationvalues are low or high. Low values for both of these characteristicswould Indicate that no further action 1s necessary in that particulararea.

Because geostatistics allows the generation of maps that definecontaminant location, and because the confidence associated withthose locations can be defined, geostatistics 1s a useful tool in theremedial decision-making process. While the use of professionaljudgment must not be underrated or overlooked, consistency andreproducibility in dealing with sites 1s Important. By usinggeostatistics, decision makers are able to provide a basis to supporttheir determination. Geostatistics provides decision makers withreproducible, statistical support for their choice rather thansubjective judgments alone. For these reasons, geostatistical ^->methods will play an increasingly Important role.

ARIQ3250F-22

Page 181: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

SAMPLING EQUIPMENT „ . - :

A. INTRODUCTION ;s ;

Collection of environmental and.waste samples often requires varioustypes of sampling equipment to compliment specific situationsencountered 1n the field. Selection of approved sampling equipmentIs based on the sample type, matrix, physical location of the samplepoint and other site specific conditions. Consideration must also begiven to the compatibility of the waste being sampling with thecomposition of the sampler.This section addresses sampling equipment for the two general typesof samples encountered:, environmental samples, such as soil,sediment, groundwater, surface water and air; and waste samples whichare comprised of process wastes or other man-made waste materials.In order to minimize Interference and cross contamination, allsampling equipment used in collecting environmental samples must beof polytetrafluproethylene (PTFE, e.g., Teflon) or stainless steelconstruction. 'PTFE is always the preferred material but may notalways be practical. Therefore, there are specific conditions underwhich material other than PTFE may be used. Some of these Includethe use of stainless steel equipment for soil and sediment sampling,the use of carbon steel split spoons for soil samples at depth, andin the case of surface water samples, collection directly into thelaboratory provided sample container thereby eliminating the need forsampling equipment.

The preferred material of construction for sampling equipment used inwaste sampling is also PTFE or stainless steel. However, collectionof some waste samples may not be possible with standard equipment,therefore alternate equipment constructed of different material maybe necessary. In all cases, for environmental and waste sampling,the material of construction should be compatible with the samplebeing collected and should not interfere with the parameters ofconcern. ; •',,,

This section lists and, ^escribes a wide variety of samplingequipment, their application, and a detailed description of how touse them. Not all equipment presented here 1s applicable in allsampling situations. Where general ruls do not apply and alternateequipment is necessary, acceptability of -its use will.be determinedon a .case by case basis by the project manager.

„• i hThis section is divided Into; two parts: aqueous and other liquidsampling equipment which ;is further subdivided into groundwater,surface water, and containerized liquids; and non-aqueous samplingequipment, which is further divided into soils, sediments, sludges,and containerized solids/waste piles.

«B103251

Page 182: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

B. AQUEOUS AND OTHER LIQUID SAMPLING EQUIPMENT

Liquids by their nature are a relatively easy substance to collect.Obtaining representative samples, however, 1s more difficult.Density, solubility, temperature, currents, and a wealth of othermechanisms cause changes in the composition of a liquid with respectto both time and distance. Accurate sampling must be responsive tothese dynamics and reflect their actions.

This section will be subdivided as groundwater, surface waters, andcontainerized liquids. The groundwater section will be concernedwith obtaining samples from subsurface waters. Surface waters willbe.considered as any fluid body, flowing or otherwise, whose surfaceis open to the atmosphere. The containerized liquid section willaddress sampling of both sealed and unsealed containers of sizesvarying from drums to large tanks. Some overlap may occur betweenthese two sections; when in doubt, both sections should be consulted.

1. GroundwaterThe Importance of proper sampling of groundwater wells cannot beover emphasized. Even though the well being sampled may becorrectly located and constructed, additional precautions must betaken to ensure that samples being collected from that well arerepresentative of the groundwater at that location. Extreme caremust be taken to ensure that the sample 1s neither altered norcontaminated by the sampling process or the sampling handlingprocedure.

The composition of water within the well casing and in closeproximity to the well may not be entirely representative of thegroundwater quality of the formation in question. This 1s due tothe possible presence of drilling contaminants near the well andbecause Important environmental conditions such as oxidation-reduction potential may vary drastically from conditions 1n thesurrounding water-bearing materials. For th1s reason, it ishighly desirable that a well be evacuated of standing waterbefore sampling commences. The sampling equipment used must notalter sample characteristics in any way.

a. Bottom Fill Bailers

One of the oldest and simplest methods of samplinggroundwater wells 1s the use of bailers. They result in aminimum of sample disturbance when carefully handled.Bailers are constructed of relatively Inert material(stainless steel or PTFE, e.g., Teflon) and their lowrelative cost allows them to be dedicated to a particularwell. This eliminates the need for field decontamination andreduces the likelihood of cross contamination.

Bailer design is simple and versatile consisting of a lengthof PTFE or stainless steel pipe with a check valve at thebottom. The valve allows the bailer to fill with sample and

ARI03252F-24

Page 183: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

retain 1t while being brought to the surface. Bailers areavailable In numerous sizes to accommodate a wide variety ofwell sizes.Bailers are the recommended method of groundwater samplingand the method of choice for the collection of samplessusceptible to volatile, stripping or degradation due to theaeration associated with most other recovery systems.Samples may be recovered with a minimum of aeration if careis taken to gradually lower the bailer until It contacts thewater surface and is then allowed to sink as 1t fills. PTFEIs the preferred construction material. Stainless steel witha PTFE check valve 1s an acceptable alternative. A PTFEcoated stainless steel leader or bailer line must be attachedto the bailer and must be of sufficient length to enablecollection of the sample.Procedures for Use , <

1. While rearing clean protective gloves, unwrap. decontaminated, bailer and connect to leader/cable forlowering. ,- r . ;

11. Lower bailer slowly until it contacts the water surface.

iii. Allow bailer tO;Sink and fill with a minimum of surfacedisturbance, -j,.

iv. Slowly raise the^baller to the surface. Avoid contact ofthe bailer Jine.to the well casing and/or ground.

v. Tip the bailervto, allow a slow discharge from the topgently down the side of the sample bottle to minimizeturbulence. When .applicable, always fill volatileorganic sample •; vials first, to zero headspace.

vi. Repeat steps ii to v until a sufficient sample volume isacquired. ; • F.. r : _ ;

vii. Transfer sample into laboratory cleaned sample bottlesand follow procedures for preservation andtransports

- - -. - ' r : 4t •-=-,.; ; . •viii. Place used vbaijer in bag for return to lab for

decontamination.ix. Procure additional lab decontaminated bailer and proceed

to the next sampling location. Repeat procedure.Advantages

- no external power source required

ARI03253F-25

Page 184: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

economical and convenient enough that a separate bailermay be dedicated to each well to minimize crosscontaminationcan be constructed from a variety of materials compatiblewith the many potential parameters of Interestlow surface area to volume ratio reduces outgassing ofvolatile organicssimple to useminimal sample agitation

Disadvantages

limited volume of sample collectedunable to collect discrete samples from a depth below thewater surfacesometimes Impractical to evacuate stagnant water with abailerfield cleaning will increase risk of cross contaminationtransfer of sample from bailer to bottle can result inaeration If not done carefullymanual operation 1s tedious and time consuming with deepwells and high volume sample requirements

b. Peristaltic PumpA peristaltic pump 1s a self-priming suction lift pumputilized at the ground surface which consists of a rotor withball bearing rollers. One end of PTFE tubing (e.g., TeflonR) 1s Inserted into the well. The other end is attached to aflexible PTFE tube which has been threaded around the rotor,out of the pump, and connected to a discharge tube of PTFE.The liquid moves totally within the sample tube, and no partof the pump contacts the liquid. If PTFE tubing was used forwell evacuation, the same length of tubing may be used forsample collection at that well. If another approved materialwas used for well evacuation, a new dedicated length of PTFEtubing may be required for sample collection. The tubingshould be equipped with a foot valve to avoid having aeratedwater from the pump and the tubing fall back into the well.

Procedures for Use

After the well has been properly evacuated (see Section 8)and recharged, sampling may begin.

i. Check tubing at rotor for cracks or leaks, replace ifnecessary.

ii. Insert dedicated length of PTFE tubing in well and attachto pump.

iii. Thread flexible length of PTFE tubing through rotor/pump.

ARI03251;F-26

Page 185: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

1v. Attach 'evacuation line to outlet of pump to dischargeaway from pump and well or into enclosed containers.

v. Engage pump, commence evacuation and then collect sample.v1. Transfer sample into laboratory cleaned sample bottles

and follow procedures for preservation and transport (seeSection 3 - Quality Assurance).

Advantages ':*..:• ••

- . may be used In small diameter wells (2H)sample does not contact the pump or any other samplingequipment prior to collectionease of operationspeed of operationreadily availableno decontamination of pump necessary

Disadvantages - ;?

low volume yielddepth limitation of 25 feetpotential for i loss of some volatile fraction due topressure gradient •;requires electrical power

c. Bladder Pumps ; cA bladder pump consists of a PTFE (e.g., Teflon) or stainlesssteel housing that encloses a flexible membrane. Below thebladder, a screen is attached to filter any material that mayclog the check valves that are located above and below thebladder. The pump works as follows: Water enters themembrane through the lower check valve; compressed gas isinjected Into the cavity.between the housing and bladder.The water moves through the upper check valve and Into thedischarge line. This upper check valve prevents back flowInto the bladder.

The bladder pump Js util ized much like the portablesubmersible pumps^ except that no electrical lines arelowered down the :well. The source of gas for the bladder iseither bottled gas or an bn-site air compressor.Procedures for Use

After well has been properly evacuated and recharged,sampling may begin;

i. Check all fittings for tightness.ii. Lower decontaminated pump and dedicated tubing into the

well below the water level.

F-27 "ft/03255

Page 186: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

111. Connect compressor to power source ensuring the powersource downwind to prevent fumes from entering samplingarea. If compressor 1s not used, connect to external airsource.

1v. Engage air source (compressor or external). Full waterflow will begin after five to fifteen pumping cycles.

v. Reduce the flow rate, by adjusting the throttle control,while sampling volatile and semi-volatile organics.

v1. Adjust the refill and discharge cycles to optimizepumping efficiency. This can be performed by thefollowing process:

Adjust the refill and discharge cycles to 10-15 secondseach. Measure the water volume discharged 1n a singlecycle.Shorten the discharge cycle time until the end of thedischarge cycle begins to coincide with the end of waterflow from the pump outlet.

Shorten refill cycle period until the water volume fromdischarge cycle decreases 10-25% from the maximum valuemeasured in Step a.

vii. Transfer sample into laboratory cleaned sample bottlesand follow procedures for preservation and transport

Advantages

simple design and operationoperational variables are easily controlledminimal disturbance of samplein-line filtration possible

Disadvantages

large gas volumes neededpotential bladder rupturedifficulty in cleaning the unitpssible loss of volatlles 'due to pressure gradientslow volume delivered (3 gpm)

d. Packer Pump

Packer pumps are used to 1 sol ate portions of a wel 1 forsampl1ng or other purposes. These pumps cons i st of twoexpandable parts that Isolate a sampling unit between them.They deflate for vertical movement within the well andinflate..when the desired depth Is reached. The packers areconstructed of rubber and can be used with submersible, gaslift, and suction pumps.

ARIQ3256F-28

Page 187: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Advantages ••. : \ ' . • ,

Isolates portion of well for sampling at discrete depths-decreases volume necessary for evacuation of a well whenmore than one aquifer is encountered

Disadvantages

Can leak along edges allowing extraneous water to mixwith sample.Must be aware of background about the contaminants andcharacteristics of the well to be sampledthe packers constructed of rubber may deteriorate withtime and undesirable organics may enter the watershould not be used in Initial sampl Ing prior toIdentification of contaminants of concern

2, Surface Water and Liquids ; ,

Sampling of surface water includes collection of samples from lakes,ponds, streams, and rivers. It may also be necessary to collectliquid samples from lagoons, surface Impoundments, sewers, andleachate seeps. , ;Actual sampling situations encountered in the field vary greatly andtherefore the samplers and procedures are varied to best fit eachsituation. The most Important >goal of surface water sampling is thecollection of a sample representative of all the horizons or phasespresent in the liquid. Selection of the proper sampler facilitatesthis goal . . .. .;, .,',

a. Laboratory Cleaned Sample Bottle

The most widely used .method for collection of surface watersamples 1s simple immersion of the laboratory cleaned samplebottle. Using the sample bottle for actual sampling eliminatesthe need for other equipment. This method also reduces the riskof Introducing other variables into a sampling event.Procedures for Use ,f,,v

i. Make sure bottles are Intact with a good fitting lid.ii. Identify sample using label and indelible/water proof marker

. 111. Proceed to Immerse bottle into surface water and allow waterto run slowly Into* bottle until full. (Collect samples forvolatile organics analysis first to prevent loss of volatilesdue to disturbance of the water. Fil l vials to zero

• headspace.)

f.Z9 AR | 03257

Page 188: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

1v. Transfer sample into laboratory cleaned sample bottlesand follow procedures for preservation and transport(see Section 3 - Quality Assurance).

Advantages

easy operationno field cleaning necessaryno other equipment needed

Disadvantages

outside of bottle comes In contact with sample- labeling 1s difficult

may not be possible when bottles are pre-preserved

b. Pond Sampler

The pond sampler 1s used to collect liquid waste samples fromdisposal ponds, pits, lagoons, and similar reservoirs.

The pond sampler consists of an adjustable clamp attached tothe end of a two or three piece telescoping aluminum tubethat serves as the handle. The clamp is used to secure asampling beaker.

The sampler Is not commercially available but it 1s easilyand 1nexpens1vely fabricated. The tubes can be read i 1 ypurchased from most hardware or swimming pool supply stores.The adjustable clamp and sampling beaker can be obtained frommost laboratory supply houses.

Procedures for Use

i. Assemble the pond sampler. Make sure that the samplingbeaker or sample bottle and the bolts and nuts thatsecure the clamp to the pole are tightened properly.

11. With proper protective garment and gear, take grabsamples by slowly submerging the beaker with minimalsurface disturbance.

111. Retrieve the pond sampler from the surface water withminimal disturbance.

iv. Remove the cap from the sample bottle and slightly tiltthe mouth of the bottle below the dipper/device edge.

v. Empty the sampler slowly, allowing the sample stream toflow gently down the side of the bottle with minimalentry turbulence. When applicable, always fill VOA vialsfirst and fill to zero headspace.

ARI03258F-30

Page 189: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

v1. Repeat steps 11 - v until sufficient sample volume 1sacquired.

v11. Transfer sample Into laboratory cleaned sample bottlesand follow procedures for preservation andtransport.

v111. Dismantle the; sampler and store in plastic bags forsubsequent decontamination.

Advantages i '

relatively inexpensive to fabricatecan sample depths or distances up to 3.5m

Disadvantages

difficult to obtain representative samples in stratifiedliquids - > . . - .difficult to decontaminate when viscous 11 quids areencounteredlaboratory supplied sample bottles may not fit on thesampler. This requires an extra piece of sampling equipment(stainless steel or PTFE beaker)

( , c. Weighted Bottle Sampler

The weighted bottle sampler can be used to sample liquids instorage tanks, wells* sumps, or other reservoirs that cannot beadequately sampled with another device. This sampler consists ofa bottle, usually glass, a weight sinker, a bottle stopper, and aline that 1s used to open the bottle and to lower and raise thesampler during sampling. There are a few variations of thissampler. However, the sampler recommended in ASTM procedures,which uses a metallic: bottle basket that also serves as theweight sinker, 1s preferred, The weighted bottle sampler caneither be fabricated or purchased.Procedures for Use ;

i. Assemble the weighted bottle sampler.ii. Lower the sampling device to the predetermined depth.

i i i . When the sampler is at the required depth, pull out thebottle stopper with a sharp jerk of the sampler line andallow the bottle to fill completely. (This is usuallyevidenced by the cessation of air bubbles.)

iv. Retrieve sampler.

v. Transfer sample into laboratory cleaned sample bottles andfollow procedures for preservation and transportation.

ARI03259F-31

Page 190: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Advantages

sampler remains unopened until at sampling depthstratification may be discreetly sampled

Disadvantages

cannot be used to collect liquids that are Incompatible withthe weight sinkerline or actual laboratory supplied collection bottle may notfit Into sampler, thus requiring additional equipment(constructed of PTFE or stainless steel)

3. Containerized Liquids

One of the most difficult liquids to sample is that which is storedin a container. Several factors play an Important role indetermining the sampling method to be used. These Include thelocation of the container, the location and size of the opening onthe container, and what type of equipment Is available for sampling.

No matter what type of sampler 1s chosen, it must be utilized In sucha manner that allows collection of all horizons present in thecontainer. Rarely does a container hold a homogenous mixture ofmaterial.

Sampling devices for containerized liquids and their procedures foruse are presented below. Other sampling devices which may beconsidered appropriate include the Bacon Bomb, Kemmerer Depth, andWeighted Bottle Samplers.a. COLIWASA

The COLIWASA or Composite Liquid Waste Sampler 1s one of the mostimportant liquid hazardous waste samplers. It permits therepresentative sampling of multiphase wastes of a wide range ofviscosity, corrosivity, volatility, and solids content. Itssimple design makes it easy to use and allows the rapidcollection of samples, thus minimizing the exposure of the samplecollector to potential hazards from the waste.Two types of COLIWASA samplers are made, plastic and glass. Theplastic type consists of a translucent plastic sampling tube.This type is used to sample most containerized liquid wastesexcept wastes that contain ketones, nitrobenzene,dimethylforamide, mesityl oxide, and tetrahydrofuran. The glasstype uses a borosollcate glass plumbing pipe as the sampling tubeand PTFE for a stopper rod. This type 1s used to sample allother containerized liquid wastes that cannot be sampled with theplastic COLIWASA except strong alkali and hydrofluoric acidsolutions.

ARI03260F-32

Page 191: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Procedures for Use

i. With the sampler in the open position, Insert it into thematerial to be sampled.

11. Collect the sample at the desired depth by rotating thehandle until one leg of the T Is squarely perpendicularagainst the locking block.

ill. Withdraw the sampler and transfer the sample(s) intolaboratory cleaned sample bottles.

iv. Follow procedures for preservation and transportation.

Advantages

inexpensivesimplicity of operation ;disposable . ;versatile - - .

Disadvantages : •

glass tubes are easily brokenproblems encountered with fluids of very high viscosity

- sediment In drum may clog sampling device preventingdischarge or representative sampling

C. NON-AQUEOUS SAMPLING . , •

Sampling of non-aqueous matrices encompasses several different types ofwastes; from solids In drums and containers to soils and sludges. Thereare many factors involved when choosing the proper sampling equipment forthese materials. '. ,•,;, ,,;:

The most important aspect of sampling is to get a representative sample ofall horizons present in the solid. An attempt must also be made tomaintain sample integrity by preserving its physical form and thereforeits chemical composition. the use of proper sampling equipment canaccomplish these goals. , ... , ,,:

This section is divided into three subparts: soils, sediment/sludges andcontainerized solids/waste piles. The three subparts deal with samplersdesigned for the specific materials Involved.1. Soils : :

Soil sampling is performed for a number of reasons. These Include:determination of contamination in soils, possibility of contaminationof groundwater and extent of contamination. Soils can be sampled atthe surface or below surface depending on the type of Informationrequired. There are several different types of samplers that can beused to collect a soil sample.

ARI0326I

Page 192: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

a. Scoop/Trowel -x

The trowel or scoop can be used in col 1 ecting surface soilsamples. They can also be used for a variety of other solidwaste samples.A garden variety trowel looks like a small shovel. A laboratoryscoop 1s similar to the trowel, but the blade 1s usually morecurved and has a closed upper end to permit the containment ofmaterial. Scoops come in different sizes and makes. Many arecoated with chrome paint which can peel off and get Into thesample. Stainless steel scoops are preferred. A trowel can bebought from hardware stores; the scoop can be bought fromlaboratory supply houses.Procedures for Use

i. At specified Intervals, take small, equal portions of samplefrom the surface and Immediately below the surface.

11. Transfer sample Into laboratory cleaned sample bottles andfollow procedures for preservation and transport (see Section

iii. Fill jars completely and firmly without packing sample tootightly.

Advantages

easy to use and cleanDisadvantages

sometimes difficult to maneuver sample, particularly 1fplacing sample Into VOA vials

b. Tulip Bulb Planter

This sampler Is a small, hand-held coring device used for soils0-12 Inches in depth. It 1s useful when it is desired to havethe soil core remain Intact after sampling.

Procedures for Use

i. Remove unnecessary rocks, twigs, and other non-soil materialsfrom selected sampling point.

ii. Push tulip bulb planter Into the ground to desired depth.

ill. Pull sampler up with a turning motion 1n order to retain sample.iv. Transfer sample into laboratory cleaned sample bottles and \i

follow procedures for preservation and transport

f.34 ARI 03262

Page 193: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

_/ Advantages

easy to usepreserves soil core :

Disadvantages

only samples at 0-12 inch depthnot useful for rocky or tightly packed soils

• *•:',•, lc. Bucket Auger . ,

This tool consists of a hard metal central shaft and sharpenedspiral blades. When the tool Is rotated clockwise by its woodenT-handle, it cuts the;soil as it moves forward and dischargesmost of the loose soil upward. The cutting diameter is about 5cm (2 in.)- The length 1s about 1 m (40 in.), with graduationsevery 15.2 cm (6 in.). The length can be Increased up to 2 m (80in.}. This tool can be bought from hardware stores and, in somecases, from laboratory supply houses.The auger Is particularly useful in collecting soil samples atdepths greater than 8 cm (3 in.). However, this sampler destroysthe structure of cohesive soil and does not distinguish betweensamples collected near the surface or toward the bottom. It is

i* not recommended, therefore, when an undisturbed soil sample is^"^ desired. , , •',H p i i

Procedures for Use-

i. Remove unnecessary rocks, twigs, and other non-soil materialsfrom selected sampling point.

ii. Attach the bucket and handle to an extension rod.iii. Begin turning the auger with a clockwise motion and continue

until the desired sampling depth is obtained.iv. Back off the auger and transfer the sample Into a laboratory

cleaned sample container, using a clean stainless steel spoonor trowel, if necessary.^

v. Follow procedures for preservation and transportation.Advantages r i

\ ' '

relatively speedy operation for subsurface samplesDisadvantages , ,,

L ; - destroys soil horizons as it samplesv—* - sluff from upper horizons may contaminate lower horizon

samples.

ARI03263F-35.

Page 194: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

f. Power Auger

A power auger is used in conjunction with a bucket auger orsimilar sampling device to obtain a soil sample at depths greaterthan six Inches.The power auger 1s composed of an auger flight with a cuttinghead, attached to a power device which turns the auger. Varioussizes and types of power devices are available, from one manunits to truck mounted units. Also additional auger flights canbe used to Increase the depth obtainable by the unit.The power auger is used to drill just above the desired samplingdepth. A bucket auger or similar device (similar in diameterthan the auger flight) 1s then used to obtain the sample.Advantages

reduces sampling timesamples at depth more easily obtainable

Disadvantages

mixes lower soil profile through upper sectioninitial expenseuse of gasoline powered engine Increases possibility ofcontamination of samplenot useful In rocky soils

g. Split Spoon Sampler

A split spoon sampler 1s utilized to collect representative soilsamples at depth.

The sampler itself is a length of steel tubing splitlongitudinally and equipped with a drive shoe and a drive head.These are available in a variety of lengths and diameters.Samplers used to collect samples for chemical analysis should bemeticulously decontaminated prior to use. All residual soil,rust and lubrication oils should be removed.

Procedures for Use

i. Assemble the sampler by aligning both sides of barrel andthen screwing the drive shoe on the bottom and the heavierhead piece on top.

11. Place the sampler in a perpendicular position on the materialto be sampled.

i i i . Drive the tube utilizing a sledge hammer or well rig ifavailable. Do not drive past the bottom of the head piece asthis will result in compression of the sample.

AR I 03261}F-36

Page 195: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

iv. Record the length of .the tube that penetrated the material, being sampled and the number of blows required to obtain this

depth.v. Withdraw the sampler and open by unscrewing drive shoe and

head and splitting barrel. If split samples are desired, adecontaminated stainless steel spatula should be utilized todivide the tube contents in half longitudinally.

vi. Transfer sample into laboratory cleaned sample bottlesand follow procedures for preservation and transportation.

vii. When split spoon sampling is performed in order to gaingeologic Information, all work should be performed inaccordance with ASTM D 1586-7 (reapproved 1974).

Advantages

obtains representative profile sampleseasily availablestrong • , ; -ideal for split sample collection

Disadvantagesl i - requires drilling or tripod for deeper samples^-^ - difficult to decontaminate threads and barrel of oils and

rust

h. She!by Tube Sampler

A shelby tube is used mainly for geologic information but may beused in obtaining samples for chemical analysis.The shelby tube consists of a thin walled tube with a taperedcutting head. This allows the sampler to penetrate the soil andaids in retaining the sample in the tube after the tube is drivento the desired depth,,: >-

Procedures for Use

i. Place the sampler in a perpendicular position on the materialto be sampled.

11. Push the tube Into the soil by a continuous and rapid motion,without impact or twisting. In no Instance should the tubebe pushed further than the length provided for the soilsample.

i i i . When the soils are so hard that a pushing motion will notpenetrate the sampler sufficiently for recovery, a drivinghammer, may be used to drive the sampler. In such case,record the height, weight, and number of blows.

ARI03265F-37

Page 196: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

iv. Before pulling out the tube, rotate the tube at least tworevolutions to shear off the sample at the bottom. If thesample 1s to be shipped for further geologic analysis, thetube must be appropriately prepared for shipment. Generallythis 1s accomplished by sealing the ends of the tube with waxin order to 'preserve the moisture content. In suchInstances, the procedures and preparation for shipment shallbe In accordance with ASTM D 1537-74.

Advantages

Inexpensivetube may be used to ship the sample without disturbing thesampleprovides representative core sampleeasily cleaneddisposable

Disadvantages

sometimes difficult to extract samplenot durable encountering rocky soils

Sediments/Sludges

Factors that contribute to the selection of a sediment/sludge samplerinclude the width, depth, flow, and the bed characteristics of theimpoundment to be sampled.

In collecting sediment/sludge samples from any source, care must betaken to minimize disturbance and sample washing as it is retrievedthrough the liquid column above.

Several samplers which are used for other types of non-aqueoussampling are useful for sediment/sludges. These include thescoop/trowel, sampling trier, bucket auger, soil coring device/silverbullet sampler, waste pile sampler, and split spoon sampler.

F-38

Page 197: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

SAMPLE COLLECTION oi, - --

This section details the step by step procedures to be followed during thecollection of samples of various matrices. The use of different kinds ofsampling equipment dictates that different factors must be considered foreach type of sample collected. Some factors concerning sample collection,however, remain the same regardless of the matrix type or device used.The general information 1n Par A when used with information 1n one of theother parts of this section, as dictated by the site specific conditions,will allow the most representative sample to be collected in a safe andefficient manner.

A. GENERAL INFORMATION APPLICABLE TO ALL SAMPLING EVENTS

1. Preparation

Thorough preparation before the initiation of a sampling event Isundoubtedly one of the most important steps in the sampling process.Additional costs can be incurred if sampling must be continued onanother day or completely re-done due to inadequate or improperpreparation. Therefore, equipment lists should be prepared andpersonnel needs should be projected. In cases where it isquestionable which type of sampling device will work best, severalshould be on hand. If potential obstacles to the timely completionof the job exist, extra personnel should be scheduled.In addition to procurement of the appropriate equipment, samplingpreparation includes assuring that such equipment is in workingcondition and properly decontaminated. The sampling device should be1 aboratory cl eaned, preferably by the 1 aboratory performi ng theanalysis, then wrapped In similarly cleaned aluminum foil and custodysealed. The sampler should remain in this wrapping until It isneeded. Care must be taken 1n transporting and storing cleanedequipment. Equipment should never be stored or transported in thesame vehicle used to transport generators/gasoline or decontaminationsolvents. Under such conditions cross-contamination is likely tooccur. ,-'_. ; ;The material of construction for sampling equipment should be PTFE orstainless steel. Each sampler should be used to collect one sample.In some cases, the use of dedicated samplers may be impractical.When collect ing numerous surface soil samples (using trowels) orsubsurface soils from boreholes (using split spoon samplers) It maybe necessary to decontaminate equipment In the field. An equipmentdecontamination line must be set up to accomplish this. Thedecontamination line should be established in a non-contaminated areaand should consist of chemical resistant buckets surrounded by atarp. The solutions required for equipment decontamination must beon-hand and should be In easy to use squirt bottles or air pressurespray canisters. Heavy duty scrub-brushes must be available. Allrinse fluids must be collected and provisions made for their properdisposal. :

ARI03267F-39

Page 198: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

When decontaminating equipment 1n the field, extra care must be taken -"/to assure thorough cleansing and redundant rinsing. Because of the 'difficulty encountered in cleaning bailers, field decontamination 1snot allowed for this piece of equipment. Bailers must be laboratorycleaned and wrapped and dedicated to each well.In addition to the site specific decontaminated sampling device otherequipment may be necessary during the execution of a sampling event:

Lab-cleaned sample containers, proper size and composition.Quality control samples (e.g., trip and field blanks, performanceevaluation samples).Appropriate paperwork (e.g.* Chain of Custody and Sample AnalysisRequest forms).

Sample labels.Portable Instrumentation (e.g., pH meter, exploslmeter, oxygenlevel monitor, photoionization detector, flame 1onizat1ondetector).Appropriate personnel safety equipment.

Decontamination equipment for personnel and/or equipment.

Plastic bags for contaminated items.Spare bottles and preservation chemicalsPackaging materials for sample shipment and custody

Laboratory Procurement

The analytical needs associated with the collection of samples shouldbe clearly defined In the site specific sampling plan. Importantinformation regarding the data quality objectives, turnaround times,deliverables, and funds available must be specified. Additionalconsiderations Include:

Whether the lab has maintained the required certifications andapprovals.

Whether the lab 1s available to perform the analysis requested.Whether the lab has the capacity to handle all the samples thatwill be delivered.

Whether the lab can meet the time frame required.Whether the lab has performed satisfactorily 1n the past. If a \^Jlab has been used for previous samples collected at a site aneffort should be made to use the same lab to Introduce a degreeof consistency.

ARI03268F-40

Page 199: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

• The lab's proximity to the site or capability to pick up anddeliver as needed*.

3. Funding

Prior to the Initiation ;of a sampling event or the procurement oflaboratory services, the,sampling coordinator must assure that theappropriate funding mechanisms are in place.

4. Quality Assurance SamplesWhen advising the chosen laboratory of the required bottles andanalysis, specifications regarding quality control samples should berelayed. The lab should be Informed as to the rate 'of Inclusion oftrip and field blanks,-how this water should be provided (e.g., setsof filled and empty bottles), the requirements for the quality andorigin of the blank water .(e.g., the same as the method blank) andthe analysis desired. :rsThe laboratory's procedure for bottle preparation and storage, blankpreparation and mechanism for transport and maintenance oftemperature should be evaluated and the associated paperwork shouldbe reviewed for adequacy. » ,If upon initiation of the ; sampl ing it is discovered that one orseveral quality assurance considerations have not been properly

, addressed, no sampling should occur. In such a situation, withpersonnel and equipment on standby In the field, the Importance ofeffective communication with the lab Is illustrated.

5. Sampling Plan \:, .

Since sampling situations vary widely and no universal samplingprocedure can be recommended, it is important that a sampling plan bedeveloped and receive the proper approvals before sampling begins.Sampling should never begin without an approved Field Sampling -Quality Assurance Project Plan which details the laboratory QA, fieldQA and details of the sampling operations and project organization.

.]••;< ; ; • •6. Assuring Health and Safety !

The health and safety of sampling and support personnel is the mostimportant priority during collection operations. Appropriateportable monitoring devices which have been properly calibratedshould be used by properly trained personnel to monitor siteconditions. A complete Health and Safety Plan should be developedbased on information gathered during the file search and Instrumentreadings from the .pre-sampl1ng site visit. This Plan should detailpotential hazards, instruments to be used and their calibration anduse, level of protection to be worn by personnel during various on-site activities, emergency services locations and phone numbers, etc.To assure health and safety 4n unknown situations (e.g., sites withlittle available historic information or In initial entry situations)

• , ARI 03269F-41

Page 200: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

a worst case scenario should always be assumed until Instrumentsconfirm otherwise.

For example, for test pit excavation sampling and sampling ofcontai neri zed materi als, level B personnel protecti on should beutilized. The results of continuous air monitoring may determinethat downgrading personnel protection 1s acceptable.

7. Post Sampling Activities

There are several steps to be taken, even after the transfer of thesample Into the sample bottle, that are necessary to properlycomplete collection activities. Once the sample 1s transferred Intothe appropriate container, the bottle should be capped and, ifnecessary, the outside of the bottle should be wiped with a cleanpaper towel to remove excess sampling material. The bottle shouldnot be submerged in water in an effort to clean it. Rather, ifnecessary, a clean paper towel moistened with distilled/del onizedwater may be used.

The sample bottle should then be properly 1abeled, preserved 1 fnecessary, custody sealed, and placed in a plastic bag. Informationsuch as sample number, location, date, collection time and sampledescription should be recorded in the field logbook. Associatedpaperwork (e.g., Chain of Custody forms, Sample Analysis Requestforms) should then be completed and should stay with the sample. Thesamples should be packaged in a manner that will allow theappropriate storage temperature to be maintained during shipment tothe lab. Samples should be delivered to the lab within 24 hours sothat the proper temperature maintenance is assured and analyticalholding times are not exceeded.

B. SOIL SAMPLING

Th i s recommended protocol outli nes procedures and equi pment for thecollection of representative samples from surface and subsurfacelocations.

Commonly surface sampling refers to .the collection of samples at a 0-6inch depth. This is most efficiently accomplished with the use of atrowel or scoop. For samples at lower depths a decontaminated bucketauger or power auger may be needed to advance the hole to the point ofcollection. Then another clean bucket auger can be used to. collect thesample. For samples at depths of greater than three feet the use of adrill rig and split spoon samples will be necessary. In some situations,sample locations are accessed with the use of a backhoe.

Whether surface or subsurface and whether a bucket auger or drill rig 1sused to access the sample, several considerations are important duringsoil sample col1ecti on. An attempt must be made to malntai n sampleintegrity by preserving its physical form and chemical composition to asgreat an extent as possible. First, the mechanism used to advance thehole must be properly decontaminated. The device then used for actualsample collection should not be same as that used to advance the hole.

Page 201: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

This instrument should be appropriately decontaminated, as should anyf us triune rut utilized to transfer the sample into the sample bottle.

Secondly, can! must be taken in handling the sample. The sample should betransferred into 'the sample bottle as quickly as possible,, with no mixing,,to assure that the volatile fraction is not lost. It is also recommendedthat for volatile organic::; analysis of soils, trie laboratory performingthe analysis is instructed to provide wide mouth bottles (<!• ounce) forsample collection. This w i l l reduce disturbance of the sample and mayh e 1 p p r e v e n t t: h e 1 o s s o f v o 1 a t i 1 es.

scoop or troweltu'l ip bulb- planterbucket augers o i 1 c o i" i i'i g d e v i c e/1 s: i 1 v e r l:> u 1 ' e t. s a nn p 1 e rwaste pile samplerpower auger (in c tin junction vrith another device) split spoon samplerShelby tube sampler

Surface

1 1 c t an a d e q u a t e portion of soil from a d, e p t h of 0 •• 6 inches, usingiil or other device l i s t e d above. Transfer the sample directly

into the sample container,, For samples at lower depths, advance thehole using a bucket auger or power auger that has been properlydecontaminated,, Once at the desired depth, use a clean auger toretrieve the sample. Use a decontaminated spatula or trowel1 to

At Depth

For samples greater than three feet, a drill rig should be employedto advance the borehole to the desired depth. As with the nearsurface samples, the down-hole devices must be t h o r o u g h l ydecontaminated. Once the desired depth is reached,, a decontaminatedsampling device (e.g.,, s p l i t spoon, Shelby tube) may be advanced bythe drill rig. Upon retrieval the split spoon should b e opened,, itscontents logged, if desired, and then immediately transferred intosample bottle using a decontaminated spatula or spoon., If a, shelbytube is utilized, it should be properly sealed a, n d prepared! forsh ip merit.

Test pit excavation is useful in the identification of waste materialburied on site and to determine the soil horizons or any apparentband of soil c o n t, a rn i n a t i on. However, this method of accessing a,sample is 'irnited,. Due to the amount of disturbance involved,, test,pit samples are not reproducible and are not considered to representthe undisturbed formation. Additionally the depth of the evacuation

F-43

Page 202: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Is limited by equipment, visual observation, distance and theIntegrity of the trench walls. The health and safety hazardassociated with test pits Is great. Because the trench walls may beunstable, no personnel should enter any test pit that is deeper thanthree (3) feet. Care must be taken in working near the backhoe. Allpersonnel must be alert to the machine's movement and be prepared forany potential release from the excavation. During test pitoperations, the potential exists to leave contaminated soils at thesurface where it may not have been present before excavation.Consideration must be given to potential exposures from thecontaminated surface soils. Finally, 1n areas where surface soilcontamination Is a problem, this contamination may be carried deeperby excavation and backfilling. In such a situation test pits shouldnot be used.

For these reasons test pits should only be used as a biased samplingapproach when attempting to locate specific hot spots ofcontamination or to locate specific buried waste. To mostefficiently collect representative soil samples at depth, a drill rigshould be used.

If, In a specific Instance, it is determined that test pits will beutilized to access samples at depth, the backhoe used must beequipped with a protective shield and Its operator properly trainedin the use of level B respiratory and dermal protection. The backhoebucket and arm must be thoroughly decontaminated by steam cleaningprior to use and between each test pit location.The operator should be directed to excavate unti1 the samplerindicates that the desired depth has been reached. All excavatedmaterial should be placed on a tarp. If the pit is shallow (lessthan three feet) the sampler can enter the pit and collect the soilsample from the wall with a decontaminated trowel. As the pit getsdeeper the sampl er may col 1 ect the soil from the bucket of thebackhoe in an area where the sample material Is not in contact withthe bucket. The sample should be transferred from the bucketdirectly into the sample bottle using a decontaminated trowel.

C. SAMPLING CONTAINERIZED MATERIALS

Th i s recommended protocol outl1nes procedures and equlpment for thecollection of representative solid and/or liquid samples from variouscontainment vessels.

Sampling containerized material presents a unique obstacle to fieldpersonnel, whether the container involved 1s a fiber drum or vacuum truck.Container staging, identification and opening are all Issues to beconsidered. Health and safety precautions associated with samplingcontainerized materials are generally more stringent. Quality assuranceguidelines for waste samplings, as opposed to environmental samples areunique and each site should be considered Individually. When samplingwaste materials, high levels of contaminants can be expected. Thereforetrip and field blanks may be inappropriate. However, If residual or low-level waste/chemicals are expected (e.g., sampling contaminated soils In

SRI03272F-44

Page 203: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

drums or containers) trip and field blanks may be appropriate. Qualityassurance requirements will be determined by Hazardous Waste Programrepresentative on a site by a site basis.1. Drums, Bags, Sacks, Fiberdrums and Similar Small Containers

Prior to the Initiation of the sampling event, all containers shouldbe inventoried. All available information concerning each containershould be recorded 1n the field logbook Including the type ofcontainer, total capacity estimate, actual capacity (if container isopen), markings, labels, color, origin, condition etc. Photographsshould be taken to provide a permanent record.Depending on the location and position of the containers, it may benecessary to upright and/or relocate them prior to sampling. DRUMSCONTAINING LIQUID WASTE CAN BE UNDER PRESSURE OR VACUUM. A BULGINGDRUM SHOULD NOT BE MOVED OR SAMPLED UNTIL THE PRESSURE CAN BE SAFELYRELIEVED. Containers that can be moved should be positioned so thatthe opening or bung 1s upright (1f the integrity of the containerwill allow). Containers should not be stacked.Next the containers should be marked with an Identification numberfor present and future reference. Enamel spray paint 1s oftensuitable for, this purpose. Again, photographs of the numberedcontainers can prove valuable in documenting the containers'condition. " i

The procedure used to open a container will depend directly upon thecontainer's condition. The sampling team leader should determinewhich drums will be opened using a remote opening device orpenetrating apparatus. If such a device Is used, an experiencedoperator must be employed and specific procedures for assuring healthand safety must be employed and specific procedures for assuringhealth and safety must be clearly defined. All containers should beopened with utmost care, (for drums, the bung opening should beloosened slowly with a non-sparking bung wrench. If the bung isbadly rusted or frozen it may be necessary to use a non-sparkinghydraulic penetrating device. During container .opening operationsorganic vapor concentrations should be monitored with portableinstrumentation. Results ishould be recorded 1n field logbook, theIntegrity of the , drums:may dictate that overpacking 1s necessary,therefore overpack drums should be available.a. Containerized Solids :;[( ; . ; ;

The sampling of containerized solid materials (sludges, granular,powder) Is generally accomplished through the use of one of thefollowing samplers: - :?

scoop or trowel *waste pile samplerVeihmeyer sampler/corersampling trier ;, Jgrain sampler i

F-45

Page 204: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Once the container to be sampled Is opened, insert thedecontaminated sampling device Into the center of the material tobe sampled. Collect a core (If possible) of material from apoint diagonally opposite the point of entry. Retrieve thesample and Immediately transfer it into the sample bottle. Ifthe sampling device 1s disposable It may be left In the containersampled. Otherwise decontaminate the device thoroughly beforecollecting the next sample. Each container should be sampleddiscretely. Depending on the objective of the sampling event(e.g., characterization for disposal) compositing of samples inthe laboratory on a weight/weight or volume/volume basis prior toanalysis may be permissible.

b. Containerized LiquidsThe sampling of containerized liquids 1s generally accomplishedthrough the use of one of the following samplers:

- COLIWASAopen tube samplerstratified sample thief

- VACSAM

Once the container to be sampled Is opened, Insert thedecontaminated samplIng device Into the center of the 1iquidcontents to be sampled. Collect a cross-sectional portion of thecontents from a point diagonally opposite the point of entry.Retrieve the sample and immediately transfer it into the samplebottle. If the sampling device is disposable, 1'eave it in thecontainer sampled. Otherwise decontaminate the device thoroughlybefore collecting the next sample. Each container should besampled discretely. Depending on the objective of the samplingevent (e.g., characterization for disposal) compositing ofsamples In the laboratory on a weight/weight or volume/volumebasis prior to analysis may be permissible.

2. Tanks, Vacuum Trucks, Process Vessels and Similar Large Containers

Prior to the initiation of the sampling event, all containers shouldbe Inventoried. All available information concerning each containershould be recorded in the field logbook Including: type ofcontainer, total capacity estimate, actual capacity (if container 1sopen), markings, labels, color, origin, condition, existence andcondition of ladders and catwalks, etc. Each container should bemarked with an identification number for present and futurereference. Enamel spray paint is often suitable for this purpose.Photographs of the numbered vessels can prove useful in documentingthe containers' condition and can provide a permanent record.

The procedure used to open a large containment vessel to provideaccess to its contents will vary with different containers. Mostlarge tanks a/id vacuum trucks will have valves near the bottom of thetank and hatches near the top. It 1s most desirable to collectsamples from the top of a tank for several reasons. The Integrity of

F-46

Page 205: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

valves near the bottom of the tank cannot be assured. The valve maybe finnnobi 1 e or may break or become jammed in the open positionresulting in the uncontrolled release of the tank's contents.Secondly the contents of a large vessel may become stratified.Collecting a sample from the bottom w i l l not permit the collection ofa sample'of each stata,, Instead a cross-sectional sample of thetank's contents should be obtained from the top access.

In opening and sampling larger containment vessels precautions mustbe considered to assure personnel health and safety. Accessingstorage tanks requires a great deal of manual dexterity., It usuallyrequires climbing to the top of the tank through a narrow vertical orspiral stairway while wearing protective gear and carrying samplingequipment. At least two persons must always perform the sampling;One to open the hatch a rid/or collect the actual samples, and theother to stand back,, usually at the head of the stairway and observe,

Prior to opening the hatch the sampler should check, the tank for apressure g a, u g e or release valve. The release v a 1 v e should be openedslowly to bring the tank, to at mo spheric: pressure,, If the tankpressure is; too great or v e n t i n g releases gases or vadiscontinue venting immediately, Measure rele. .ses; to the atmoswith portable field instrumentation and record in field 'logbook.

If no release valve exists, slowly loosen hatch cover bolts torelieve pressure in the tank,, Again, stop if pressure is too greator if a release occurs,, Do not remove hatch cover bolts until tankis at atmospheric pressure.

Once the tank has been stabilized,, sample collection may begin usingone of the previously recommended samplers for containerized l i q u i d sand so' ids and employing the proper safety precautions and backuppersonnel. If the contents of the tank, have stratified each stratashould be sampled discretely. At a minimum a top, middle and bottomsample should, be collected. If the container has separatecompartments each should be sampled separately at varying depths, asrequired., D e p e n d i n g on t, h e objective of the s a m p 1 i n g event, (e.g.,laboratory on a weight;/weight or volume/volume basis prior toanalysis may be permissible.,

The peculiarities that are associated with transformers warrant thatthese containers be considered separate from drums and tanks,Elecause transformers are often located in secured,, out-of-the-waylocations, operated scissor lift or cherry picker may be needed. Inother cases the transformer may be in an underground cell.

The toxic nature and degree of hazard posed by PC Els potentiallypresent in a transformer dictate that a high level of caution shouldbe used.. Appropriate protection should be worn by sampling andsupport personnel. Spill prevention a, n d control must b• e planned.;plastic sheeting and sorbent pads should be employed. And, most

Page 206: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

importantly, the transformer must be certified as "off-line" and de-energized by an electrician or other responsible person.Once the power source to the transformer 1s cut and spill controlmeasures (plastic sheeting on ground and/or floor surface of lift)are In place, the cover of the transformer can be removed with handtools. A sample of the dielectric fluid Is most efficiently obtainedwith a disposable glass COLIWASA.

In order to obtain a representative sample, lower this device at arate that allows the levels of the fluid Inside and outside thesampler to remain the same. When the sampler reaches the bottom ofthe transformer, close 1t and as 1t 1s retrieved, wipe the COLIWASAwith a disposable absorbent pad. Transfer the sample directly intothe sample bottle. If a disposable sampling device 1s used, and ifthe transformer is out of service, it may be possible to leave theused sampler in the sampled materials. However, this should only bedone after consultation with the responsible authorities. Otherwisethe sampler should be drummed along with protective clothing,sheeting and absorbent pads, and disposed of at a pre-determinedapproved location.

The transformer drain valve should be utilized for sample collectionfor several reasons . The 1 ntegrl ty of these val ves cannot beassured. The valve may be rusty, may break or may become jammed inthe open position resulting in the uncontrolled release of thetransformer's contents. Secondly 1t 1s likely that transformercontents may have stratified. Since PCBs are heavier than otherinsulating oils this stratification may prevent the collection ofrepresentative samples. Samples obtained from the valve near thebottom of the transformer might reveal higher PCB concentration thanthe true concentration of the total dielectric fluid.

D. COLLECTION OF SEDIMENT AND LIQUID SAMPLES FROM STREAMS, RIVERS, CHANNELS,SEWERS, PONDS, LAKES AND LAGOONS

Th i s recommended protocol outl 1 nes procedures and equ 1 pment for thecollection of representative liquid samples and sediment/sludge samplesfrom standi ng 1 akes , ponds and 1 agoons , and f 1 owi ng streams , r1 vers ,channels, sewers and leachate seeps.

The collection of samples from these sources presents a unique challenge.Often sampling can be quite easy and routine (e.g., collecting a surfacewater sample from a two foot deep stream). Other times, the nature of thesite specific condition may dictate that special equipment is needed toaccess the sample, that health and safety 1s critical, that proper timingis essential due to tidal fluctuations and/or that flow rate is a factorfor consideration.

Prior to sample collection, impoundment characteristics (size, depth,flow) should be recorded in the field log book. Sampling should proceedfrom downstream locations to upstream locations so that disturbancerelated to sampling does not affect sampling quality. Additionally, if

F-48

Page 207: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

^ sediment samples will be collected at the same locations as liquidsamples, the liquid samples must be collected first.If the sampling plan calls for samples to be collected from the shore ofone of these Impoundments obtaining It should not be difficult. Howeverhealth and safety considerations must be addressed. The person collectingthe sample should be fitted with a safety harness with a rope secured toan Immobile object on shore. Backup personnel should be available toassist in collection and should be prepared and able to pull the samplersto safety if unstable banks are encountered.To more adequately characterize the content and/or quality of one of theseimpoundments, samples may need to be collected away from he shoreline,often at various depths. If the content of the Impoundment is suspectedto be highly hazardous, the risk to sampling personnel must be weighedagainst the need to collect the sample. Again, each person on the bargeor in the boat must be equipped with a life preserver and/or lifeline.1 . Liquids , .•..".A { • _ _ . . -

The sampling of liquids in lakes, ponds, lagoons, streams, rivers,channels, sewers and leachate seeps 1s generally accomplished throughthe use of one of the following samplers:- laboratory cleaned samtjle bottle

\^ - pond sampler :^V-weighted bottle samplerWheaton dip samplerKemmerer Dept,h SamplerBacon Bomb Sampler

The factors that will contribute to the selection of a samplerInclude the width, depth and flow of the location being sampled, andwhether the sample will be collected from the shore or a vessel.

For flowing liquids, additional concerns must be addressed such astemperature stratification and density partitioning. A determinationof tidal Influence for .example should be made and this influence'seffect on the sample collection should be detailed In the samplingplan. At a minimum, the stage of the tide at the time of samplecollection should be recorded. Consideration should be given tosampling at varied tidal stages.

Samplers may encounter situations where rate of flow affects theirability to collect a sample. For fast flowing rivers and streams itmay be nearly impossible to collect a mid-channel sample at aspecific point. Low flowing streams and leachate seeps present theopposite problem. In these cases the sampler should attempt to finda location where flow is,obstructed and a pool is created. If thisis not possible, the only way to obtain a sample may be to dig Into

i . 'the sediment with a decontaminated trowel to create a pooled area^-^ where the liquid will accumulate.

- AR103277F-49

Page 208: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

a. On-ShoreIf the banks are not sloped, the sampling personnel may be able tocollect the liquid directly Into the sample bottle. In someinstances where the liquid to be sampled cannot be reached, apond sampler, by virtue of Us extension capabilities, may benecessary. In this case, assemble the pond sampler ensuringadequate extension to obtain the sample without placing thesampling personnel in danger of falling into the Impoundmentbeing sampled. For a stream, channel or river, collect thesample at mid-depth. For standing liquid, collect the samplefrom just below the surface or at mid-depth. Once the sample 1sobtain transfer 1t directly Into the same bottle. Decontaminatethe sampling device before taking the next sample'.

b. OffshoreUsing the decontaminated sample bottle or pond sampler ifnecessary, collect a liquid sample. If the liquid has stratifieda sample of each strata should be collected. One of the depthsamplers listed will allow collection of discrete representative.liquid samples at various depths. Proper use of the samplingdevice chosen Includes slow lowering and retrieval of the sample,immediate transfer of the liquid Into the sampling container, andlogbook notation of the depth at which the sample was collected. . ,After collection, decontaminate the sampling device before taking ^>the next sample.

2. Sediments and Sludges

The sampling of sediments/sludges in lakes, ponds, lagoons, streams,rivers, channels, sewers and leachate seeps 1s generally accomplishedthrough the use of one of the following samplers:

scoop or trowelsampling trierbucket augersoil coring device/silver bullet samplerVelhmeyer samplerwaste pile samplersplit spoon samplerPonar dredge

The factors that contribute to the selection of a sampler Include thewidth, depth, flow and the bed characteristics of the Impoundment tobe sampled, and whether the sample will be collected from the shoreor a vessel.

In collecting sediment samples from any source, care must be taken tominimize disturbance and sample washing as it is retrieved throughthe liquid column above. Sediment fines may be carried out of the ^^sample during collection if the liquid above 1s flowing or deep.This may result in collection of a non-representative sample due tothe loss of contaminants associated with these fines. While a

ARI0327BF-50

Page 209: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

sediment sample is usually expected to be a solid matrix, the samplershould avoid placing the sampler in the bottle then decanting off theexcess liquid. If the sample 1s collected properly, any liquid thatmakes 1t Into the bottle 1s representative of sediment conditions.As with liquid sampling, a determination of tidal Influence on theImpoundment being sampled should be made and this influence's effecton the sample collection should be detailed 1n the sampling plan. Ata minimum, the stage of the tide at the time of sample collectionshould be recorded. Consideration should be given to sampling atvaried tidal stages; ;

a. On-shore ~If liquid flow and:depth is minimal and sediment is easy toreach, a trowel or scoop may be used to collect the sedimentsample. However, where the liquid above the sediment collectionpoint Is either flowing or greater than four (4) inches in depth,a corer or other device that eliminates sample washing must beused to collect the sample 1n an attempt to minimize washing thesediment as it is retrieved. One of the coring devices listedwill allow the collection of an undisturbed core of sediment. Itmay be necessary to decant standing water from the top of thecore. This should be done carefully and prior to transfer to thesample bottle. A decontaminated trowel should be utilized totransfer the sample from ;the corer directly Into the bottle.After collection, decontaminate the sampling device beforecollecting the next sample.

b. Offshore

In some instances, the dimensions of the Impoundments or channeldictate that a barge or boat must be 'used. The device used forsample collection in this case will, again, depend upon the depthand flow of the liquid above the sample location and the bedcharacteristics of the>impoundment. Generally trowels or scoopscannot be -used 'In an offshore situation. Instead, cores ordredges, are more efficient .means for sample collection. Thebarge or boat should be positioned just upstream (if it is aflowing Impoundment) of the desired sample location. As thecorer or dredge is lowered it may be carried slightly downstream,depending upon the .force of the flow. Upon retrieval, transferthe contents of the corer or dredge directly into the samplebottle using a decontaminated trowel. Decontaminate both hecorer or dredge and the trowel before collecting the next sample.

£. SURFICIAL SAMPLING

This recommended protocol outlines procedures and equipment for thecollection of representative wipe, chip and sweep samples.Surficial sampling 1s used toassess the existence and/or extent ofcontamination on various surfaces rather than 1n a soil, water or airmatrix. For example, the interior of a building may be assessed bycollecting wipe samples of the process vessel and ventilation ducts

ARI03279F-51 :

Page 210: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

inside. Though all three types of samples are for roughly the same ^-^purpose, the three types of sampling are performed in very different waysbecause they are intended to assess different surface areas.1. Wipe Samples

This method of monitoring surficial contamination is intended fornon-volatile species of analytes (e.g., PCB, TCDD, TCDF) on a non-porous surface (e.g., metal, glass). Sample points should becarefully chosen and should be based on site history, manufacturingprocesses, personnel practices, obvious contamination and availablesurface area. Suggested sampling points Include process vessels,ventilation ducts and fans, exposed beams, window panes, etc. Tofacilitate calculations once the analytical data 1s received, anarea 25 cm x 25 cm should be sampled.\To collect a wipe sample the following equipment is needed:

a pre-measured template, or a ruler, to measure out area to bewiped

disposable surgical gloves, to be changed prior to handling cleangauze

sterile, wrapped gauze pad (3 in. x 3 in.)

sample bottle

appropriate pesticide grade solvent

To facilitate the collection of a wipe sample, 3 in. x 3 in. gauzeshould be utilized to wipe a'25 cm x 25 cm area. The entire areashould be stroked firmly once in the horizontal 'direction and one inthe vertical direction* The use of filter paper for wipe sampling isnot recommended. Filter paper will tend to rip and crumble up if thesurface wiped 1s slightly rough. If filter paper Is to be used itshould be four Inch diameter heavy gauge paper, such as Whatman 4Filter Paper. fThe solvent of choice may change based upon the analytes of interestand surface being sampled. Generally pesticide grade hexane is thepreferred solvent. The volume of solvent used should be measured(approximately 15-20 ml per 3 in. x 3 in. pad) and the gauze padshould be soaked just before collection of each sample. Pads shouldnot be presoaked.

Occasionally samples are desired from painted or waxed surfaces.Since hexane may degrade the finish or pick up interfering substancesan alternate solvent should be used. In this case, alcohol ordistilled/deionized water are acceptable substitutes. Surfaceconditions that create potential interferences should be recorded in ijthe field logbook. ^

ARI0328QF-52

Page 211: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

Once the sample location has been determined, measured and markedoff, sample collection can begin. Wearing a new pair of disposablesurgical gloves, measure out 15-20 mis of solvent in a decontaminatedgraduated cylinder. Remove the gauze pad from its sterile wrappingand soak it with the measured solvent. Wipe entire area to besampled once In the horizontal direction and once 1n the verticaldirection. Place the gauze pad into the sample bottle. Dispose ofthe template and the gloves.A blank should always be collected for each wipe sampling episode inorder to ensure the quality of the data. This blank will help toidentify potential introduction of contaminants from the pad, solventor sample container. To perform a wipe blank, wet a gauze pad with ameasured amount of solvent, wearing new gloves, and place the paddirectly into the sample bottle.

2. Chip Samples j •: > • >,

This method of monitoring surficial contamination is intended fornon-volatile species of analytes (e.g., PCB, Dloxin, etc.) on poroussurfaces (e.g., cement, /brick, wood). Sample points should becarefully chosen and should be based on site history, manufacturingprocesses, personnel practices, obvious contamination and availablesurface area. Suggested sampling points Include floors near process

__ vessels and storage tanks, loading dock areas, etc. To facilitate'••s calculations of the analytical data as received, an area 25 cm x 25

cm should be sampled. To collect a chip sample the followingequipment 1s needed: ,- a pre-measure template, or a ruler, to measure out area to be

chippedfull face shield or gogglesdisposable surgical' gloves, to be changed prior to collection ofeach sample ./- •, ' v ? ;

\ . . : . r i r • " ' " ' .decontaminated chisel and hammer or electric hammerdedicated natural bristle brush and a dedicated decontaminateddust pan constructed of a pre-approved material which will notinterfere with the contaminants of concern.

Once the sample location has been determined, measured and markedoff, sample collection can'begin. Wearing a new pair of disposablegloves, and using a decontaminated chisel and hammer, break up thesurface to be sampled. An effort should be made to avoid scatteringpieces out of the sampling area boundary. The area should be chippedto less than one-quarter inch (preferably 1/8 in.). Record how deepchips were taken. Collect the chipped pieces using a dedicated,

( , decontaminated dust pan and natural bristle brush and transfer the^-^ sample directly into the bottle.

ARI0328IF-53

Page 212: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

3. Sweep SamplesThis method of monitoring surfidal contamination is intended fornon-volatile species of analytes (e.g., PCS, Dioxin, etc.) in residuefound in porous (e.g., asphalt) or non-porous (e.g., metal) surfaces.Sweep sampling allows collection of dust/residue samples that mayhelp in the assessment of contaminant determination and delineation.Sample points should be carefully chosen and should be based on sitehistory, manufacturing processes, personnel practices, obviouscontamination, migration pathways and available surface area.Suggested sampling points Include floor surfaces near process vesselsand storage tanks (e.g., linoleum floors where a solvent cannot beused or too much residue exists for a wipe sample to be easilycollected). Where contaminated sediments may have migrated andaccumulated, etc. To facilitate calculation once the analyticaldata 1s received, an area 25 cm x 25 cm should be sampled.To collect a sweep sample the following equipment Is needed:

pre-measured template, or a ruler, to measure out area to besweptdedicated natural bristle brushdecontaminated spatula and/or a dedicated decontaminated dust pan VLconstructed of a pre-approved material which will not Interferewith the contaminants of concern

disposable dedicated surgical gloves to be changed prior tocollection of each sample.

Once the sample location has been determined, measured and markedoff, sample collection can begin. Wearing a new pair of disposablegloves, sweep all residue in the area to be sampled onto adecontaminated or dedicated dust pan. A decontaminated or dedicatedspatula may be used to aid in transferring the sample into the samplebottle.

F. FLOW MEASUREMENTS

During the course of a site Investigation it 1s often necessary to assessthe quality and quantHy of 1iquids f1 owlng in channels. Whi1e thequality of liquid is determined through sampling and analysis,determinations of quantity of flow are made through the use of fieldmeasurements. Flow information should be gathered when samples arecollected to allow a full characterization of the channel. Flowmeasurements also may be made without the collection of samples whenassessing the channel's potential as a migratory pathway for pollutants.

1. Velocity \The measurement of flow velocity can b.e achieved In a number of ways.

ARI03282F-54

Page 213: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

upper check valve and into the discharge line. This uppercheck valve prevents back flow into the bladder.The bladder pump is utilized much like the portablesubmersible pumps, except that no electrical lines arelowered down the well. The source of gas for the bladder iseither bottled gas or an on-site air compressor.

Disadvantages include the large gas volumes needed,especially at depth, potential bladder rupture, anddifficulty In cleaning the unit.The preferred material of construction for bladder pumps andany tube, joint or other fixture that remains in contact withthe static water level is PTFE or stainless steel. The useof other material for those parts which do not remain 1n

, contact with the static water level must be pre-approved.

v. Evacuation Procedure Using Packer PumpsPacker pumps consist of two expandable parts that Isolate asampling unit between them. They deflate for verticalmovement within the well and Inflate when the desired depthis reached. The packers are constructed of rubber and can beused with submersible, gas lift and suction pumps. Thisrubber may deteriorate with time and undesirable organics mayenter the water. True Isolation of the sampling Interior isvery difficult and,nearly impossible to prove due_to seal andleakage and proper placement configuration.

vi. Evacuation Procedures Using Gas Piston Pumps

The gas piston pump provides continuous sample withdrawal atdepths greater ;than is possible with most other approaches.The pump consists of a stainless steel alternating chamberbetween two pistons. Pressurization of the alternatingchamber activates the piston which allows water entry duringthe suction strokehand forces the water to the surface duringthe pressure stoke. Due to the pressure gradients to whichthe sample Is exposed, use of this pump for evacuation shouldbe evaluated on a case by case basis.

vii. Evacuation Procedure Using Gas Displacement PumpsGas displacement pumps force a column of water to the surfacewithout extensive.mixing of the pressurizing gas and water.The .pump is efither .lowered Into the well or Installed withthe casing. Due to the pressure gradient to which the sampleis exposed, use of this pump for evacuation should beevaluated on a case by case basis.

F-67 ARI03283

Page 214: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

vi11. Evacuation Procedures Use Hand-Bailing Techniques

If the diameter, construction, depth or other condition ofthe well prevent the use of a pump for evacuation, a bailermay be used.The bai1er must be 1aboratory cleaned and wrapped us i ngapproved methodologies, preferably by the laboratoryperforming the analysis. Hand bailers come in a variety ofsizes and volumes to accommodate most well casing diametersmeters. The preferred materials of construction are PTFE(e.g., Teflon ) and stainless steel although other materialsmay be accepted on a case by case basis. Hand'bailers mustbe slowly lowered Into the well using caution not to aeratethe wel 1 water to be sampl ed. The preferabl e method oflowering the bailer is by the use of a cable attached to alow gear ratio winch. This winch 1s connected to a tripodstanding over or alongside the well. This 1s the mostreproducible method of hand balling a well. If thisapparatus 1s not available, the bailer may be lowered by handusing a new length of cord. Lower the bailer to the waterand pull up the cord to set the check valve. Retrieve thebailer and transfer the water into a container or otherdevice to measure the volume being evacuated.The bailer and any other equipment entering the well must belaboratory cleaned and handled with new surgical gloves topreclude any potential contamination sources. Cleanedsampling equipment and anything entering the well should notbe allowed to contact the ground or any other potentiallycontaminated surfaces (e.g., gasoline pumps). If this shouldoccur, that Item should not be placed In the well or utilizedfor evacuation. It 1s always a good practice to have extralab cleaned bailers on hand in case of emergency.

c. Sample Collection

i. Sampling Procedure using Bottom-Fill Check Valve Bailer

After evacuation of the required volume of water from thewell, sampling can begin. Sampling of the monitor wellshould occur as soon as possible after evacuation, preferablyImmediately. In most cases, the time lapse betweenevacuation and sampling should not exceed twenty-four hours.Sampling with a bailer Is similar to evacuation techniques,except care 1s taken not to aerate the sample and when it isbrought to the surface it 1s slowly transfered to the samplecontainer, filling purgeable organic vials first. Fill thisvial, leaving no headspace or air bubbles, and seal. Allother sample containers should be filled to the shoulder andhave head space to allow for preservative addition andexpansion/contraction of sample.

F-68 AKI0328I*

Page 215: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

11. Sampling Procedures Using Peristaltic PumpsA peristaltic pump 1s a self-priming suction lift pumputilized at the ground surface which consists of a rotorwith bearing rollers. , One end of PTFE tubing (e.g., Teflon)Is inserted into the well. The other end 1s attached to aflexible tube of pre-approved material which has been

, threaded around the rotor, out of the pump, and connected toa discharge tube of PTFE. The liquid moves totally withinthe sample tube and no part of the pump contacts the liquid.If PTFE tubing was used for well evacuation, the same lengthof tubing may be used for sample collection at that well. Ifanother approved material was used for well evacuation, a newdedicated length of PTFE tubing may be required for samplecollection. The tubing should be equipped with a foot valveto avoid having aerated water from the pump and the tubingfall back 1nto:the well.One limitation posed by this type of pump Is its suctioncapability. Generally the water level must be within twenty-five feet of the ground surface. Another limitation 1s thepossibility of .losing 'volatile* during sample collection.Therefore their use in ground water sampling 1s conditional

\ and will be determined if appropriate on a case by casebasis. ,

Hi. Sampling Procedures for Continuous Organics Sampling System1n Conjunction with a Peristaltic Pump .This method is a prototype sampling train developed fromvarious research .groups seeking to obtain ground watersamples over a period of time. The system consists of asampling train of tubing and a peristaltic pump. The systemcollects a small Volume per time for a set period, e.g., 24hours. At the time of this writing, the systems are notwidely used nor commercially available. Their use must be

._;.: _ ,, approved by the regulatory agency on a case by case basis.d. Domestic Well Sampling Procedures

The first step in sampling a potable well whether it be ahomeowner's well "or a municipal production well is to obtain asmuch information as possible from the homeowner or watersuperintendent. This should Include: depth of the well,formation in which the well Is completed, screen depth andlength, diameter of casing, and when and who installed the well.Caution must be utilized in applying this Information unlessconfirmation can be obtained (e.g., drilling logs). With thisinformation, determine the ;number of gallons to be evacuated. Ifno information is available evacuate for a minimum of 15 minutes.This evacuation is best accomplished from an outside faucet witha hose run away from the home. In this manner overloading of thehomeowner's septic system will be minimized. An Inspection ofthe system should be performed to locate the well, pump, storage

AR I 03285F-69

Page 216: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

tanks, and any treatment systems that may be present. The sampleaccess point should be chosen as close to the well head aspossible, prior to the storage tank or any treatment. Collectthe sample at the first tap or spigot and note in the field logwhere the sample was collected and any systems (storage and/ortreatment) between the well head and sampling collection point.In no instance should personnel dismantle a home-owner's plumbingto access a sample. For long term monitoring projects a specifictap or faucet should be designated as the sample access point andutilized for the duration of the project.

e. Municipal and Industrial Well Sampling

When sampling municipal and Industrial wells, it 1s desirable tosample as close to the well source as possible. Samples shouldbe taken directly from the well head whenever possible. Thiswill eliminate chlorination or other treatment Interferences,possible changes in quality within the lines, mixing of waterfrom other wells, etc.

Large capacity wells which are "on-line" during the visit can besampled immediately. Municipal wells which are off-line (e.g.,not being utilized at that time), must be pumped to waste priorto sampling. Ten minutes or more 1s suggested.Access to municipal well systems, well houses, etc. requires theassistance of a water department employee. Prior notification isessential. •

f. Filtering Ground Water Samples

In order to assure the quality of data from the analysis ofground water samples, critical sample handling procedures must beaddressed. Of chief Importance is sample filtration. Becausethe objectives of specific monitoring programs may vary, it isdifficult to establish a standard for filtering that will applyto all situations. However for the purposes of hazardous siteevaluation certain objectives are consistent that can allowcriteria to be established.

If a particular case demands consideration of dissolved metals,both filtered and non-filtered samples should be collected foranalysis.

i. Considerations for Total Metals SamplingAnalyzing for total metals concentrations provides an elementof consistancy when comparing data and evaluating waterquality. The organic analyses are performed on an unfilteredportion of the sample, so for the sake of uniformity, samplehandling practices for inorganic analyses should be the same--unfiltered. Also both the National Interim Primary DrinkingWater Standards (NPDWS) and the National Secondary DrinkingWater Standards

RRI03286F-70

Page 217: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

(NSDWS) for metals are based on total metals concentration.An assessment of water quality must take this into account.The difference between dissolved and total metals can beattributed to the absorption or adsorption of various metalsspecies onto fine'grained particles (e.g., s1H, clay). Anobjective of many sampling episodes is to assess the watermoving In an aquifer. Since metals are transported primarilyin the dissolved state and particulate matter 1* not usuallytransported through the aquifer, many feel that metalsassociated with particles should not be Included in anassessment of water moving in an aquifer. However, totalmetals concentrations are useful in case there Is a change inthe aquifer (e.g., pH) that would cause sorbed Ions to becomedissolved, thus raising the concentration.NOTE: Unfiltered sample results should be reported as totalmetals. If the results of metals analysis are to be reportedas dissolved metals concentration, samples must be fieldfiltered prior to preservation.

ii. Considerations forjDissolved Metals Sampling

Primarily, samples taken for metals analysis are the onlyones that may be filtered prior to that analysis. Thetransfer of organic,samples from one container to another andthroughh a filtering apparatus may result 1n losses of ororganic materials on the walls.of the containers and thefilter. Additionally volatilization will occur during sampletransfer and filtering1 resulting in values that are lessthan actual, the effect of filtration on inorganic ioncontent must aTspbf considered.During filtration, aeration may reduce the oxidationreduction potential of-the water through the introduction ofoxygen. This in turn may change the valence state of somecations which then could lead to the loss of analytes throughprecipitation (e g., oxidation of Ferrous 1on to Ferric ionafter aeration).V,, This same effect occurs during sampletransport if it is not immediately preserved. For thisreason transport,of the sample to a laboratory for subsequentfiltration and preservation Is not permitted.

In addition to .these chemical changes that can occur as aresult of filtering, the filtering apparatus itself mayadversely affect the quality of the sample. The filter paperand filter cake^-that accumulates during filtration couldabsorb dissolved metal Ions resulting in lower than actualdissolved metals concentration In the filtrates. The lessthe sample 1s handled between collection and analysis, thebetter. The filtration apparatus and procedures, especiallyif performed by an unskilled technician, are an additionalsource for contaminant introduction.

ARI03287F-71

Page 218: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

111. Filtered v. Non-FilteredThe d1fferences obtained as a result of sample handl1ng(filtered v. non-filtered) are dependent on the type ofassociation between the specific Inorganic ion and theparticulate matter. Studies show that when an inorganic ion1s not closely associated with particulate matter (e.g.,sodium) the differences between total and dissolvedconcentrations are small and random. However, to concludethat the presence of partlculates can lower the dissolvedmetal concentrations 1 * 1 ncorrect. The fact that totalconcentrations of certain ions are higher than the dissolvedconcentration of these Ions does not support this conclusion.Overall, it is obvious that filtration of metals samples hasan impact on their quality. Both EPA and DHSM prefer touse total metals for purposes of defining contaminant levelsas they relate to treatment and cleanup requlrements.Ideally, the sample may be split into two portions, one forfiltration and the other for immediate preservation andsubsequent analysis for total metals concentration. Byanalyzing the two fractions separately, differences betweendissolved and total metals can be compared.The decision whether to filter metals samples will be basedon the factors presented herein, the physical quality of thesamples the objective of the monitoring program andultimately the discretion of the Project Manager controllingthat program. If filtering 1s chosen 1t is Imperative that1t be performed in a manner that will preserve the integrityof the sample and allow consistent reproduction of technique.The filtering method outlined here must be strictly followedfor data that will be submitted for quality assurance review.

iv. Methods

If filtration 1s to be performed 1t must be done immediatelyupon sample collection and prior to preservation. The samplemay not be transported to the lab for filtration andpreservation nor may 1t be preserved prior to filtration.The sample .should be collected, filtered, preserved, placedon ice and shipped to the lab for analysis.

F11trat1 on should be performed us i ng a 1 ab cleaned anddedicated .45 micron pore size filter. Particularly turbidsamples may be pre-filtered utilizing a glass fiber filterprior to the .45 micron filter to speed the process.Disposable enclosed filters that are commercially availableare acceptable. After filtration samples should be preservedimmediately with nitric acid to a pH of less than two.

ARI03288F-72

Page 219: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

g. Sampling for Low Density, Immiscible Organic*Low-density, Immiscible organics Include gasoline, petrochemicalsand other chemicals which have specific gravities less thanwater. They are likely to be present in aquifers as a separatephase because of low solubility in water. These chemicals tendto float on the water surface in a water table environment andcommonly occupy the capillary fringe zone above the water table.In a confined aquifer these chemicals are found along the uppersurface of the permeable material and also within the overlyingconfining layer. (It should be noted that when immiscibleorganics with a specific gravity greater than water are thecontaminants of concern or If contaminants are suspected in morethan one stratified layer in the well column, sampling proceduresmust be modified. It may be necessary to lower the bailer usedfor sample collection to a particular depth in the well, or toutilize a point-source bailer.)

1. Well Construction ;

Care must be exercised to ensure that the well screen extendssignificantly into both the water saturated zone and theoverlying formation. This design will ensure thatcontaminants in the capillary fringe or overlying aquitarda* well as ground water, enter the well to be observed. A

. w e l l screen with abundant open area such as a wire-wrappedscreen Is Important 1n allowing free flow of the petro-chemicals i.nto the well. With this consideration in mind,nearly any drilling methods which permits a well of at leastthree inches Inner diameter to be constructed 1ssatisfactory.

ii. Sampling ProceduresSampling procedures for low density, Immiscible organicsdiffer substantially from those for other pollutants. It 1snecessary to sample at least two or sometimes three distinctlayers of depths within the sampling well.After the well is initially constructed, 1t should bedeveloped and pumped to remove invaded water, then it shouldsit idle to ajlow the water level to fully stabilize and thefloating layer of petrochemicals to stabilize.Measurement of the thickness of the petrochemical layer maybe accomplished by using a water-level indicator gel with asteel tape to determine the depth of the water surface. Aweighted float may be used to determine the depth to the topof the petrochemical layer. The difference between these tworeadings is the thickness of the petrochemical layer.Downhole infrared optical sensors are available whichaccurately detect all Interfaces 1n the bore column, causedby material partitioning. Electric water-level sounders willnot work properly for these determinations.

.-f.73- AR I 03289

Page 220: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

A sample of the floating petrochemicals may then be takenusing a bailer which fills from the bottom. Care should betaken to lower the bailer just through the petrochemicallayer but not significantly down Into the underlying groundwater (a clear bailer is preferable.)Sample* of the ground water at the bottom of the screen andat some intermediate location, such as the mid-point of thescreen, may also be obtained with a bailer. However, Inorder to avoid mixing the waters, a separate casing 1stemporarily lowered Inside the permanent well casing. Thiscasing is equipped with an easily removed cap on the bottomso that no fluid enters the casing until It ha* reached thedesired depth for sampling. The cap Is then knocked free ofthe bottom of the casing, allowing water to enter from thespecific depth to be sampled by bailer. At significantdepths below the petrochemicals several full bailers of watermay be withdrawn and discarded before the sample is taken toobtain fresh formation sample. Thorough cleaning of thebailers as previously discussed, 1s required between samplingpoint*.

H. WASTE PILE SAMPLING

This recommended protocol outline* general procedures for collectingsamples from waste piles and other waste materials, equipment necessaryfor sampling, and the adequate representation of the material. Alsopresented wil.l be necessary factors for consideration when formulating asampli ng pi an. Because of the vari able* 1nvolved 1 n waste materi alsampling, including shape and size of piles, size, compactness andstructure of the waste material and make-up throughout the material, exactprocedures cannot be outlined for every sampling situation.Considerations must be made for the above mentioned variables, the purposeof sampling, and the intended use of the data to help determine correctsampling methodology.

1. Considerations for the Sampling Plan

The physical and chemical make-up of the waste pile and the purposeof sampling should be considered in planning for the sampling.Information about these Items is presented below.

a. Shape and Size

Shape and size of waste material and waste pile* may vary greatlyin areal extent and height. The pile may be cone shaped, longand rectangular, square, oval or irregularly shaped. State andfederal regulations often require specified number of samplesper volume of waste, therefore size and shape must be used tocalculate volume and to plan for the correct number of samples.Shape must also be accounted for when planning physical access tothe sampling point the equipment necessary to successfullycollect the sample at that location.

Page 221: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

b. Characteristics of the Material1. Type of Material

Material to be sampled may be homogeneous or heterogeneous.Homogeneous material resulting from known situation* (e.g.,process wastes) may not require an extensive samplingprotocol if the material remains homogeneous. Heterogeneousand unknown wastes require more extensive sampling andanalysis to ensure the different components are beingrepresented.

11. Chemical Stability ;Waste material* may be affected by their Inherent chemicalstability. Exposure to the element* and leaching over timemay cause older material to differ in chemical compositionfrom newly deposited material In the same pile.Heterogeneous material may undergo chemical reactionsresulting in pockets or layers of different compounds.

111. Particle SizeThe particle.size of the material affects sampling bypreventing certain volumes from being analyzed. Large chunksof material which are left behind and not sampling may result1n positive or negative bias of contaminants 1n samples. IfIt 1* necessary to sample larger materiald, provisions mustbe made in the planning stage to render the large materialcapable of producing a sample.

iv. Compactness/Structure of MaterialThe compactness/structure of the material may vary across thediameter of the pile. The material may range from monolithicto free-flowing, and of a consistency from muddy to compactand dry. This should be considered when planning samplingprocedures. ;

c. Purpose of SamplingDuring the Investigation of a site, areas of waste materials orwaste piles are often encountered. For complete evaluation of asite, these areas must be characterized. Often information aboutthe waste 1s available, thus providing Insight to It* chemicalcomposition. If sufficient information Is known about theprocess generating the waste and it is homogeneous, sampling maynot be required for classification

From the analytical data generated, two scenarios are commonlyencountered: contaminant concentration* below specific actionlevels which usually allows the material to remain on site afterdelineation or contaminant concentrations above action levelsrequiring additional evaluation of the waste.

F,75 AR I 0329 I

Page 222: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

After the waste has been classified as hazardous, additionalsample points and analysis for a wide range of parameters isusually required. The sampling scheme should address delineationof the extent of hazardous material exceeding clean-up criteria.It should characterize waste with contaminant concentration*above a specific, significant level but below removal criteriawhich may be removed to another approved facility, remain on siteafter risk assessment, or undergo some other form of remediationsuch a* on-site treatment.

2. Sampling Procedures

As with soil sampling, waste pile samples can be collected at thesurface or at depth, and different equipment 1s required in eachinstance. Surface samples can be collected most efficiently with atrowel or scoop. For samples at depth, a decontaminated bucket augermay be required to advance the hole, then another decontaminatedauger used for * sample collection. For a sample core, waste pilesamplers or grain sampler* may be used.Waste pile sampling is generally accomplished through the use of oneof the following samplers:

^scoop or trowelwaste pile samplersampling triersoil augergrain samplerVeihmeyer samplersplit spoon samplersoil coring device, (e.g. Shelby tube)

a. Surface

At the desired location, clear surface debris. Collect theadequate volume of waste from a depth of 0-6 Inches using atrowel, scoop or auger. For a core sample from the surface usethe waste pile sampler, trier, or other listed corer/ sampler.Transfer the sample directly Into the sample container, or use adecontaminated trowel or spatula for transfer if necessary. Awide mouth bottle is preferable for containing the sample, a* itrequire* less disturbance of the sample transferred Into thebottle.

b. At DepthAt the sampling location, advance the hole to the desiredsampling depth with a decontaminated bucket auger or power auger.Use another decontaminated bucket auger or corer/sampler tocollect the sample, and, if necessary, a decontaminated spatulato transfer the sample into the sample bottle. . For samplesgreater than three feet, a hand operated hammer and extension rodmay be utilized with a split spoon for sample collection. Uponretrieval, the split spoon should be opened, it* contents logged

ARIQ3292F-76

Page 223: APPDOIXA · 2019-12-15 · 1.33 628 650 1.66 1040 1.55 732 700 1.35 851 1.89 890 750 1.39 873 1.28 603 800 1.37 861 2.31 1089 850 1.05 657 1.61 758 900 0.80 502 2.54 1197 950 1.00

if necessary, and Immediately transferred Into a sample bottleusing a decontaminated spatula or spoon.

3. Required Analytes and Frequencya. Waste Classification

•-

The requirements usually consist of a specific sampling frequencyper volume (cubic yard*} of material. Required analysis isusually RCRA Characteristics, Total Petroleum Hydrocarbons andTotal PCBs.

b. CharacterizationWhen the material 1* being evaluated to determine if it can beleft on site, the considerations previously mentioned 1n thissection should be used to plan a sampling strategy. Thecharacterization may require one or several phases of sampling,but the first phase should be positively biased or statisticallyrandom.

Once contaminants of concern have been Identified and quantified,additional sampling and analysis may be necessary. Due to thesite specific aspects of waste pile sampling and the variousreasons for which it is performed, the number of required samples

-4 j_- and analytes should be determined by the personnel accumulating^^ the data and directing the Investigation.

ARIG3293


Recommended