+ All Categories
Home > Documents > APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because...

APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because...

Date post: 31-May-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
69
APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND WATER ON SLOPE STABILITY'
Transcript
Page 1: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

APPENDIX 1 LITERATURE REVIEW

THE EFFECT OF SOIL AND WATER ON SLOPE STABILITY

Appendix 1 Content page

CONTENT PAGE

ABSTRACT I

CONTENT PAGE II

LIST OF FIGURES III

LIST OF TABLES IV

All INTRODUCTION 1

A12 SEDIMENT STRENGTH 2 Al21 Shear stress 3 Al22 Shear strength 3

Al22l Cohesive soils 4 Al222 Frictional Forces 4

Al23 Soil Types 6

Al3 THE EFFECT OF WATER ON SOIL STRENGTH 8 Al31 Types of slope failure 9 Al32 Adsorption by soils 10 Al33 Hydro-compaction of soils l2 A134 Liquefaction 13 A135 Mathematical modelling for slope failure J4

Al35l Application to shallow and deep landslides 17 AJ36 Problems associated with water models 18

Al4 CONCLUSION 19

REFERENCES 20

Investigation of land stability at Windermere Northern Tasmania II

Appendix l The effect of soil and water on slope stability

chapter AI THE EFFECT OF SOIL AND WATER ON SLOPE STABILITY

Alllntroduction

Characterisation of potential regions for slope failure is a complicated and often uncertain

process due to the great variety of slope morphologies slope geology (Gerrard 1992)

and the effect of water on soil moisture and soil properties Because of the complexity of

the slope erosion system large numbers of slope stability studies have been carried out

Norton and Smith (1930) were amongst the first to recognise an inverse relationship

between slope angles and the textural B-horizon and later identified a correlation between

slope and soil structure texture and consistency

Technological development has since included improved methods of identifying and

describing properties which influence land stability Three main factors influence slope

stability 1) gravity and therefore the gradient of the slope 2) troublesome earth materials

and the occurrence of triggering events and 3) water and the hydrologic characteristics of

middot the slope (Murch et al 1995) This chapter considers a number of models that have been

introduced to make correlations between soil characteristics and slope stability The

effects of water on sediment strength and of how such changes can be calculated in terms

of increasing the likelihood of failure are also described

The term soil in this paper is not restricted to the usual definition of the surface layer

Instead soil means particulate matter including clay silt sand or gravel (essentially

unconsolidated or lightly consolidated material without cement) Terminologies

associated with soil mechanics referred to in this paper are defined in table All

Investigation of land stability at Windermere Northern Tasmania

)

Appendix I The effect of soil and water on slope stability

Table All Tenninology discussed in text

Tenn Shear stress (t)

Shear stren th Angle of Internal friction ( ltP)

Cohesion (c)

Friction

Definition The gravitational force applied to a body of material that causes movement arallel to slo e The maximum resistance of soils to shear stress The angle between the normal and the contact surfaces of two bodies and the direction of the resultant reaction between them when a force is middotust tendin to cause relative slidin (Walker 1991) The mutual attraction that exists between fme grained particles tending to hold them together as a mass without the application of external forces

Clay which at no time in its history has been subject to pressure Normally consolidated cia s Over consolidated cia

middot middot middot~~~~~~r~e~ss~u~re~middot----------------~ history has been subject to pressure greater urden ressure

A12 Sediment strength

The nature and extent of forces acting on slopes and the extent of slope stability is

influenced by such inter-related variables as geology slope gradient climate vegetation

hydrological characteristics and time (Murch et al 1995) Although slopes often appear

stable and static they are in fact active parts of the dynamic evolving pattern of

landscape formation (Keller 1992) Slope stability is commonly expressed by equations

involving the critical shear stress required for movement and the angle of response

(Ulrich 1987) As illustrated in figure Al1 (Lowe 1966) steep slopes are generally

more prone to failure than flat slopes due to the topographically induced gravitational

shear strength Two opposing forces act on a body at rest on a slope shear stress and

shear strength (Murch et al 1995) In general steepening slope gradients reduce the

shear strength by changes in cohesion pore pressure and normal stress thus allowing the

body to move (Carson and Kirby 1972)

A121 Shear stress

The stress that controls changes in the volume and the strength of soil is known as the

effective stress When a load is applied to a saturated soil it will be carried by the water in

Investigation of land stability at Windermere Northem Tasmania 2

Appendix I The effect of soil and water on slope stability

the soil voids (causing an increase in pore water pressure) or by the soil skeleton in the

form of grain to grain contact (Smith 1971) Thus stress is a function of particle friction

and weight (mass x gravity)

DRIVING FORCES

RESISTING FORCES

Figure All The force acting on a typical sliding mass For equilibrium to be reached force such as Er and El must be equal P must equal and oppose the weight force (W) The tangential component T of the weight force W must resist the developed shear strength Sd Where lt1gt

is the angle of internal friction and i is the slope (Source Lowe 1966)

A122 Shear strength Shear strength is the internal resistance of soils to movement (Murch et al 1995)

Resistance to shear is made up of two parts particle friction and cohesion Frictional

resistance varies with the level of normal stress applied on the shear plane whereas

cohesive resistance is assumed to be independent of the applied stress ie it is a constant

value (Smith 1971) The strength envelope of a soil can be expressed by the Mohrshy

coulomb equation

t = c + cr tanltgt equation 1

t is the shear stress at failure cr is the normal stress on the shear plane c the cohesion and

lt1gt is the angle of internal friction (Bryant 1993) This equation states that shear stress will

equal cohesion when no normal stress is acting on the shear plane If shear strength

Investigation of land stability at Windermere Northern Tasmania 3

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 2: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 1 Content page

CONTENT PAGE

ABSTRACT I

CONTENT PAGE II

LIST OF FIGURES III

LIST OF TABLES IV

All INTRODUCTION 1

A12 SEDIMENT STRENGTH 2 Al21 Shear stress 3 Al22 Shear strength 3

Al22l Cohesive soils 4 Al222 Frictional Forces 4

Al23 Soil Types 6

Al3 THE EFFECT OF WATER ON SOIL STRENGTH 8 Al31 Types of slope failure 9 Al32 Adsorption by soils 10 Al33 Hydro-compaction of soils l2 A134 Liquefaction 13 A135 Mathematical modelling for slope failure J4

Al35l Application to shallow and deep landslides 17 AJ36 Problems associated with water models 18

Al4 CONCLUSION 19

REFERENCES 20

Investigation of land stability at Windermere Northern Tasmania II

Appendix l The effect of soil and water on slope stability

chapter AI THE EFFECT OF SOIL AND WATER ON SLOPE STABILITY

Alllntroduction

Characterisation of potential regions for slope failure is a complicated and often uncertain

process due to the great variety of slope morphologies slope geology (Gerrard 1992)

and the effect of water on soil moisture and soil properties Because of the complexity of

the slope erosion system large numbers of slope stability studies have been carried out

Norton and Smith (1930) were amongst the first to recognise an inverse relationship

between slope angles and the textural B-horizon and later identified a correlation between

slope and soil structure texture and consistency

Technological development has since included improved methods of identifying and

describing properties which influence land stability Three main factors influence slope

stability 1) gravity and therefore the gradient of the slope 2) troublesome earth materials

and the occurrence of triggering events and 3) water and the hydrologic characteristics of

middot the slope (Murch et al 1995) This chapter considers a number of models that have been

introduced to make correlations between soil characteristics and slope stability The

effects of water on sediment strength and of how such changes can be calculated in terms

of increasing the likelihood of failure are also described

The term soil in this paper is not restricted to the usual definition of the surface layer

Instead soil means particulate matter including clay silt sand or gravel (essentially

unconsolidated or lightly consolidated material without cement) Terminologies

associated with soil mechanics referred to in this paper are defined in table All

Investigation of land stability at Windermere Northern Tasmania

)

Appendix I The effect of soil and water on slope stability

Table All Tenninology discussed in text

Tenn Shear stress (t)

Shear stren th Angle of Internal friction ( ltP)

Cohesion (c)

Friction

Definition The gravitational force applied to a body of material that causes movement arallel to slo e The maximum resistance of soils to shear stress The angle between the normal and the contact surfaces of two bodies and the direction of the resultant reaction between them when a force is middotust tendin to cause relative slidin (Walker 1991) The mutual attraction that exists between fme grained particles tending to hold them together as a mass without the application of external forces

Clay which at no time in its history has been subject to pressure Normally consolidated cia s Over consolidated cia

middot middot middot~~~~~~r~e~ss~u~re~middot----------------~ history has been subject to pressure greater urden ressure

A12 Sediment strength

The nature and extent of forces acting on slopes and the extent of slope stability is

influenced by such inter-related variables as geology slope gradient climate vegetation

hydrological characteristics and time (Murch et al 1995) Although slopes often appear

stable and static they are in fact active parts of the dynamic evolving pattern of

landscape formation (Keller 1992) Slope stability is commonly expressed by equations

involving the critical shear stress required for movement and the angle of response

(Ulrich 1987) As illustrated in figure Al1 (Lowe 1966) steep slopes are generally

more prone to failure than flat slopes due to the topographically induced gravitational

shear strength Two opposing forces act on a body at rest on a slope shear stress and

shear strength (Murch et al 1995) In general steepening slope gradients reduce the

shear strength by changes in cohesion pore pressure and normal stress thus allowing the

body to move (Carson and Kirby 1972)

A121 Shear stress

The stress that controls changes in the volume and the strength of soil is known as the

effective stress When a load is applied to a saturated soil it will be carried by the water in

Investigation of land stability at Windermere Northem Tasmania 2

Appendix I The effect of soil and water on slope stability

the soil voids (causing an increase in pore water pressure) or by the soil skeleton in the

form of grain to grain contact (Smith 1971) Thus stress is a function of particle friction

and weight (mass x gravity)

DRIVING FORCES

RESISTING FORCES

Figure All The force acting on a typical sliding mass For equilibrium to be reached force such as Er and El must be equal P must equal and oppose the weight force (W) The tangential component T of the weight force W must resist the developed shear strength Sd Where lt1gt

is the angle of internal friction and i is the slope (Source Lowe 1966)

A122 Shear strength Shear strength is the internal resistance of soils to movement (Murch et al 1995)

Resistance to shear is made up of two parts particle friction and cohesion Frictional

resistance varies with the level of normal stress applied on the shear plane whereas

cohesive resistance is assumed to be independent of the applied stress ie it is a constant

value (Smith 1971) The strength envelope of a soil can be expressed by the Mohrshy

coulomb equation

t = c + cr tanltgt equation 1

t is the shear stress at failure cr is the normal stress on the shear plane c the cohesion and

lt1gt is the angle of internal friction (Bryant 1993) This equation states that shear stress will

equal cohesion when no normal stress is acting on the shear plane If shear strength

Investigation of land stability at Windermere Northern Tasmania 3

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 3: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix l The effect of soil and water on slope stability

chapter AI THE EFFECT OF SOIL AND WATER ON SLOPE STABILITY

Alllntroduction

Characterisation of potential regions for slope failure is a complicated and often uncertain

process due to the great variety of slope morphologies slope geology (Gerrard 1992)

and the effect of water on soil moisture and soil properties Because of the complexity of

the slope erosion system large numbers of slope stability studies have been carried out

Norton and Smith (1930) were amongst the first to recognise an inverse relationship

between slope angles and the textural B-horizon and later identified a correlation between

slope and soil structure texture and consistency

Technological development has since included improved methods of identifying and

describing properties which influence land stability Three main factors influence slope

stability 1) gravity and therefore the gradient of the slope 2) troublesome earth materials

and the occurrence of triggering events and 3) water and the hydrologic characteristics of

middot the slope (Murch et al 1995) This chapter considers a number of models that have been

introduced to make correlations between soil characteristics and slope stability The

effects of water on sediment strength and of how such changes can be calculated in terms

of increasing the likelihood of failure are also described

The term soil in this paper is not restricted to the usual definition of the surface layer

Instead soil means particulate matter including clay silt sand or gravel (essentially

unconsolidated or lightly consolidated material without cement) Terminologies

associated with soil mechanics referred to in this paper are defined in table All

Investigation of land stability at Windermere Northern Tasmania

)

Appendix I The effect of soil and water on slope stability

Table All Tenninology discussed in text

Tenn Shear stress (t)

Shear stren th Angle of Internal friction ( ltP)

Cohesion (c)

Friction

Definition The gravitational force applied to a body of material that causes movement arallel to slo e The maximum resistance of soils to shear stress The angle between the normal and the contact surfaces of two bodies and the direction of the resultant reaction between them when a force is middotust tendin to cause relative slidin (Walker 1991) The mutual attraction that exists between fme grained particles tending to hold them together as a mass without the application of external forces

Clay which at no time in its history has been subject to pressure Normally consolidated cia s Over consolidated cia

middot middot middot~~~~~~r~e~ss~u~re~middot----------------~ history has been subject to pressure greater urden ressure

A12 Sediment strength

The nature and extent of forces acting on slopes and the extent of slope stability is

influenced by such inter-related variables as geology slope gradient climate vegetation

hydrological characteristics and time (Murch et al 1995) Although slopes often appear

stable and static they are in fact active parts of the dynamic evolving pattern of

landscape formation (Keller 1992) Slope stability is commonly expressed by equations

involving the critical shear stress required for movement and the angle of response

(Ulrich 1987) As illustrated in figure Al1 (Lowe 1966) steep slopes are generally

more prone to failure than flat slopes due to the topographically induced gravitational

shear strength Two opposing forces act on a body at rest on a slope shear stress and

shear strength (Murch et al 1995) In general steepening slope gradients reduce the

shear strength by changes in cohesion pore pressure and normal stress thus allowing the

body to move (Carson and Kirby 1972)

A121 Shear stress

The stress that controls changes in the volume and the strength of soil is known as the

effective stress When a load is applied to a saturated soil it will be carried by the water in

Investigation of land stability at Windermere Northem Tasmania 2

Appendix I The effect of soil and water on slope stability

the soil voids (causing an increase in pore water pressure) or by the soil skeleton in the

form of grain to grain contact (Smith 1971) Thus stress is a function of particle friction

and weight (mass x gravity)

DRIVING FORCES

RESISTING FORCES

Figure All The force acting on a typical sliding mass For equilibrium to be reached force such as Er and El must be equal P must equal and oppose the weight force (W) The tangential component T of the weight force W must resist the developed shear strength Sd Where lt1gt

is the angle of internal friction and i is the slope (Source Lowe 1966)

A122 Shear strength Shear strength is the internal resistance of soils to movement (Murch et al 1995)

Resistance to shear is made up of two parts particle friction and cohesion Frictional

resistance varies with the level of normal stress applied on the shear plane whereas

cohesive resistance is assumed to be independent of the applied stress ie it is a constant

value (Smith 1971) The strength envelope of a soil can be expressed by the Mohrshy

coulomb equation

t = c + cr tanltgt equation 1

t is the shear stress at failure cr is the normal stress on the shear plane c the cohesion and

lt1gt is the angle of internal friction (Bryant 1993) This equation states that shear stress will

equal cohesion when no normal stress is acting on the shear plane If shear strength

Investigation of land stability at Windermere Northern Tasmania 3

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 4: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

Appendix I The effect of soil and water on slope stability

Table All Tenninology discussed in text

Tenn Shear stress (t)

Shear stren th Angle of Internal friction ( ltP)

Cohesion (c)

Friction

Definition The gravitational force applied to a body of material that causes movement arallel to slo e The maximum resistance of soils to shear stress The angle between the normal and the contact surfaces of two bodies and the direction of the resultant reaction between them when a force is middotust tendin to cause relative slidin (Walker 1991) The mutual attraction that exists between fme grained particles tending to hold them together as a mass without the application of external forces

Clay which at no time in its history has been subject to pressure Normally consolidated cia s Over consolidated cia

middot middot middot~~~~~~r~e~ss~u~re~middot----------------~ history has been subject to pressure greater urden ressure

A12 Sediment strength

The nature and extent of forces acting on slopes and the extent of slope stability is

influenced by such inter-related variables as geology slope gradient climate vegetation

hydrological characteristics and time (Murch et al 1995) Although slopes often appear

stable and static they are in fact active parts of the dynamic evolving pattern of

landscape formation (Keller 1992) Slope stability is commonly expressed by equations

involving the critical shear stress required for movement and the angle of response

(Ulrich 1987) As illustrated in figure Al1 (Lowe 1966) steep slopes are generally

more prone to failure than flat slopes due to the topographically induced gravitational

shear strength Two opposing forces act on a body at rest on a slope shear stress and

shear strength (Murch et al 1995) In general steepening slope gradients reduce the

shear strength by changes in cohesion pore pressure and normal stress thus allowing the

body to move (Carson and Kirby 1972)

A121 Shear stress

The stress that controls changes in the volume and the strength of soil is known as the

effective stress When a load is applied to a saturated soil it will be carried by the water in

Investigation of land stability at Windermere Northem Tasmania 2

Appendix I The effect of soil and water on slope stability

the soil voids (causing an increase in pore water pressure) or by the soil skeleton in the

form of grain to grain contact (Smith 1971) Thus stress is a function of particle friction

and weight (mass x gravity)

DRIVING FORCES

RESISTING FORCES

Figure All The force acting on a typical sliding mass For equilibrium to be reached force such as Er and El must be equal P must equal and oppose the weight force (W) The tangential component T of the weight force W must resist the developed shear strength Sd Where lt1gt

is the angle of internal friction and i is the slope (Source Lowe 1966)

A122 Shear strength Shear strength is the internal resistance of soils to movement (Murch et al 1995)

Resistance to shear is made up of two parts particle friction and cohesion Frictional

resistance varies with the level of normal stress applied on the shear plane whereas

cohesive resistance is assumed to be independent of the applied stress ie it is a constant

value (Smith 1971) The strength envelope of a soil can be expressed by the Mohrshy

coulomb equation

t = c + cr tanltgt equation 1

t is the shear stress at failure cr is the normal stress on the shear plane c the cohesion and

lt1gt is the angle of internal friction (Bryant 1993) This equation states that shear stress will

equal cohesion when no normal stress is acting on the shear plane If shear strength

Investigation of land stability at Windermere Northern Tasmania 3

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 5: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

the soil voids (causing an increase in pore water pressure) or by the soil skeleton in the

form of grain to grain contact (Smith 1971) Thus stress is a function of particle friction

and weight (mass x gravity)

DRIVING FORCES

RESISTING FORCES

Figure All The force acting on a typical sliding mass For equilibrium to be reached force such as Er and El must be equal P must equal and oppose the weight force (W) The tangential component T of the weight force W must resist the developed shear strength Sd Where lt1gt

is the angle of internal friction and i is the slope (Source Lowe 1966)

A122 Shear strength Shear strength is the internal resistance of soils to movement (Murch et al 1995)

Resistance to shear is made up of two parts particle friction and cohesion Frictional

resistance varies with the level of normal stress applied on the shear plane whereas

cohesive resistance is assumed to be independent of the applied stress ie it is a constant

value (Smith 1971) The strength envelope of a soil can be expressed by the Mohrshy

coulomb equation

t = c + cr tanltgt equation 1

t is the shear stress at failure cr is the normal stress on the shear plane c the cohesion and

lt1gt is the angle of internal friction (Bryant 1993) This equation states that shear stress will

equal cohesion when no normal stress is acting on the shear plane If shear strength

Investigation of land stability at Windermere Northern Tasmania 3

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 6: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

)

Appendix 1 The effect of soil and water on slope stability

exceeds shear stress movement will not occur If failure has occurred previously the

shear strength will be reduced resulting in residual strength not peak strength

A1221 Cohesive soils

Cohesive soils exhibit inter-particle attraction and possess inherent strength due to surface

tension of capillary water Most cohesive soils contain about 10 or more of clay

particles (Hail 1977) Differences between the properties of cohesive clays and non-

cohesive soils ( lt 10 clay) are outlined in Table Al2 The level of compaction of

cohesive soils is important because slightly compressed soils (normally consolidated) have

a high water content

In contrast highly compressed clays (over-consolidated clays) have much lower water

carrying capacities The compaction process gives stability to materials on slopes (Bryant

1993) The friction angle for cohesionless soils increases by 6 to 8 deg from loose to dense

particle arrangements (Bell 1992) Differences between clays in these two states are often

paralleled by being present with non-cohesive soils in their loose and dense states

respectively (Keller 1992) The sediment strength of cohesive soils figure Al3 is much

less then that of gravel and sand soils due to Vander Waal-type bonding (Bryant 1993)

Therefore the angle at which the sediment are stable is much lower This angle is known as

the angle of response (Murch et al 1995)

A1222 Frictional Forces

Frictional forces resist shear stress and contribute to sediment strength through the

interaction of individual grains within the sediments (Montgomery 1997) Frictional

resistance is a function of density size and shape of sediment particles combined with the

level of particle compaction (Keller 1992) Since most soils are mixtures of coarse and

fine-grained particles soil strength is usually the result of both cohesion and internal

friction

Investigation of land stability at Windermere Northern Tasmania 4

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 7: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

middotmiddot-----middotmiddotmiddotmiddotmiddotmiddotmiddotmiddot-~-middotmiddot----~--middotmiddotmiddotmiddotmiddotmiddotmiddot------

~ ppendix 1 The effect of soil and water on sl~le stability

Table Alll Selected engineering properties of soils

Soil Qassilication Strength Permeability Angle of Cohesion Volume changes Liquid Plasticity Maximo General Use As internal (c) function of limit limit m slope Construction friction (ell) (kNmz) activity angle Material

Gravels well-graded gravel very high high 34 35 - very small - - 10- 15 excellent poorly graded gravel high very high - - - good silty gravel high low - - - good clayey gravel high- very low - 35-50 - good

medium Sands well-graded sand very high high 32-42 - small - - 7 excellent

poorly graded sand high high - - - fair silty sand high low - - - fair clayey sand high- very low lt75 lt35 - good

medium Silts silt medium low 32-36 75 24-35 14-25 5 fair

micaceous silt medium- low poor low

organic silt low low fair Qay silty clay medium very low 150-75 lt35 Low good-fair

high plastic clay low very low 300- 150 high 70-90 Very high 5 poor organic clay low very low 35-50 Intermedi poor

ate

Source Keller 1992 Smith 1968 Mitchell 1976 Smith 1968

Investigation of land stability at Windermere Northern Tasmania 5

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 8: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 1 The effect of soil and water on slope stability

A 123 Soil Types In general each soil type exhibits different properties and can be divided into four main

groupings according to structure and composition (1) gravels (2) silts (3) sands and (4)

clays (see figure A12)

Coarse grained granular soils and to some degree sands lack cohesion and rely on densely

packed interlocking grains to create frictional resistance at the grain contacts This results

in a large 4gt value when compared to clay rich soils thus giving high strength The

presence of water in the voids of granular soil does not usually produce significant

changes in the value of internal friction However if pressures develop in the pore water

there may be changes in the effective stresses between particles and shear strength may be

reduced If the pore water can readily drain from the soil mass during the application of

stress granular material behaves as it does when dry

Young (1972) noted that the friction angle for pure clay is as low as 5deg but increases with

the inclusion of coarser grained particles Soils composed primarily of gravels may be

stable at angles as great as 15deg providing the matrix is not made up of clay Even the

largest friction angle for clay minerals is much less than those for cohesionless soils which

are generally in the range of 10 to 15 degrees (Mitchell 1976) Consolidated rocks have

much greater friction angles eg sandstone gt21deg

However the mineral and particle size distribution in itself is only part of the equation As

shown in figure A 12 other essential properties are the liquid limit and the plastic

(Atterberg) limit In general the greater the quantities of clay minerals in soil the higher

the plasticity and the greater the potential for shrinkage and swell The lower the porosity

the higher the compressibility the higher the cohesion and the lower the angle of internal

friction These properties are exhibited primarily because water is strongly attracted to

clay mineral surfaces and promotes plasticity whereas the non-clay minerals have little

affmity for water and do not develop significant plasticity even in a fine grained form It is

probable therefore that most soil water is associated with the clay phase (Smith 1971 )

Investigation of land stability at Windermere Northern Tasmania 6

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 9: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

)

Appendix 1 The effect of soil and water on slope stability

The liquid limit is the moisture content of a soil above which it behaves as a fluid and

below which it behaves as a plastic The Atterberg limit defines the plastic limit of clay

below which at the shrinkage limit it becomes fragmented and crumbly The characteristic

positions of organic inorganic silts and clays with reference to the level of activity (A

line) figure AL2 have been well established (Mitchell 1976) Activity is a measure of soil

susceptibility to changes in exchangeable cations and pore fluid composition

0 70

60

50

11 40 middotu middot 30

20

10

0

10 20

Inorganic Clays of Low

Plasticity

Inorganic Silts of Low Com-

pressibilitv

Cohesion less Soils

10

Lw =30

Liquid Limit Lw

40 50 so 70

Liquid Limit

Inorganic Clays of High

Plasticity

Inorganic Silts of High Compressibility

and Organic Clays

Inorganic Silts of Medium Compressibility

and Organic Silts

Figure A12 Atterberg Plasticity Chart (Source Mitchell 1976)

Investigation of land stability at Windermere Northern Tasmania

100

7

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 10: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

Appendix 1 The effect of soil and water on slope stability

Al3 The effect of water on soil strength

Water is present in most rocks and sediments near the Earths surface and strongly

influences the effective stress states of soils (Iverson amp Major 1987) Soil strength is

generally reduced by water content and can result in slope instability (figure Al3)

Marshall et al ( 1996) proposed that cohesion is weakened as water content is adsorbed

into the soil structure However increasing the water content changes the load and the

gravity COfiponent may be more important

200 Suction 1500 500 30kPa

CIS 160 f f ~

~ ~

c -120 eo s

IU -U) 80 IU -middot-U)

s 40 IU

0 0 004 008 012

Water content g g- 1

Figure A13 Effects of water content on the cohesive strength of soil (source Marshall et al 1996)

The addition of small quantities of water to dry (unsaturated) soils increases adhesion and

the soils become plastic due to the presence of moisture films between grains

(Montgomery 1997) Thus shear strength due to chemical bonding (Van der Waals

bonds) is greater than shear stress In contrast the saturation of soils decreases shear

strength due to particles losing contact because of increases in pore pressure (Keller

1992 Terlien 1997) and hence loss of sediment strength Slope failure may also occur

under self-weight if sediments are saturated

Investigation of land stability at Windennere Northern Tasmania 8

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 11: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix l The effect of soil and water on slope stability

Table Al3 Descriptions for movement types

Classification Description

Fall A is a mass which is detached from a steep slope or cliff and descends to a lower surface The moving mass travels mostly through the air by free falling (Eckel 1958)

Topple The block rotates forward about a pivot point under the action of gravity without collapsing Movement is generally rapid

Slide Consists of shear strain and displacement along one or more surfaces Movement results from failure along one or more failure planes

Lateral spread Lateral extension accommodated by shear or tensile fracturing The failure can involve elements of rotation translation and flow Movement generally starts suddenly and proceeds rapidly Telfer 1988)

Flow Flow has the appearance of a body which behaves as a fluid when the force caused by water is significantly large any deformable material will flow Movement is generally rapid with gravity as the primary reason for movement

A132 Adsorption by soils

A substantial amount of movement is associated with the expansion and contraction of

soils as the result of adsorption (Young 1972) Adsorption in this context is the process

of taking up water at the surface of soil particles thereby changing their effective volumes

Such volume changes are caused by chemical attraction and addition of water layers into

the chemical structure of sediments (Keller 1992) This process is particularly common in

clay rich sediment where water molecules are inserted between submicroscopic clay plates

that have high plasticity indices as illustrated in figure AL5 (Murch et al 1995) Sediment

expansion due to water drastically reduces the shear strength of soils and often

contributes to slope movement

Investigation of land stability at Windermere Northern Tasmania 10

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 12: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

ltcan de ay

ay elate

--- --- --- ---A iater ciecules

Figure AlS Diagram illustrating the expansive nature of clays (Murch et al

1995)

Thomas in 1928 demonstrated that the type of clay mineral was also an influencing factor

(in Marshall et al 1996) Montmorillonite is the most expansive clay mineral due to its

expanding crystal lattice which adsorbs more water at a given value of ee0 expanding by

as much as 15 times its original volume (Keller 1992) In contrast kaolinite has relatively

large crystals and thus a smaller surface area available for adsorption Illite has similar

crystal dimensions to montmorillinite but does not exhibit the expanding lattice and has

been categorised between montmorillinite and kaolinite in terms of adsorption potential

(Marshall et al 1996) The bonds between the adjacent silicate layers of illite are affected

by the potassium ions thus resulting in greater strength and tighter packing (Smith 1971)

These effects of clay properties on adsorption are illustrated in figure A16

The transition from open to compact arrangements causes a sudden loss in residual shear

strength montmorillonite has the lowest value ( ltgtR = 5) illite ( ltgtR = 1 0) and kaolinite the

highest value (ltgtR = 15) (Walker amp Fell 1987) The values for ltgtRare generally related to

particle shape and inter-particle bonding hence the ltgtR angle decreases with increasing

liquid limits However not all clays have plate like structures amorphous clay minerals

have granular structures which lead to much higher residual friction angles commonly

greater than 25 a (Walker amp Fell 1987)

Investigation of land stability at Windermere Nonhem Tasmania II

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 13: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 1 The effect of soil and water on slope stability

lIne potenlill ItJ It- or MPI

02S -28 -1~4 -~9 -30 ~

010

1l ~

015 ~ ~ 010 ~

005

Kaolinite o

O~ 04 06 08 10 Rel~lie ~pour pressure e(r

Figure A16 Adsorption of water vapour by different clays (Source Marshal et aI

1996)

A133 Hydro-compaction of soils

A decrease in the volume of expansive clays (drying out) is referred to as hydroshy

compaction This occurs when water is removed from the soil structure leaving behind a

porous medium At low water contents ionic hydration can be a strong force which tends

to separate particles (Graham 1964) Defmite cracks are formed in the soil during the

contracting phase (Barlow amp Newton 1975) In general the swelling and shrinkage

properties of clay minerals follow the same pattern as their plasticity properties The more

plastic the mineral the greater the potential for swell and shrinkage

The obvious mechanism for this process is the presence of expanding clays under the

influence of seasonal inequalities in rainfall Each time expansion takes place the soil tends

to be pushed outwards at right angles to the slope and the soil mass is weakened On

shrinkage the soil settles back into its original state but tends to be moved down slope by

gravity Creep rates are generally proportional to the sine of the angle of the slope

(Graham 1964) It has been suggested however that expansion and contraction does not

always occur normal to the slope because up slope movements have been noted in

practical experiments Such changes in water content change the load of the soil on a

slope saturated soil by weight alone may cause slope failure due to the increase of shear

stress

Investigation of land stability at Windermere Northern Tasmania 12

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 14: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 1 The effect of soil and water on slope stability

When a layer of soil is loaded some of the pore water is expelled from its voids moving

away from the region of high stress (hydrostatic gradients are created by the load)

Terzaghi (1943) showed a relationship between the unit load and the void ratio for a

sediment by plotting the void ratio e against the logarithm of the unit load p (Bell

1992) The shape of the resultant curve indicates the stress history of the sediment The

curve is linear for normally consolidated clays and curved for over-consolidated clays

Over-consolidated clays are considerably less compressible than normally consolidated

clays

Al~4 Liquefaction~

~t The transformation of sediments from solid to liquid state is called liquefaction (Murch et

aI 1995) The point at which transition takes place from a solid to a liquid state is called

the liquid limit and is dependent on sediment characteristics as illustrated in figure AI7

Materials with high liquid limits such as clay remain plastic over a broad range of water

content The strength or shear resistance of the soil at the base of a slide is largely

determined by the angle of slope down which sliding may occur (Hail 1977)

Hutchinson (1968) noted that loss of shear strength due to high water-soil ratios leads

mass transport not mass movement because the soil particles are contained within stream

flow and not in contact with other soil particles As sediment concentrations increase

progressively from a viscose to a plastic flow the liquidity index falls well below the liquid

limit

The process of soil liquefaction results in changes to granular soil assemblages due to the

j disturbance of the internal structure of soil by water By converting the soil into a flowing

fluid mass there is no minimum angle for flow (Murch et al 1995) Liquefaction results in

sediments flowing rather than sliding along a failure surface (Iverson amp Major 1996)

Static liquefaction conditions are expressed as z = cos [(A + lt1raquo + (8 - lt1raquo] = 1 Hydraulic

gradients greater than 2 are generally required to cause liquefaction which cannot take

place if water does not move towards the surface (Iverson amp Major 1986)

Investigation of land stability at Windermere Northern Tasmania J

13

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 15: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

~

0

~

0 gt

Hard I Friable Plastic liquid

] = 1] sectl~ El Imiddot2 2C E-II c en I

I

o o~ 04 06 08 Water content I I-I

Figure Al7 Consistency state and shrinkage stage of remoulding soil illustrated by values appropriate to soil high in clay content (Source Marshall et al 1996)

)

Al35 Mathematical modelling for slope failure

Various analytical techniques exist for assessing slope stability The reliability and quantity

of the soil data knowledge of the slope geology and the consequence of failure (Walker amp

Fell 1987) should always govern selection of particular method for analysis Analytical

results are usually presented in the form of safety factors where the safety factor is the

relationship between the ratio of shear resistance to shear force (Young 1972) Examples

of the most widely used methods for predicting slope failures and assessing risk are

outlined in table Al4

Two principal methods are used to measure the shearing resistance of soils (a) direct

shear tests and (b) the triaxial test The triaxial test is the most common means of

obtaining the shear strength parameters c and lt1gt (Walker amp Fell 1987) It involves

subjecting a cylindrical soil sample contained within a rubber membrane to an axial load

while confined laterally by water or air at a pressure (cr3) The load is increased until the

soil fails at an axial stress (cri) (Marshall et al 1996) Illustrated in figure A18 when

equilibrium is reached a Mohr circle can be drawn through the two points (Habibi 1983)

Investigation of land stability at Windermere Northern Tasmania )

14

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 16: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

The envelope of Mohrs circles is the curve which in soils is the Coulombs line defmed

by Huorslevs Law for cohesive soils t =c + (On - u) tanltgt in cohesionless soils this

curve is rectilinear

Table 14 Types of stability analysis

Types of analysis Formulae and remarks

Method of slices FELLENIUS METHOD (curved slip surface) Fs =Lcb seca + tancjgt (W cos amiddot u) I L W sin a

Where W is the mass and a the inclination of the base of any vertical slice u is pore pressure Remark Assumes soils are saturated only applies to circular slip surfaces as being the only cause of failure pore pressure is not considered Reference Yong amp Selig 1982 Walker amp Fell 1987

Circular slip method BISHOPS SIMPLIFIED METHOD Fs =LUcb + W (l-r) tancjgt1 (lm)1 LW sina

Where u is the pore pressure Remark Only applies to circular slip surfaces uses average pore water Reference Yong amp Selig 1982 Habib 1983

Non-circular slip JANBUS SIMPLIFIED METHOD surface Fs =fLU b c + (W - ub) tancjgt] (lcos anI L W tan a

Where f is a function of the curvature of the slip surface and the type of soil Remark Only applicable to slip surfaces of arbitrary shape Reference Telfer 1988

Homogenous TAYLOR~S METHOD Fs =L (cl) I L (W sina)

Remark Restricted to clays Reference Telfer 1988

Infinite slope analysis Fs =c + Z cos 2 ~ (Y-DlY) tancjgt1 fz sin~ cos~

Where z is the depth of slide ~ is the limited inclination f unit weight of soil fm unit weight of water Remark An extremely simple model The effective cohesion is less than ten it is assumed to be zero Ground water is taken to be parallel to the ground Reference Hail 1977 Walker amp Fell 1987

Investigation of land stability at Windermere Northern Tasmania 15

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 17: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

Envelope

~ lt III III QI-III L gt 0~ gt - 0- r = LJQI 2t

III

A ~ 11 0- 1 a C Normal Effective Stress a ~

Figure Al8 Method of obtaining the failure envelop from measurements by

triaxial compression (Source Walker amp Fell 1987)

Studies by Henkel and Skempton (1955) and Skempton (1964) appeared to demonstrate

the accuracy of the infInite slope method where a slide is long compared with its depth

(Hail 1976) However more recent works (eg Hutchinson 1967 and Hail 1976) suggest

that fIeld and laboratory correlations by Skempton were fortuitous because pore water

pressure must be measured at the surface using piezometers With tips carefully located on

the base of the slide and not estimated from observations of the level of standing water

borings Furthermore the rings shear apparatus (Bishop et al 1971) is thought to provide

lower residual strength measurements than would be obtained from limited displacement

of direct shear apparatus The triaxial compression method (Marshall et aI 1996) is a

more accurate technique

Accurate and reliable predictions of stability cannot always be made on the basis of

) limiting equilibrium studies The concept of limit equilibrium is not fundamental to

phenomena concerning stability but is only a device for determining the safety factors for

a soil or rock mass The state of critical or limiting equilibrium should not be confused

with the concept of limiting equilibrium

Al3Sl Application to shallow and deep landslides

Reid (1994) found a direct correlation between brief periods of rainfall and shallow

landslides Deeper landslides were triggered by prolonged rainfall (gt 200mm in 25 days)

Investigation of land stability at Windermere Northern Tasmania J

16

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 18: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix I The effect of soil and water on slope stability

this was later supported by Terlien (1997) Reid (1994) also noted that large rainstorms

induced a wide range of slope movements such as creep and solifuction movements that

do not require inclined slopes for movement (Kirkby 1967 Reid 1994) According to the

principal of effective stress landsliding may occur in response to locally elevated pore

pressure along the failure surface Prior to Terliens investigation such links between

rainfall and landsliding were based upon statistical correlations or empirically fitted models )

which were limited by available data

In the case of deep landslides on slopes possessing appreciable cohesion there is no single

angle of stability but a height angle relation as in the upper curve of figure A18 In

general for a given geology and climatic conditions surface landslides occur on gentler

slopes than deep landslides (Terlien 1997) Two explanations have been proposed for the

lower limiting angles for surface landslides (1) the observed limiting angle for clayshy

dominated soils this generally corresponds with stability conditions calculated by using

the residual shear strength (2) The relationship of deep slides to peak strength

(Hutchinson 1967) unless a deep failure had occurred previously However this

explanation does not apply to soils that are made up of large portions of sand gravel or

stones These soil types exhibit only small differences between peak and residual shearing

strength Equation 9 (from the infmite stability model) can be applied to shallow slides

provided that the angle of the failure plane is approximately equal to the slope of the

ground surface

During the early to mid 1980s quantitative analytical processes were introduced to study

the role of recharging ground water flow on the destabilising of slopes Leach amp Herbert

(1982) Kenney amp Lau (1984) and Reid and others (1985) focused attention on shortshy

term fluctuations in the water table that may cause abrupt failures in static slopes

(Hanegerg 1991) Terlien (1997) later followed up such investigations to reach four main

conclusions Firstly positive pressure heads are not capable of triggering landslides but

failed slopes are often located in such areas Secondly depths of failure depend on the

geotechnical properties of the siltsand content of the soil and the slope angle Thirdly

failure will occur only when the soil becomes saturated from the surface to the depth of

Investigation of land stability at Windermere Northern Tasmania 17

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 19: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 1 The effect of soil and water on slope stability

the potential slip surface (Terlien 1996) Fourthly the depth of saturation is dependent

upon soil profile the vertical soil moisture distribution prior to intense rainfall and the

amount and intensity of rainfall Terlien also recognised that perched water tables act as

triggering mechanisms for landslides where water is in contact with potential failure - _-~

surfaces thereby reducing frictional strength

A136 Problems associated with water models

The fIrst simplifying assumption made by Terzaghi in the 1950s is that slope failures are

initiated primarily by water infIltration into hill slopes However although such

infIltrations result in increased pore ytater pressure within the slope material before pore

pressure can be increased capillary pores must be full of water and have sufficient volume

to counteract soil suction (negative pore pressure)

The second assumption was that for any given slope a critical level of pore water

pressure (uwc) acting on a slope exists where the potential failure surface develops (Keefer

et al 1987) This assumed that the failure surface and piezometric surfaces are parallel to

the ground surface which is rarely the case

A third assumption that there is no surficial run-off (ie that all rain falling onto the slope

infIltrates) at least initially into a saturated plane above the potential failure plane

However the total rate of drainage is proportional to the thickness of the saturated zone

(Keller et al 1987) and care must be exercised however when using the infmite slope

model The magnitude of $r is often different in laboratory and field experiments and

appears to fall as the normal stresses increase This occurs because the residual strength

failure line is in fact a curve and not straight This is of fundamental importance on clay

slopes where landsliding occurs deep into the slope and the range of normal stress is large

due to the amount of overlying sediments so that a unique value of $r will not apply In

this case large rather than minor landslides will move on flatter slopes

Investigation of land stability at Windermere Northern Tasmania 18

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 20: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bull Appendix I The effect of soil and water on slope stability

Al4 Conclusion

The stability of slope surfaces is dependent upon the factors affecting the slip surface This

conclusion appears to be dependant upon strength parameters (c lt1gt) of the slope

material the height and inclination of the slope the density of the slope material (which

determines an) and the distribution of pore water on the slope o

The models discussed in this literature review are constrained primarily by the number

and variety of assumptions made by various authors to simplify the equations However

while they provide locally practical and reasonably realistic data for calculating angles of

response for particular soils on a regional scale such generalisations are not without risk

No two-soil types are exactly the same and the potential for failure must always be

examined closely on a local scale

o Soil mechanics technology applied to the study of slopes is concerned primarily with

processes that lead to slope failure by landsliding and with the stability analysis of the

failure However much remains to be discovered before the degree of stability of any

previously stable slope can be accurately predicted in either its natural state or after

modification by natural or artificial processes

Investigation of land stability at Windermere Northern Tasmania 19

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 21: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

APPENDIX 2 CLIMATIC RECORDS

BUREAU OF METEOROLOGY ACACIA HOUSE

Rainfall data obtained from Acacia House and Temperature data from Tea Tree Bend (Launceston)

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 22: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 2 Climatic records

Table A21 Table illustrating the total monthly precipitation (mm) for the Windennere area (top no) and the number of rain days (bottom no)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec I 1927I

i 585

13 814

17 1324

20 545

8 514

10 228

5 1232

10

I 1928 588

8 933

11 478

7 987

11 426

8 679

11 1175

16 829

16 1165

25 1583

21 473

15 140

4 9456

153

1929 I

719 14

416 8

357 8

2199 15

602 11

1483 19

937 15

1090 16

306 12

469 11

757 17

770 13

10105 159

) 1930 I 105 5

571 6

235 6

422 723 8

171 7

1664 1544 18

756 16

881 767 16

1348 13

9187 i

1931 146 250 1766 662 2526 2441 1320 837 1224 261 541 00 11974 12 7 11 7 21 17 14 14 19 9 7 0 138

1932 292 372 1021 971 76 1339 610 877 706 904 432 713 8313 5 9 11 14 2 16 15 14 8 15 6 6 121

1933 I

177 7

16 2

551 4

484 5

577 5

364 9

392 8

912 10

1168 9

539 6

178 3

422 10

5780 78

19341 I

310 4

254 2

211 5

804 9

144 2

160 3

1163 8

664 11

1036 11

1196 18

1032 9

734 8

7708 90

1935 268 789 346 837 895 802 600 726 435 290 439 246 6673 5 11 5 14 9 9 11 11 11 8 11 10 115

I 1936 208 4

126 4

289 4

650 8

503 12

530 10

657 14

2514 17

704 13

746 11

294 9

656 8

7877 114

I 1937 1033 286 619 162 843 239 898 625 542 657 259 1412 7575 7 4 7 3 11 3 10 11 11 9 4 12 middot92

1938 753 1159 457 666 562 1755 221 479 565 477 922 460 8476 6 5 3 6 10 12 8 10 9 9 9 6 93

1939 21 1019 721 658 798 737 528 2401 867 662 831 400 9643 I I 3 6 4 9 9 12 9 21 9 5 21 5 113 I 1940 557 153 178 419 366 664 1611 125 565 153 472 630 5893 i 6 3 4 7 5 9 14 3 5 5 5 5 71 1941 188 114 635 179 267 684 867 244 602 729 424 211 5144 4 2 6 3 5 6 12 5 12 7 5 7 741 i 1942 371 372 188 279 1198 1331 1964 958 653 609 76 531 8530 i

4 6 4 3 11 12 16 15 10 6 1 3 91

1943 334 7

1948 1459 1267 286 545 326 2540 978 539 183 466 608 10 6 10 6 17 13 8 10 9 9

i 1947

I 1948

406 6

87

243 3

364

753 11

193

369 4

33D

694 9

869

2170 16

635

2019 16

690

1221 16

610

463 11

837

1552 16

649

523 5

675

947 12

492

11360 125

6431 I 2 5 5 8 11 9 15 12 11 14 9 10 111

1949 423 697 470 127 898 446 418 433 313 1497 979 223 69241 5 7 5 2 8 7 11 12 9 19 16 6 1071

1950 523 457 249 249 590 254 478 605 683 1088 447 9 8 6 6 12 6 8 8 10 12 6

1951 00 264 165 973 785 270 1207 802 452 671 738 399 6726 I 0 4 2 11 7 21 13 11 10 10 7

1952 581 150 44 1105 1418 1418 1168 857 1617 1550 1758 206 11872 9 5 2 8 12 16 13 13 18 17 12 4 129

1953 671 23 148 471 1098 1634 1498 961 569 864 510 688 9135

I 3 2 -shy -

4 - 6

shy -10 16 15_shy

15 - shy

12 -- shy 13

-9 _ _ ~ ~ 116

-shy

3 8 7 8 7 16 16 14 7 8 8 9 111 1955 268 719 120 1103 1077 941 1141 2426 836 1720 797 817 11965

9 7 3 8 11 7 16 23 11 18 10 10 133 1956 656 594 961 2005 1385 1697 1014 1206 974 806 602 729 12629

9 4 6 10 7 14 13 16 9 14 8 10 I 120

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 23: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 2 Climatic records

Table A2 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec I 1957 232 292 683 1001 838 818 364 264 699 535 912 5731 7211 I 3 3 3 14 8 11 11 6 14 8 11 8 i 100 I 1958 61 493 439 313 3015 460 935 977 455 1474 633 4931 9748 I 2 4 8 3 24 6 15 11 8 15 6 81 110 i 1959 309 462 254 650 175 880 532 1111 380 562 404 826 6545

)

1960 5

330 4

5 824

5

4 188

8

8 1642

15

2 1670

14

12 677

11

14 1476

19

13 383

16

9 880

11

9 701

12

11 585

11

151 113

4

107 9469

130 1961 33 158 134 1252 279 649 827 751 272 664 366 771 6156

2 6 5 9 14 9 9 10 6 9 9 10 98 1962 570 451 375 290 1499 1283 533 1186 611 1668 437 232 9135

6 6 11 7 15 22 12 13 10 17 10 5 134 1963 790 493 555 71 414 308 1562 1051 1306 611 472 342 7975

10 6 9 3 7 6 10 11 11 9 6 5 93 1964 129 1600 809 280 621 1446 1751 783 1235 653 397 641 10345

3 11 6 6 8 15 17 8 12 10 5 8 109 1965 62 15 394 879 1290 466 683 457 881 495 582 582 6783

3 1 7 9 15 11 7 11 7 8 8 1966 107 330 421 397 820 343 1548 776 1212 554 348 617 7473

4 5 11 5 6 7 14 9 10 4 3 5 83 i 1967 351 190 66 149 322 272 1347 937 301 406 242 549 5132

4 2 2 5 5 10 17 16 10 5 5 10 91 1968 125 749 532 1100 1191 1054 974 2214 544 1008 1094 120 10705

3 3 8 19 13 8 12 19 11 12 12 3 123 I 1969 584 1274 353 465 1501 241 1217 861 643 651 569 397 8756

) 1970

5 748

11 462

8 553

9 919

11 675

9 966

18 1311

18 1781

10 661

6 552

12 643

7 1217

124 10488

8 4 8 10 9 11 11 14 5 8 3 7 98 I 1971 427 277 263 1524 881 1164 285 886 1036 1361 1260 1079 10443 I 2 2 3 9 3 9 4 4 3 I 1972 257 899 00 272 277 572 998 726 343 262 241 00 4847

2 0 1 0 I 1973 742 201 89 1311 749 2169 1626 401 1179

1974 460 304 66 721 978 700 1800 696 1760 652 896 1492 10525

1975 33 440 511 252 954 350 1134 2345 1014 870 1068 458 9429

1976 606 41 00 417 1125 00 329 765 700 597 881 1140 6801 I 0 0

1977 742 1040 90 963 658 723 986 478 290 300 30

1978 313 889 365 775 722 728 1163 847 880 582 731 546 8541 I

I 1979 650 278 451 763 888 624 1114 440 1286 1143 6

206 190 8033

I 1980 286 214 420 1342 529 667 1212 1040 868 448 328 392 7746

II

I 1981

1 240

4 180

6 446

3 336

8 572

5 3 4 5 3 2 11 45 1

1 2 2 1 I

I

1986

1987 642 9

116 5

442 7

884 13

198 7

1058 13

1012 8

316 9

610 10

1372 17

1094 13

834 11

396 8

662 15

164 6

1204 15

406 8

354 8

836 10

574 I

I 111 ---l

i

1988 134 02 394 1567 1124 1415 712 898 822 964 794 I I 2 o 8 16 10 18 8 _ -----J

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 24: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 2 Climatic records

Table A21 continued

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec

1989 432 40 450 1706 488 806 1150 714 798 668 712 458 7 3 11 13 14 11 6

1990 92 342 250 570 396 1188 913 1534 382 570 628 382 3 7 4 8 5 6 8

1991 1240 18 486 224 72 1466 600 1904 648 256 494 360 8 1 10 2 8

1992 234 286 46 1538 1290 562 1426 1110 1032 824 1070 698 1 6 5 3 10 7

1993 356 590 242 212 846 452 1036 764 712 838 866 1356 8 11 12 6 8

1994 570 236 50 366 920 570 594 372 96 523 640 114 2 8 15 13 4 9 8 8 11 1

1995 832 394 190 600 1124 1004 608 682 540 402 540 9 7 5 9 13 11 14 16 12 9 7

1996 1514 732 566 594 146 908 868 1316 1127 682 380 174 8 7 8 11 6 13 16 22 17 14 6 5

1997 912 250 178 258 1670 376 442 562 1046 289 428 130 11 4 9 6 12 9 7 13 18 12 8 6 LL

I

Summary of Total Monthly Precipitation using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Noy Dec A

Mean 420 455 405 685 852 816 1048 967 755 741 608 562 Median 343 353 361 594 809 667 1036 847 699 653 544 531 Highest 1514 1600 1766 2199 3015 2441 2540 2514 1760 1720 1758 1492 Lowest 00 15 00 71 72 00 221 125 96 153 76 00 Number 60 62 62 63 62 63 63 63 63 62 61 61

Summary of Rain Days using available data between 1927 and 1997 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A

Mean 56 52 57 80 92 103 130 129 109 107 82 72 Median 50 50 55 80 90 100 140 130 105 100 80 75 Highest 14 11 11 19 24 22 21 23 25 21 21 15 Lowest 0 1 0 2 1 0 3 3 5 3 1 0 Number 52 52 54 52 49 52 49 49 48 51 53 52

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 25: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 2 Climatic records

Table A23 Maximum and minimum temperature range for the Launceston area including long term averages

Maximum Temperature from 9am (OC) Minimum Temperature to 9am (OC)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Avg Max Mln Total Nbr ----=------=-~--__ _ -- _-_- ------ -__-- -

Jan 1998 270 273 244 238 248 256 266 274 264 315 298 302 304 254 254 246 313 307 224 252 258 278 240 237 216 229 274 179 193 224 212 - 25~ 3151 1791 31

156 163 99 80 116 102 107 150 117 156 160 180 192 203 145 138 106 152 143 153 160 135 147 107 138 124 105 149 74 172 ~~ ~1_l-_~~3+__41------- 31 Feb 1998 262 292 236 234 284 274 282 210 266 227 255 220 210 238 215 191 204 226 209 196 198 186 217 240 282 310 192 225 235 310 186 28

94 137 95 99 121122 151158 90 143 135 170 113 130 135 112 60 124 133 108 71110 75 97127121131 44 11S ~h~--- 28

Mar 1998 255 253 277 232 181 214 208 270 288 262 277 323 232 203 167 205 213 246 224 216 234 267 179 186 232 231 199 195 210 201 16 227 32a_~51 31 80 112 122 156 83 117 92 63 64 82 87 89 137 130 44 52 77 80 93 106 89 138 164 47 75 75 95 115 84 95 11

r-APr 199-8t-----18-4-2-1-2---------22----0-2--1C1- 21-9-=--2c-1--6---1-=-96----21-2=--1----8----7=--=2----1--=2-1-=-7-=-0------15=-0-=--1-5--6-1----8-3-19-2-16=-9-=--1-9-5---1-=-9-2------15---2 --1-6-2-1----8--=0--1=-8-4-15-3-1----5----6-1----59-----16=--=-7-16-0-1--=5-3------1-6-6-14-----1--j 10 ~~I -1~t----middot ~ 1 i I I 65 50 100 39 95 54 70 92 20 34 60 97 117 57 59 29 64 45 61 91 106 73 28 59 90 121 66 68 90 107 7(j 121j 2~ J(J

May 1998 144 181 173 172 156 165 130 123 160 148 144 170 132 181 184 190 156 170 166 157 189 149 135 158 158 141 149 147 145 164 126 157r--w-oi 1231 -3i~ 10 15 24 44 75 25 32 -05 19 -08 04 18 42 55 67 97 69 78 95 110 75 16 27 72 56 10 23 104 124 90 -D --- --~--=--=- ~f2~+_ -~--- L __3~

Jun 1998 150 114 98 152 172 143 121 128 131 105 130 115 141 131 115 118 117 155 135 137 134 102 100 108 124 110 119 112 155 117 J 126 1721 98 30 (

02 -10 02 23 86 116 88 56 -02 09 49 80 50 43 54 14 -15 -06 04 15 38 30 36 56 75 -15 -06 34 39 10 3 ~ -__ ~5~__ 30 Jul 1998 118 1431-4-0-130 140 155 130 123 1ci4 103-26-136 120 -=-11-1--1---4-=7-122 140 11-=-8------=-10=-2=-----=94 129 130 139 123 123 152 132 110 136 140 1601 128j 1601 94 31

-14 -17 -07 00 15 35 40 90 55 00 -30 -22 10 24 11 -30 -16 00 00 -03 -02 11 -20 -09 -10 42 59 85 44 -12 4(1 12 9d -30 31

Aug 1998 12X-139-137-14-0-1-5-4-1-3-5150-15-2-middot-i3T14-31-1--8-1-18 138 110 1-2----7=--1-=-3--=7----15=-=-3-1----6--0=--10=-58 148 150 128 137 158 176 174 156 175 160-13-7 -14417~110t-middotmiddot 30

-10 10 62 98 40 21 36 16 20 48 28 04 -14 15 middot10 -08 08 16 -06 38 80 30 -10 25 12 05 35 84 30 8 2 9aI -f40 30r---+---+---+----------j

158 198 168 163 150 161 158 175 154 164 202 183 181 139 99 134 148 176 152 166 174 188 163 202 99J 1 221 68 55 87 101 42 44 65 15 10 45 30 81 106 70 36 04 64 102 76 24 15 73 137 l _5 13 04J l 23------------------ _---__------------___---shy

Geological investigation and slope risk assessment at Windermere northern Tasmania

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 26: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

------------------------------------------ ---------------

Appendix 2 Climatic records

Table A22 Daily amount of precipitation in the Windermere area during 1998

Precipitation to 9am (mm) Period over which Precipitation has accumulated (days)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 _ ~- -_shy -__ ---_ -----shy ----shy bull_ -- ------------------------------------ -- bull

Jn 1998 00 00 00 00 00 00 00 00 00 00 00 00 00 00 172 00 00 00 00 00 00 00 14 00

1 1 Feb 1998 00 00 00 00 00 00 310 00 00 00 00 00 00 00 00 214 08 00 00 14 00 04 00 00

1 1 1 1 1 r1998 00 00 00 00 00 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 104

1 1--__-+-shy 1998 00 00 00 00 00 00 02 02 00 00 00 00 360 00 00 00 00 00 00 58 118 28 00 00 ~-__-~ 1 1 1 1 1 1 y 1998 74 00 00 00 00 10 00 00 00 00 00 06 00 00 00 00 00 04 00 00 92 00 142

1 1 1 1 2 1

Jun 1998 00 00 00 00 04 64 214 00 00 00 00 24 124 46 64 10 00 00 02 00 62 88 00 52

1 1 1 1 1 1 1 1 1 1 1 1 Jul1998 00 00 00 00 24 236 00 16 52 00 00 00 00 00 00 00 00 12 04 00 98 03 00

1 1 1 1 1 1 2 1 Aug 1998 00 00 116 22 58 00 00 00 00 78 00 00 00 00 00 00 00 00 00 00 124 04 04

1 1 1 2 1 1 1- ---- ___~-- --_--shy ---__---_

25

04

1 00

00

00

58

1 18

1 12

1 00

26 27 28 29 30 31 ----bull------ I

38 00 192 78 10 00

1 1 1 1 00 00 00

00 00 00 00 00

1330 00 00 24

1 2 00 00 00 24 24 02

1 1 1 00 27 00 100 00

1 1 00 112 146 206 00 00

1 1 1 I 00 00 00 00 00 0amp

__ 1j

Avg Max Mln Total Nbr

8middot1middot O-~I--shy

508 31 I

71 7 20 310 001 5501 2sj

I

10 1 1 5i 5 04 104 00 124i 31

1

10 1 1 3i 3 32 360 00 922 29 11 1

8shy~ 9i

15

142 00 436 30 I

i 11 it 1 11t ~

30 214 O~I 899 30i

10 1 15i~ 31 236 00 9211 30

2 I

11 1 13 12 r-shyI 14[ 124 00 412 30

1 2 1 ____ ~ __ 8

Geological investigation and slope risk assessment at Windermere northern Tasmania

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 27: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

-)

APPENDIX 3 GRID METHOD RESULTS

Dates of measuring 1) 23rd April 1998 2) 8th June 1998 3) 11 th July 1998 4) 29th August 1998

The method by which this data was derived is outlined in section 63

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 28: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording 1 23rd April 1998

peg east north Z first_x firsCY firsCz second second seconc calc dis meas dist 11 11amp22 0 0 100 22653 19815 9204 31131 3179 0658935 21 2181 9565 11amp21 0 0 100 o 21811 9565 2224 2224 00002911 31 3144 9017 11amp12 0 0 100 22198 o 9631 22504 2262 0116431 41 5108 8542 21amp12 o 2181 957 22198 o 9631 31127 3167 05427391 22 22653 1982 9204 21amp22 o 2181 957 22653 19815 9204 23025 225 0525231 12 22198 9631 21amp32 o 2181 957 23 30443 9307 24702 32 23 3044 9307 21amp31 o 2181 957 o 31442 9017 11083 1108 0003362 42 21319_ 8538 31amp22 o 3144 902 22653 19815 9204 25531 13 44646 1002 31amp33 o 3144 902 4793 31487 9172 47955 23 48 1642 9228 31amp42 o 3144 902 21319 48881 8538 27957 33 4793 3149 9172 31amp41 o 3144 902 o 51079 8542 20203 202 0003383

) 43 47287 5643 8558 41amp42 o 5108 854 21319 48881 8538 21432 2143 0002369 14 67075 9611 41amp32 o 5108 854 23 30443 9307 31834 24 7097 1758 9253 12amp13 222 o 963 44646 o 1002 22775 2323 0454825middot 34 73963 3109 9259 12amp23 222 o 963 48 1642 9228 30847 3102 0172586 44 64796 5065 8674 12amp22 222 o 963 22653 19815 9204 20274 2029 00157991 15 91077 9942 22amp23 2265 1982 92 48 1642 9228 25575 2558 0005151middot 25 92314 1775 972 22amp13 2265 1982 92 44646 o 1002 30695 3114 0444829middot 35 94285 2694 8811 22amp32 2265 1982 92 23 30443 9307 10683 112 0517049 45 90887 513 8491 32amp33 23 3044 931 4793 31487 9172 24988 2413 0857882middot 16 11491 9318 32amp42 23 3044 931 21319 48881 8538 2005 2006 0O10262 26 11329 1486 9132 13amp14 4465 0 100 67075 o 9611 22792 2323 0438447 36 10774 2672 9226 13amp23 4465 0 100 48 1642 9228 18518 1945 0932494 46 11313 4518 9041 13amp24 4465 0 100 7097 17578 9253 3256 3309 0530280 17 13565 102 23amp24 48 1642 923 7097 17578 9253 23001 2302 0019223middot 27 13525 1542 9244 23amp33 48 1642 923 4793 31487 9172 15077 1508 0002532

37 13076 2877 9241 23amp34 48 1642 923 73963 31087 9259 29821 2955 0270873 47 12905 3863 8954 33amp34 4793 3149 917 73963 31087 9259 26051 2676 0709255middot 18 1557 1062 33amp43 4793 3149 917 47287 56432 8558 25699 257 0001405 28 154 1823 9435 33amp44 4793 3149 917 64796 50648 8674 26007 2601 0002857 38 15622 3286 8675 14amp15 6708 o 961 91077 o 9942 24229 2422 0008515 48 14487 4188 8667 14amp25 6708 o 961 92314 17747 972 30873 3114 0267066 19 17283 9786 14amp24 6708 o 961 7097 17578 9253 18357 1804 0317045 29 17334 1635 9079 24amp25 7097 1758 925 92314 17747 972 2185 2184 0009743 39 16893 2632 9028 24amp34 7097 1758 925 73963 31087 9259 13837 49 1734 406 8591 24amp15 7097 1758 925 91077 o 9942 27582 2823 0648167

34amp35 7396 3109 926 94285 26944 8811 2122 2157 0349760 34amp25 7396 3109 926 92314 17747 972 23151 2254 0610581 15amp16 9108 o 994 11491 o 9318 24639 2464 0001004 15amp26 9108 o 994 11329 1486 9132 27929 2787 0059152 15amp25 9108 o 994 92314 17747 972 17928 1801 0081826 25amp16 9231 1775 972 11491 o 9318 29013 2952 050q886 25amp26 9231 1775 972 11329 1486 9132 21977 2169 0287414

) 25amp35 9231 1775 972 94285 26944 8811 13082 1309 0007530 25amp36 9231 1775 972 10774 26725 9226 18522 1852 000238 35amp26 9428 2694 881 11329 1486 9132 22751 2249 0260715 35amp36 9428 2694 881 10774 26725 9226 14086 1668 2593869 35amp46 9428 2694 881 11313 45176 9041 26323 2601 0312621 35amp45 9428 2694 881 90887 51302 8491 24801 248 0000665 45amp35 9089 513 849 94285 26944 8811 24801 248 000066

45amp36 9089 513 849 10774 26725 9226 30695 2994 0754704

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 29: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording I 23rd April 1998

45amp46 9089 513 849 11313 45176 9041 23718 2372 0001642 16amp17 1149 o 932 13565 0 102 22516 2253 0013921 16amp26 1149 o 932 11329 1486 9132 15064 1491 015397 26amp17 1133 1486 913 13565 0 102 28877 2887 0006683 26amp27 1133 1486 913 13525 15418 9244 21998 2292 0922416 26amp36 1133 1486 913 10774 26725 9226 13132 1314 0008035 26amp37 1133 1486 913 13076 28775 9241 22362 2221 0152316 36amp26 1077 2672 923 11329 1486 9132 13132 1314 0008035 36amp37 1077 2672 923 13076 28775 9241 23112 2328 0168264 36amp46 1077 2672 923 11313 45176 9041 1931 2005 07397 36amp47 1077 2672 923 12905 38628 8954 2456 246 004038 46amp37 1131 4518 904 13076 28775 9241 24164 2459 0426247 46amp47 1131 4518 904 12905 38628 8954 17238 1798 0742066 17amp18 1356 0 102 1557 o 1062 20501 2049 0011087 17amp28 1356 0 102 154 18229 9435 26964 2699 00261 17amp27 1356 0 102 13525 15418 9244 18125 1767 0455056 27amp18 1353 1542 924 1557 o 1062 29091 2907 0021229 27amp28 1353 1542 924 154 18229 9435 19056 1924 0184409 27amp37 1353 1542 924 13076 28775 9241 14092 1404 0051517middot 37amp38 1308 2877 924 154 18229 9435 25595 251 0494699middot 37amp47 1308 2877 924 12905 38628 8954 10403 47amp48 1291 3863 895 14487 41876 8667 16399 1683 0430615 18amp19 1557 0 106 17283 o 9786 19074 1906 0013500 18amp28 1557 0 106 154 18229 9435 21832 2152 031211 18amp29 1557 0 106 17334 16354 9079 28595 288 0205145 28amp29 154 1823 944 17334 16354 9079 19748 1973 0017515 28amp19 154 1823 944 17283 o 9786 26437 2644 0002800 28amp39 154 1823 944 16893 26316 9028 17454 1701 0444430 39amp38 1689 2632 903 15622 32862 8675 14719 1533 0610652 19amp29 1728 o 979 17334 16354 9079 17826 178 0026182 29amp39 1733 1635 908 16893 26316 9028 10906 10 0905866 39amp49 1689 2632 903 1734 40603 8591 15597 1652 0923096 38amp49 1562 3286 867 1734 40603 8591 18854 1883 002414

Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 30: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording 2 8th June 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 22653 1982 9204 3113442 315 0365 21 0 218 9565 11amp21 0 0 100 0 218 9565 2222977 2228 0050~

31 o 3144 9017 11amp12 0 0 100 22198 0 9631 2250261 226 0097 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3111956 315 0380 22 2265 1982 9204 21amp22 0 218 9565 22653 1982 9204 2302414 229 0124 12 222 0 9631 21amp32 0 218 9565 219 3044 9307 2368367 32 219 3044 9307 21amp31 0 218 9565 0 3144 9017 1108873 111 001 42 2132 4898 8538 31amp22 0 3144 9017 22653 1982 9204 2552802

13 4465 0 1022 31amp33 0 3144 9017 4793 3249 9172 4796655

23 48 1742 9228 31amp42 0 3144 9017 21319 4898 8538 2801955

33 4793 3249 9172 31amp41 0 3144 9017 0 5108 8542 2020624 2015 0056~

-- 43 465 5743 8558 41amp42 0 5108 8542 21319 4898 8538 2142222 214 0022~

14 6708 0 9611 41amp32 0 5108 8542 219 3044 9307 3105064

24 7197 1798 9253 12amp13 222 0 9631 44646 0 1022 2320786 2325 0042

34 725 3209 9259 12amp23 222 0 9631 48 1742 9228 3139173 3204 0648~

44 652 5265 8674 12amp22 222 0 9631 22653 1982 9204 2027985 203 0020

15 912 0 9942 22amp23 2265 1982 9204 48 1742 9228 254615 255 0038middot

25 9331 1775 972 22amp13 2265 1982 9204 44646 0 1022 3130096 3115 0150

35 9229 28 8811 22amp32 2265 1982 9204 219 3044 9307 1069637 1107 037

45 92 5232 8491 32amp33 219 3044 9307 4793 3249 9172 2614548 259 0245

16 1159 0 9318 32amp42 219 3044 9307 21319 4898 8538 2007997 2013 00501

26 1149 1486 9132 13amp14 4465 0 1022 67075 0 9611 2324109 2325 0008

36 110 2712 9226 13amp23 4465 0 1022 48 1742 9228 2032516 1995 0375

46 1128 4618 9041 13amp24 4465 0 1022 7197 1798 9253 3410851 3385 0258

17 137 0 102 23amp24 48 1742 9228 7197 1798 9253 2397784 2385 01271

27 1379 1542 9244 23amp33 48 1742 9228 4793 3249 9172 1508056 1512 0039

37 1368 2977 9241 23amp34 48 1742 9228 725 3209 9259 2855792 2879 02321

47 1321 3963 8954 33amp34 4793 3249 9172 725 3209 9259 2458865 2452 0068

18 1577 0 1062 33amp43 4793 3249 9172 465 5743 8558 2572447 2568 004shy

28 1563 1823 9435 33amp44 4793 3249 9172 652 5265 8674 2700887 2692 00881

38 1572 3286 8675 14amp15 6708 0 9611 912 0 9942 2435101 2442 0068

48 1479 4188 8667 14amp25 6708 0 9611 93314 1775 972 3169757 3155 0147

19 175 0 9786 14amp24 6708 0 9611 7197 1798 9253 1897519 1872 0255

29 1753 1635 9079 24amp25 7197 1798 9253 93314 1775 972 2185013 219 0041

39 1709 2632 9028 24amp34 7197 1798 9253 725 3209 9259 1412008

49 1754 406 8591 24amp15 7197 1798 9253 912 0 9942 2721296 2715 0062

34amp35 725 3209 9259 92285 28 8811 2069407 2093 0235

34amp25 725 3209 9259 93314 1775 972 2569261 2558 01121

15amp16 912 0 9942 11591 0 9318 2548572 254 0085

15amp26 912 0 9942 1149 1486 9132 2912249 2902 010

15amp25 912 0 9942 93314 1775 972 1801277 179 0112

25amp16 9331 1775 972 11591 0 9318 2901383 2918 0t66

25amp26 9331 1775 972 1149 1486 9132 2255841 226 0041

25amp35 9331 1775 972 92285 28 8811 1373861 1346 0278

25amp36 9331 1775 972 110 2712 9226 1976419 2014 0375

35amp26 9229 28 8811 1149 1486 9132 2635151 2626 0091

35amp36 9229 28 8811 110 2712 9226 1821588 1817 0045

35amp46 9229 28 8811 11283 4618 9041 2752997 2722 0309

35amp45 9229 28 8811 92 5232 8491 2453128 2501 0478

45amp36 92 5232 8491 110 2712 9226 3182864 3164 0188

45amp46 92 5232 8491 11283 4618 9041 2240175 2252 0118

Geological investigation and slope risk assessment at Windermere northern Tasmania

J

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 31: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording 2 8th June 1998

16amp17 1159 0 9318 137 0 102 2286002 2295 0089 16amp26 1159 0 9318 1149 1486 9132 1500997 1491 0099 26amp17 1149 1486 9132 137 0 102 2869307 2889 0196 26amp27 1149 1486 9132 13785 15418 9244 2298409 237 0715 26amp37 1149 1486 9132 13676 29n 9241 2648312 26 0483shy

36amp26 110 2712 9226 1149 1486 9132 1323636 36amp37 110 2712 9226 13676 29n 9241 2689131 2642 0471 36amp46 110 2712 9226 11283 4618 9041 1935756 199 0542 36amp47 110 2712 9226 13205 3963 8954 2549708 2524 0257( 46amp37 1128 4618 9041 13676 29n 9241 2908493 2864 0444 46amp47 1128 4618 9041 13205 3963 8954 2032407 2096 0635 17amp18 137 0 102 1577 0 1062 2112179 212 0078 17amp28 137 0 102 15627 1823 9435 2760n6 2731 029 17amp27 137 0 102 13785 15418 9244 1816125 1875 0588

27amp18 1379 15418 9244 1577 0 1062 286544 289 0245

27amp28 1379 15418 9244 15627 1823 9435 1873104 1935 0618

27amp37 1379 15418 9244 13676 29n 9241 1439336

37amp38 1368 29n 9241 15722 3286 8675 2145216 2114 0312

37amp47 1368 29n 9241 13205 3963 8954 1129781

47amp48 1321 3963 8954 1479 4188 8667 1626413 1635 00851 18amp19 1577 0 1062 175 0 9786 1920535 1965 0444pound

18amp28 1577 0 1062 15627 1823 9435 2178991 2155 0239

18amp29 1577 0 1062 17534 1635 9079 2856502 2882 0254

28amp29 1563 1823 9435 17534 1635 9079 1949033 196 0109pound

28amp19 1563 1823 9435 175 0 9786 2637169 2647 0098

28amp39 1563 1823 9435 1709 2632 9028 172061 1705 0156

39amp38 1709 2632 9028 15722 3286 8675 1556839 1552 0048

19amp29 175 0 9786 17534 1635 9079 1781637 1782 0003pound

29amp39 1753 1635 9079 1709 2632 9028 1092587 1073 01951

39amp49 1709 2632 9028 1754 406 8591 1559696 162 0603(

38amp49 1572 3286 8675 1754 406 8591 19n69 199 0123

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 32: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording 3 11th July 1998

peg east north z first x first y first z second x second y second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132 3115 0017 21 0 218 9565 11amp21 0 0 100 0 218 9565 2223 2225 002C 31 o 3144 9017 11amp12 0 0 100 22198 0 9631 22503 2255 0047 41 o 5108 8542 21amp12 0 218 9565 22198 0 9631 3112 3165 053C 22 2265 1982 9204 21amp22 0 218 9565 2265 1982 9204 23021 225 0521 12 222 o 9631 21amp32 0 218 9565 23 3044 9307 24704 32 23 3044 9307 21amp31 0 218 9565 0 3144 9017 11089 1115 OOE 42 214 493 8538 31amp22 0 3144 9017 2265 1982 9204 25525 13 4465 0 1002 31amp33 0 3144 9017 478 339 917 47888 23 4805 1742 9228 31amp42 0 3144 9017 214 493 8538 28282 33 478 339 917 31amp41 0 3144 9017 0 5108 8542 20206 202 OOOE 43 462 5878 8558 41amp42 0 5108 8542 214 493 8538 21474 214 007~

14 6708 o 9611 41amp32 0 5108 8542 23 3044 9307 31836 24 723 1798 9253 12amp13 222 o 9631 44646 0 1002 22783 232 0417 34 722 3253 9259 12amp23 222 o 9631 4805 1742 9228 31433 314 003~

44 6554 53 8674 12amp22 222 o 9631 2265 1982 9204 2028 2028 OOOC 15 913 o 9942 22amp23 2265 1982 9204 4805 1742 9228 25514 2564 012 25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712 3112 0407 35 92 291 8811 22amp32 2265 1982 9204 23 3044 9307 10676 1132 06M 45 9205 5317 8491 32amp33 23 3044 9307 478 339 917 25078 25657 osn 16 117 o 9381 32amp42 23 3044 9307 214 493 8538 2043 201 033C 26 1149 149 9132 13amp14 4465 o 1002 6708 0 9611 22804 233 049E 36 1111 2805 9226 13amp23 4465 o 1002 4805 1742 9228 19436 194 003E

- 46 1111 473 9041 13amp24 4465 o 1002 723 1798 9253 33865 3312 074E 17 142 0 102 23amp24 4805 1742 9228 723 1798 9253 24258 242 005i 27 1362 15 9244 23amp33 4805 1742 9228 478 339 917 16492 1722 072i 37 1373 3002 9241 23amp34 4805 1742 9228 722 3253 9259 28489 2797 051 47 1348 4009 8954 33amp34 478 339 917 722 3253 9259 24455 2502 056 18 1578 0 1062 33amp43 478 339 917 462 5878 8558 25672 2598 030E 28 157 183 9435 33amp44 478 339 917 6554 53 8674 26535 265 003 38 1579 331 8675 14amp15 6708 o 9611 913 0 9942 24445 2435 009E

48 1443 4222 8667 14amp25 6708 o 9611 9331 179 972 31774 316 017~

19 1769 o 9786 14amp24 6708 o 9611 723 1798 9253 19062 1842 064 29 1767 1635 9079 24amp25 723 1798 9253 9331 179 972 21523 2225 072~

39 1723 2632 9028 24amp34 723 1798 9253 722 3253 9259 1455 49 1766 407 8591 24amp15 723 1798 9253 913 0 9942 27051 2723 017

34amp35 722 3253 9259 92 291 8811 20588 2043 0151 34amp25 722 3253 9259 9331 179 972 26094 2545 06~

15amp16 913 o 9942 117 0 9381 26305 266 029~ 15amp26 913 o 9942 1149 149 9132 29062 2885 021

15amp25 913 o 9942 9331 179 972 18149 1809 005

25amp16 9331 179 972 117 0 9381 29885 295 0381

25amp26 9331 179 972 1149 149 9132 22577 226 002 25amp35 9331 179 972 92 291 8811 14484 1513 06shy25amp36 9331 179 972 11109 2805 9226 21061 215 043

35amp26 92 291 8811 1149 149 9132 27136 2742 028

35amp36 92 291 8811 11109 2805 9226 19564 2004 047

35amp46 92 291 8811 1111 473 9041 26483 2668 019

35amp45 92 291 8811 9205 5317 8491 24282 2517 088i

45amp36 9205 5317 8491 11109 2805 9226 32366 3258 021

45amp46 9205 5317 8491 1111 473 9041 20679 209 022

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 33: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 Recording 3 11th July 1998

16amp17 117 o 9381 142 0 102 26307 2602 0287 16amp26 117 o 9381 1149 149 9132 15252 1503 02211 26amp17 1149 149 9132 142 0 102 32718 3205 0668 26amp27 1149 149 9132 1362 15 9244 2133 219 0570 26amp37 1149 149 9132 1373 3002 9241 27047 2675 0297middot 36amp26 1111 2805 9226 1149 149 9132 13723 36amp37 1111 2805 9226 1373 3002 9241 26284 259 0384 36amp46 1111 2805 9226 1111 473 9041 19339 203 0961 36amp47 1111 2805 9226 1348 4009 8954 26731 2672 00101 46amp37 1111 473 9041 1373 3002 9241 31449 3207 0621 ( 46amp47 1111 473 9041 1348 4009 8954 24788 256 0812 17amp18 142 0 102 1578 0 1062 16349 1705 0701

) 17amp28 142 0 102 157 183 9435 24868 25 013 17amp27 142 0 102 1362 15 9244 18709 181 0609 27amp18 1362 15 9244 1578 0 1062 2968 2907 0609 27amp28 1362 15 9244 157 183 9435 21147 213 015 27amp37 1362 15 9244 1373 3002 9241 1506 1504 0020 37amp38 1373 3002 9241 157 183 9435 23005 2313 0125 37amp47 1373 3002 9241 1348 4009 8954 10765 47amp48 1348 4009 8954 1443 4222 8667 1015 18amp19 1578 o 1062 17685 0 9786 20796 208 OOO~

18amp28 1578 o 1062 157 183 9435 21816 215 0316 18amp29 1578 o 1062 1767 1635 9079 2936 288 05591 28amp29 157 183 9435 1767 1635 9079 20114 197 04131 28amp19 157 183 9435 17685 0 9786 27226 2643 0795 28amp39 157 183 9435 17233 2632 9028 17773 1702 0753 39amp38 1723 2632 9028 1579 331 8675 1633 1633 0000

) 19amp29 1769 o 9786 1767 1635 9079 17814 178 0013~

29amp39 1767 1635 9079 17233 2632 9028 10898 1005 0847E 39amp49 1723 2632 9028 1766 407 8591 15624 1645 08251 38amp49 1579 331 8675 1766 407 8591 20203 2002 01821

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 34: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 recording 4 29th August a998

peg east north z first x first y first z second second_ second z calc dist meas dist 11 0 0 100 11amp22 0 0 100 2265 1982 9204 31132242 3115 001 21 0 218 957 11amp21 0 0 100 0 218 9565 22229766 2225 002( 31 0 3144 902 11amp12 0 0 100 22198 0 9631 22502607 2255 004 41 0 5108 854 21amp12 0 218 9565 22198 0 9631 31119557 3135 023( 22 2265 1982 92 21amp22 0 218 9565 2265 1982 9204 23021186 233 027f 12 22198 o 963 21amp32 0 218 9565 23 3044 9307 24704372

32 23 3044 931 21amp31 0 218 9565 0 3144 9017 11088733 1115 006 42 214 493 854 31amp22 0 3144 9017 2265 1982 9204 25525356

13 44646 0 100 31amp33 0 3144 9017 478 345 917 47922276

23 4805 1822 923 31amp42 0 3144 9017 214 493 8538 28282215

33 478 345 917 31amp41 0 3144 9017 0 5108 8542 20206239 202 000pound ) 43 458 5948 856 41amp42 0 5108 8542 214 493 8538 21473938 214 007~

14 6708 o 961 41amp32 0 5108 8542 23 3044 9307 31836019

24 723 1798 925 12amp13 22198 0 9631 44646 0 1002 22782555 232 041

34 722 3293 926 12amp23 22198 0 9631 4805 1822 9228 31883149 314 048~

44 6594 537 867 12amp22 22198 0 9631 2265 1982 9204 20279783 2028 OOO( 15 913 o 994 22amp23 2265 1982 9204 4805 1822 9228 25451475 2564 018f

25 9331 179 972 22amp13 2265 1982 9204 44646 0 1002 30712245 3112 040

35 92 2983 881 22amp32 2265 1982 9204 23 3044 9307 1067557 1132 06

45 9205 5402 849 32amp33 23 3044 9307 478 345 917 25167449 25657 048

16 117 o 938 32amp42 23 3044 9307 214 493 8538 20430264 201 033(

26 1149 149 913 13amp14 44646 0 1002 6708 0 9611 22803782 233 049pound

36 11109 2805 923 13amp23 44646 0 1002 4805 1822 9228 20156439 194 075pound

46 1111 473 904 13amp24 44646 0 1002 723 1798 9253 33865218 3312 074pound

17 142 0 102 23amp24 4805 1822 9228 723 1798 9253 24252476 242 005~

27 1362 15 924 23amp33 4805 1822 9228 478 345 917 16292247 1622 007~

37 1363 3052 924 23amp34 4805 1822 9228 722 3293 9259 28279015 2797 03m

47 1348 4065 895 33amp34 478 345 917 722 3293 9259 24466651 2502 055~

18 1578 0 106 33amp43 478 345 917 458 5948 8558 25796411 2598 018~

28 157 183 944 33amp44 478 345 917 6594 537middot 8674 26875662 265 0371

38 1579 331 868 14amp15 6708 0 9611 913 0 9942 24445132 2435 0091

48 1443 4222 867 14amp25 6708 0 9611 9331 179 972 31774376 316 017

19 17685 o 979 14amp24 6708 0 9611 723 1798 9253 19061616 1842 064

29 1767 1635 908 24amp25 723 1798 9253 9331 179 972 21522904 2125 027

39 17233 2632 903 24amp34 723 1798 9253 722 3293 9259 14950455

49 1766 407 859 24amp15 723 1798 9253 913 0 9942 27050924 2723 017

34amp35 722 3293 9259 92 2983 8811 20535832 2043 010

34amp25 722 3293 9259 9331 179 972 26320811 2545 087(

15amp16 913 0 9942 117 0 9381 26305172 266 029

15amp26 913 0 9942 1149 149 9132 29061659 2885 021

15amp25 913 0 9942 9331 179 972 18148788 1809 005l

25amp16 9331 179 972 117 0 9381 29885083 295 0381

25amp26 9331 179 972 1149 149 9132 22576592 226 002

25amp35 9331 179 972 92 2983 8811 15055534 1513 007shy

25amp36 9331 179 972 11109 2805 9226 21060734 215 043

35amp26 92 2983 8811 1149 149 9132 2752488 2742 011

35amp36 92 2983 8811 11109 2805 9226 19616804 2004 042

35amp46 92 2983 8811 1111 473 9041 25986552 2668 069

35amp45 92 2983 8811 9205 5402 8491 24400791 2517 076middot

45amp36 9205 5402 8491 11109 2805 9226 33030062 3358 054

45amp46 9205 5402 8491 1111 473 9041 20935876 209 003

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 35: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 3 recording 4 29th August a998

16amp17 117 0 9381 142 0 102 26307339 2602 028~

16amp26 117 0 9381 1149 149 9132 15251888 1503 022 26amp17 1149 149 9132 142 0 102 32718227 3205 0661 26amp27 1149 149 9132 1362 15 9244 2132966 219 05~

26amp37 1149 149 9132 1363 3052 9241 26516646 2675 023 36amp26 11109 2805 9226 1149 149 9132 13723054 36amp37 11109 2805 9226 1363 3052 9241 25331157 259 0561 36amp46 11109 2805 9226 1111 473 9041 19338694 203 096 36amp47 11109 2805 9226 1348 4065 8954 26987451 2672 026 46amp37 1111 473 9041 1363 3052 9241 30341529 3007 027 46amp47 1111 473 9041 1348 4065 8954 2463066 246 om 17amp18 142 0 102 1578 0 1062 163487 1705 0 17amp28 142 0 102 157 183 9435 24867901 25 013~

17amp27 142 0 102 1362 15 9244 18709185 181 060 27amp18 1362 15 9244 1578 0 1062 29679919 2907 060 27amp28 1362 15 9244 157 183 9435 21146586 213 015 27amp37 1362 15 9244 1363 3052 9241 15520351 1504 048C 37amp38 1363 3052 9241 157 183 9435 24116011 2413 001 37amp47 1363 3052 9241 1348 4065 8954 10635027 47amp48 1348 4065 8954 1443 4222 8667 10047477 18amp19 1578 0 1062 17685 0 9786 20795627 208 OOOl

18amp28 1578 0 1062 157 183 9435 21816336 215 03H 18amp29 1578 0 1062 1767 1635 9079 29359847 288 055 28amp29 157 183 9435 1767 1635 9079 20113829 197 041 28amp19 157 183 9435 17685 0 9786 27225587 2643 079 28amp39 157 183 9435 17233 2632 9028 17773413 1702 075 39amp38 17233 2632 9028 1579 331 8675 1632955 1633 00lt 19amp29 17685 0 9786 1767 1635 9079 17813756 178 0D1 29amp39 1767 1635 9079 17233 2632 9028 1089761 1005 08l

39amp49 17233 2632 9028 1766 407 8591 15624154 1645 082 38amp49 1579 331 8675 1766 407 8591 20202861 2002 018~

)

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 36: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

APPENDIX 4 LANDSLIDE CLASS GUIDELINES

The following document is the official classification for landslip risk zoning in the Launceston area obtained from Mineral

Resources Tasmania

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 37: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 4 Landslide class guidelines

LANDSLIP RISK ZONING - LAUNCESTON AREA 1996

The landslip risk zoning is a revision of the zoning undertaken for th Launceston area in 1974 by the Department of Mines The earlier surve extended over the whole Tamar region of some 800km2 whereas the newe version is derived from a detailed study of about 145km2 and covers the Greate Launceston area and surrounding land

The classification closely follows the former system of zonation The availabili~

of more accurate base maps combined with the collection of more detaile( surface and subsurface geological information has made it possible to refine th4 accuracy of the zoning over that produced previously Even so the zoning is stil relatively broad scale in nature but it should give a good indication of the landslip risk in most areas Locations on or near the zone boundaries may neelt more precise determination by field inspection for particular developments ir some cases The zoning is advisory in nature

As with the former survey five classes have been used in the zonation system Subclasses have been introduced in Classes IT and III on the latest maps Additional information may be obtained by reading the land stability zonatioI maps in conjunction with examination of contour information and the detaile( geological and engineering geological maps The classes are arranged ir increasing order of risk in a general sense from Class I to Class V

Class I - Generally stable ground on ~ard weathered ~rd rocks

This zone comprises areas underlain by Tertiary basalt Jurassic dolerite anI Triassic and Permian sandstone siltstone and mudstone Of these dolerite is b~ far the most common in the Launceston area

These rocks have been subject to weathering resulting in variable depths of soil loose rock and weathered rock overlying hard in situ rock Where the depth 0

weathering is shallow ie in place competent rock is say less than one metre from the surface the risk of landslip is regarded as very low In areas where weathering is deeper the risk of landslip on sloping land may be a little greate under some circumstances but is still generally low Areas with known thicke weathering profiles on these rocks (usually dolerite) have been placed in Classe Il and III depending on slope angle

Occasional small areas with deep weathering will not have been identifielt during the mapping process and such areas will have been placed in Class I Steep land with loose boulders or jointed cliff faces may present hazards fron rolling boulders or rock falls

Geological investigation and slope risk assessment at Windermere northern Tasmania

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 38: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

~

)

Appendix 4 Landslide class guidelines

Areas underlain by these rocks are regarded as generally having very low landslip risk Steeper sloping areas should be examined to assess depth of weathering and hazards from boulders and rock falls If deeply weathered zones are located in such areas they should be treated as Classes IT and rn depending on slope angle Very rarely a higher zone may be considered

Developments in steeper areas should follow good hillside development practices

Class 11 - Generally stable ground on soft rocks deep soil on hard rocks (11a) selected reclaimed areas (lIb) all on slopes lt 7deg

This class comprises land underlain by relatively unconsolidated units of Quaternary age other more consolidated but poorly indurated units of Quaternary to Tertiary age deeply weathered hard rock areas and selected manshymade fill areas

The lowest angle on which a landslide is known to have occurred in recent times in the Tamar area is 7deg As a result land underlain by the above materials with slopes of less than 7deg is regarded as generally stable This conclusion appears to be valid for undeveloped land with a low slope angle where there are no signs of previous landslips visible and for well managed developed land of a similar nature where there is an absence of excessive loading

The 7deg slope angle has been determined using maps with a five metre contour interval and because of this interval small errors may occur on the zonation maps where steeper slopes of less than 5 metres in height are present These errors are likely to be rare as in cases where such slopes are known to occur from field observation or air photo interpretation the land has been assigned to the appropriate zonation class Small areas of land with a slope of lt7deg that could be affected by landslips on adjacent steeper slopes have been placed in a higher class

Although Quaternary estuarine and alluvial deposits of the Tamar and North Esk river valleys have been classified as Class n narrow zones adjacent to water bodies may be prone to landslip into those water bodies at some locations Some of these deposits and some selected reclaimed areas (llb) could be subject to significant settlement under load

Recommendation

Landslip risk for this class is regarded as low Excessive loading or deep excavation combined with poor drainage practices could induce unstable conditions under some circumstances Some attention should be given to these factors when development is proposed Strict adherence to building codes is recommended

Geological investigation and slope risk assessment at Windermere northern Tasmania

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 39: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 4 Landslide class guidelines

Class III - Potential landslip areas on softrocks deep soil overlying hard rock (IlIa) (slopes in both cases ~ 7deg)dolerite gravel areas on slopes 7-10deg (llIb) dolerite gravel areas on slopesgt 10deg (lIIc)

This class is comprised largely of land underlain by similar material to that underlying Class II areas but with a greater slope angle The land in this class exhibits no obvious signs of past movement but because of the slope angle there is some potential for landslip to develop under some circumstances Excavation and placement of fill may have obliterated old landslip features in some of the developed areas that have been placed in this class but this is not expected to be common

There is a range of risk in this zone The limited amount of subsurface information does not allow more subdivision into subclasses than indicated A small section of flatter land above and below the steeper slopes has been included in this class to act as a buffer

The landslip risk for Class ITIb (dolerite gravel on slopes -rgt-10~ is regarded as low The risk for IlIa (deep soil overlying hard rock) and IlIc (dolerite gravel on slopes gt 10~ is regarded as similar to the remainder of Class ill

Recommendation

It is recommended that a land stability assessment for land in this zone be undertaken before development proceeds This assessment will often involve a field inspection and sometimes subsurface investigations and should be undertaken by a competent geotechnical practitioner In many Class III areas it is expected that land in this class will be suitable to develop provided some precautions are taken and theseshould be oJltlined in a specific site report that deals with the development of the land These precautions Vnn usually relate to factors such as siting of the development excavations drainage and vegetation removal

Class IV - Old landslip and adjacent areas

Land in this class shows signs of definite and probable old landslip movements with no apparent movement in recent times ie there are no landslip related cracks or bare soil associated with landslip visible and long term residents are unaware of movement As well some adjacent land with similar conditions (eg geology and slope angle) has been included in this class

Geological investigation and slope risk assessment at Windermere northern Tasmania

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 40: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

APPENDIX 5 DRILL CORE LOGS

Specific locations are illustrated in figure 31

Data has been derived from previous data and drill and auger hole logging

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 41: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Chapter 4 Previous Work

Drill core Depth Description Moisture Classification Reference no (m) content svmbol PI 0 Top soil Unknown Leaman amp Stevenson 1972

0305 Talus of hard angular basalt boulders in basalt clay matrix became hard to dig at 19m

P2 0 Top soil Unknown Leaman amp Stevenson 1972 lt0305 Weathered basalt talus with some hard boulders too hard to dig at 305 m

P3 0 Top soil Unknown Leaman amp Stevenson 1972 0305 Talus of weathered basalt mainly clay with a few basalt boulders at 33m

P4 0 Top soil Unknown Leaman amp Stevenson 1972 03-06 Brown plastic clay gt06 Deeply weathered basalt talus with occasional boulders to 29m becoming

difficult to dig P5 0 Top soil Unknown Leaman amp Stevenson 1972

30 Brown sandy clay

60 Weathered basalt talus becoming too hard to dig at 27m P6 0 Top soil Unknown Leaman amp Stevenson 1972

3 Brown sand

9 Weathered basalt talus passing into fresh basalt rubble at 27m

P7 0-02 Dark brown dry and fractured silty clay soil some basalt boulders Stevenson 1973 02-05 Porous silty and pisolitic (iron oxide) soil 05-23 Mixture of plastic clay and basalt boulders some basalt weathered some

unweathered 23-32 Light grey-brown medium hard plastic clay fissured with shiny surfaces

P8 0-06 Dark brown clay and basalt boulders grading into dark brown soil CH Stevenson 1973 06-15 Light brown clay with basalt boulders 15-18 On north side of pit grey silty clay a thin fine even-grained quartz sand

beds some wood fragments Zones of clay extending into basalt boulder zone Other parts of pit consist of clay and basalt boulders which proved too difficult to excavate

P9 0-03 Dark brown soil and sandy silty clay dry and fractured Stevenson 1973 03-18 Hard brown plastic clay and basalt boulders Towards bottom light grey

and brown mottled silty and sandy clay with plastic clay and basalt boulders intermixed Unable to dig any deeper

PlO 0-08 Dark brown to black silty clay dry and fractured a few small basalt Stevenson 1973 fragments

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 42: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Chapter 4 Previous Work

08-26 Fragmental grey brown to black clay (derived from basalt) with basalt boulders occasionallimonite nodules

Pll 0-06 Dark brown crumbly soil overlying clay some basalt boulders CH Stevenson 1973 06-27 Brown plastic to fragmental clay with occasional basalt boulders shiny slip

surfaces on clay 27-31 Light grey and brown mottled clay hard plastic some thin travertine

seams Pl2 0-06 Dry fractured dark brown clay soil becoming damp towards the base CH Stevenson 1973

angular limonite fragments 06-18 Fragmental to plastic brown clay and basalt boulders 18-31 Light grey and brown mottled clay and silty clay fairly hard and massive

Iron oxide band across floor Dit above 15 mm wide carries a little water Pl3 0-05 Dry and fractured soil over light brown silty clay CH Stevenson 1973

05-15 Mainly brown a little grey fragmental to plastic hard clay some limonite 15-27 nodules

Light grey and brown mottled clay fissured Some travertine near tOD Pl4 0-06 Dark brown soil overlying pisolitic (iron oxide) clay with basalt boulders Stevenson 1973

06-15 Ligth grey brown fragmental clay with basalt boulders 15-21 Fissured grey clay with shiny slip surface on one side of pit The other part

of pit are weathered basalt debris and boulders with some moisture

P15 0-03 Dark brown soil fractured and dry occasional basalt boulders CH Stevenson 1973 03-09 Basalt derived light brown fragmental material with large basalt boulders 09-17 Fine even grained brown sand (mainly quartz) 17 Blue clay

B I 0-05 Clay - highly plastic dark brown Some organic in top half (soil amp subsoil) M=PI CH Moore 1986 05-19 Clay - highly plastic grey (Launceston Beds) MltPl CH 19-44 Clay - highly plastic brown MltPl CH 44-50 Soft zone M=Pl CH

B2 0-02 Clay - Organic black highly plastic (soil) M=Pl OH Moore 1986 02-04 Clay - highly plastic dark brown (subsoil) MltPl CH 04-60 Clay - hi~hly plastic brown (Launceston Beds) MltPl CH

B3 0-02 Clay - Organic black highly plastic (soil) M OH Moore 1986 02-15 Clay - Highly plastic yellow (yellow clay) M=Pl CH 15-30 Clay - Highly plastic brown with ironstone grit (Launceston Beds) MltPl CH 30-33 Clay - Highly plastic grey 33-60 Clay - Hi~hly plastic brown

GeoloRical investigation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 43: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Chapter 4 Previous Work

B4 0-08 Gravel amp organic clay - Gravel coarse road base coarse Clay black organic GCampOH Moore 1986 08-16 Clay - Highly plastic yellow-brown M=PI CH 16-18 Clay with gravel- clay highly plastic yellow Gravel coarse quartz pebbles MltPI GC

10 B5 0-10 Gravel- coarse poorly sorted Road base coarse with some clay (Fill) GC Moore 1986

10-12 Silt - Organic fine low plasticity (Soil layer) M OL 12-15 Clay - High plasticity brown (Clay interbedded with gravel) M=PI CH 15-20 Clay with gravel- coarse gravel clay highly plastic MltPI GC 20-27 Clay highly plastic brown MltPI CH 27-33 Clay with gravel - clay highly plastic brown Gravel coarse GC

B6 0-15 Gravel and clay - Gravel coarse clay highly plastic grey-brown M=PI GC Moore 1986 15-25 Clay highly plastic liJzht brown D CH

B7 0-03 Clay - organic with roots dark brown (Topsoil) M OH Moore 1988 03-42 Clay - highly plastic orange (Launceston Beds) CH

B8 0-04 Clay - black organic with roots D OH Moore 1988 04-10 Clay - orange highly plastic M 10-25 Clay with gravel- brown clay highly plastic gravel fine ironstone 1-2 M CH

mm 10 25-40 Clay - Orange highly plastic M CH

B9 0-09 Clay - Brown organic highly plastic D OH Moore 1988 09-16 Clay - brown highly plastic M CH 16-19 Clay - Rubbly ironstone band M 16-34 Clay - brown highly plastic M CH 34 Clay with pebbles M

BIO 0-08 Clay pebbles Clay- orange brown highly plastic Pebbles basaltgt 3 mm CH Moore 1988 ironstone lt 1mm M

08-34 Clay - brown highly plastic gradual change in colour with depth M CH 34-7 Clay - orange highly plastic H

Bll 0-02 Concrete and gravel G Moore 1988 02-10 Clay - brown highly plastic M CH 10-31 Clay - orange highly plastic M

B 12 0-02 Light brown loamy silt Ingles 1991 02-45 Strongly bleached silt with abundant ironstones to 5cm 04-55 Very dry clay with yellow brown grey mottle

BB 0-015 Light brown loamy silt Ingles 1991 015-5 Stiff dry clay mottled yellow grey

GeoloRical investiRation and slope risk assessment at Windermere northern Tasmania

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 44: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Chapter 4 Previous Work

Borehole 14 0-023 23-5 05-55

Borehole 15 0-025 025-5 05-65

Borehole 16 0-20

Borehole 17 0-07 07-18

Borehole 18 0-05 05-19

Light brown silt Mildly bleached ironstone rich silt Dry mottled clay Light brown loamy silt Mildly bleached ironstone rich silt Very dry clay mottled yellowlbrown Fairly uniform clay very dry with well rounded boulders to 30 cm and brownyellow orange mottle Light brown silty gravelly loam Clay - Mottled redloranpe2fey very dry Light brown silty gravelly loam Clay slickensided strongly mottled yellow grey (latter predominates) somewhat porous and also layered

Ingles 1991

Ingles 1991

CM Ingles 1991

Ingles 1991 CH CM Ingles 1991 CH

Geololical investilation and slooe risk assessment at Windermere northern Tasmania

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 45: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

-- -

bullbullbull

bullbullbull

bullbullbull bullbull bull bullbullbull

bullbullbull

I ~

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

1amp Amiddot 4 A

~ -AIJJ~ lIl pound

bull ~~ LLtY I

61J6 6A

6Al IJ ~

A b A Akh Ashy

llb-A

Qn

~I

~II

~

shy~

bull5

iIIo ~nu(

Ix)~lJo( bullbull~

Ibullbullbullshy1-bullbull

I~o -I ~

~-bj ~bullbull

0

project IJI~r~re area hole no wot1 (gW-l)

location~avn+slilll page lof z logged bY~ele (YbcdCflpoundild date cxctmiddot I If

scale I ~ 11YI

descriptionl

fuSJu- (oulo~

~Ild ~Ir ~ COOrSE ~rCIVleC1 peldspov rlc~

- frQSh roc~middot

core CS5 -prota6lIj sand lICy IQjelS

oQnltje d~~ - orgoc IroterlOI pYe~Ent-

- no we consohcicred =) I rr-~ mlts~

legtroUJn Ca~ NOre COolldoreo va-~ pne gOlled

Eandnch ta~eV doY- In cdovV dlDStrDtes Cl dQ~ sedtNOV~~

- k) t)1~J

gre~ coIou I vJC1 tIacl Umiddot

~ 00ve CbOrs~uC I nclrI o~on f c

o-ectlutYl orOtPr1 i~ovJ ctyenffClCQ

lE rear ete I (~ OCll tI

VU~ darlfbrown del) (e-lll4l4-r)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 46: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bullbullbullbullbullbull bullbullbull

bullbull

bullbullbull

bullbullbull bullbullbull

bullbullbull

bullbullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project NrOe~lYqe 0 ~a hole no WD~ (fgtlt1) 10cationGtonr-gt ltt 11 page20f logged by RcxYelle )tcdC)VA(d date ZCl Cf8

grainsize scale I rn metre structure descriptio

~3 bullbullbull bullbull0

)()C)CIx)lt~b~

FY- j

~ Cool seam - b Cc( ocl0 e loJelf -1c 11- leKo

~~shy~O

Aa

~)(~

~ ~J

~ ~~

) lamiddotlDtIII ~ j vc wet- oreel ~ bullbull411

~= ~

1-gtltshy

~~~bullbull ~bullbullbull~~1-shyla

ebull bullbullt ~

~

ILLI Ibullbull ~

~~

~

~

middot1~

~~

~

~l J

Geological Investigation and slope risk assessment at Windermere northem Tasmania

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 47: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bullbullbull bullbullbull

bullbull bullbull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project I-Ilrcterm~r~ anQ hole no ~tt1 Cpounda+t1-) location ~ne ttl page3of3 logged by ~~ IYtAccXgtrold date ~q I cri

grainsize scale I I metre structure description

~ a6 Itmiddotmiddot~

ID) ~J lIe~ hgnt- (YCtQnQ C-reorY w-l-e IV) coloo Y

MAe 3tOmed sordt --I

bull

bull br-ovJt1 dQ~iili _ -__-_- ~ ------_ --- - _ _--- ------ bull ----_ -shy

IX ~ ~ bull doy k br-own co~

le )C)C L4eot1erQd b(ut

~ oo~~ ~lt ccl~

roso- (IlShJ )Ab ~

AA ~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 48: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bull Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project WlnceffYeye OftCl hole no fH2shy

location COrn e~lCltcil sov~ page of logged by ~~ mudmJd date 21 S lamp

grainsize scale cm ~ I rn metre structure descriotionl

~ bullbull bOat+C so I ~ (OOTS 4 j A ~r~~I g(adeS Igtft) ~~-PSgtocl ~f

I - wlaquo td c-ts A A A -~~~bull z 11 =lJtc ~SGllJQ -gtOIOflCJq ~le1 Pf~1~OPnto rlt-tL A 11

A A ~ feldspor p~ltXrj~-o(Q eude-r I I-ctYd sp~c-~

l

Hs ~1~d1orgt IUPQ

A h u I- ~

A Bolld bosoI+ tQSS we C1tv1e (ed -tVo -the olQell)Q Ipound A A

bull A(~

~ill amp-

w~tIe~cJ tbDR

b b 0 laquo

II A1JA J q AJ e A t J 10 A f

6 D J 11 )

11 A A A A

pound l1 C1 A 1

L1 tJ 6 A A AA~

1lt b d I4 A A

A f D l t1

11 b

bull JtJll 11 1 A~iJ A

6 6shyLl~ A j fl~

~ l) d L A l~a

L1 Jl n~A

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 49: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project -)nOQ-(TQle oIeD hole no ~~Z

location lbOrn ee~ S Ittll page of ~ __-1logged by ~le ~ date 2 - ego -9 ~

grainsize scale ct- = 1---T----1 metre structure description

A~6

2JJ D6 I1All

- 2S L1i

A Cgt ~

At LlAll

At

bA6 6 f1

l) D A AA D~6

~ A ~

6 e U A ~

A ~ e b t D Cbn+ac-l- o~ TeVhOVj Q~cI I- ~~ 1 conltje lf I-----+----+-b-=-D--t--II-----I -lev nc~ amp~~ I CY1Q Wts

I--_+- -+--A~A----+---t bull s 310 r IJ bCtlc~d ~ ha1 seurod I fY(L-+3 A c A _ pIne qtollltiC1 blcctt (Thrl ~chOlo-)~A J I bull

~u A A Do - Ve ~ I-coc f20e 4c -the oJollt +0 ~~ J ~~

ltlt ~1b llltlo IS Sc~l-ch czeA A

Cl lJelu ~1Il CtrO~ q-lltllOroWV CCl~ =~~r L LI 7] -L-~ ~ Ji J ~ DleCsr-C cIcA- ~ole- ~ laquo 0

J bull ~

fgtrown cJo~ 1tP1- cornlrotes rnvcV-o or- the ovtO

IlIlno t7eddj ap(9=Ltenl-

it-

Ii~

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 50: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bullbullbull

bullbullbullbull bull

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project hole no location page of logged by date

grainsize scale metre structure description

Llb

C1J

~

Sand I C~ev - ~nt- brown - (U cOQlselj ~oned 11-cn tHl

Claj btAl- SOllAlt ClMOV op- elcI) aNt

MIeeeC - f-Ite SQnd

J)

0 - SrOtD clo)j o bull

1_ - fyena2 COr1 So Cat-ed

Obullbullbullbull

~ Ac

fih

b1shy

) Geological Investigation and slope risk assessment at Windermere northern Tasmania

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 51: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG

grainsize metre structure

I

Efl

ro

project location logged by

description

c6-SOrd 0 e ~

hole noBt2 page4-0f5 date scale

)

xshy

~

~~lalol

+k1lclt~k cl ~ ~ev

lA- LAv1e MYJ ~J

to ~CDClaquo

o laquo

Srd ~Jo

~

bull Geological Investigation and slope risk assessment at Windermere northern Tasmania

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 52: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 5 Drill Logs

DIAMOND DRILLCORE LOG project Wde(Mlf~ o~ hole no ~tt Z location Lo Q- l Scwtlh oh 11 pag~of sshylogged by - nb~ d date 21 ~ - 9 ~

grainsize scale ICf0 ~ 1lY

metre structure descriptio~

ltb

I

q~ sonO IQt~ OltOoneln~ Wlf-1- OfjO-tIIC lQr1 ftat1ef

1e1lo-a ~ colov (h~r-o)

v ~ ~ efd or- ~ole Cl)

Geological Investigation and slope risk assessment at Windermere northern Tasmania

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 53: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

bullbull

(1

0

~

~

~ ~

~

~

~

~c=

gt~

oo~

~z

z~

gt~

t4

~ 00

0 e ~

(1

~

00

gt

~

~ ~

Slt

=

(1

t4

gt

~ gt

~

t4 ~

0

0

~

00

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 54: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

MINERAL RESOURCES TASMANIA

Client R Macdonald

Sample Location Windermere

Soil Mechanics Testing Whole Sample X-Ray Diffraction Analyses (Approx Wt )

Sample ECN LL PL LS 0 (0) c (kPa) Quartz Kaolinite Smectite K-Feldspar Mica Goethite Gibbsite

S11 1 89 32 19 25 60 10 2 2

S12 2 66 21 18 35 25 20 10 2 5

S14 2 101 30 22 30 40 20 2 2 2

S22 1 83 29 18 10 3 20 65 10 2 2 2

S23 1 67 23 17 40 40 10 5 2 2

S24 1 56 20 15 45 35 10 5 2 2

S25 1 64 21 16 40 30 10 10 5 2

S26 1 73 25 17 40 35 15 5 5 2

S41 6 132 28 26 30 55 5 5

S42 6 129 26 27 30 50 5 10

Atterberg Limits tests performed without pre-drying samples Minerals present in trace amounts or amorphous minerals may not be detected

ECN = Emerson Class Number Peak overlap may interfere with identifications (eg K-Feldspar may mask the

LL =Liquid Limit presence of Rutile Goethite may mask the presence of Hematite large

PL =Plastic Limit amounts of Kaolinite may mask the presence of small amounts of IImenite)

LS =Linear Shrinkage Major Goethite peak in S41 and S42 occurs at 417A-416A (normal Goethite

0 =Residual Angle of Internal Friction 4183A) - may indicate some replacement of Fe by AI

c =Residual Cohesion Smectite content in S11 and S22 rounded-down to 10

Smectite content in S23 S24 S25 rounded-up to 10

Smectite content in S26 rounded-up to 15

ftttJ~ Analyst Richie N Woolley

Date 24 September 1998

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 55: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

_r

I I - I I i I I

I I i I I I i 1 --J--- ciW I I I

I PI d~1h 11 01 Plndls mco c davt~ k~s-Gaz SMEC MOl HAllO LEPlO GOEr GIBS ZEO MICA KmiddotF PLAG FELO total old middottoIII nongtlt PYRX AMPHlotal Fo 100I901 cmiddotsmelc-kaollc-lWldcooc-oltgtbc-llOmcaoMlaK+s kH+S iTbllll

I 0 0 OIOVALUE 1 51 90 5ITTw LHIAl I 8420 44 15 22 I Omiddot 0 O 100 0

Tsct TTw LHIA6 I 8 70122 48 16 231 0 102 0 Tsct I 0 0 I bull QI 01 5 95i 2 0 0 5 I I 0 01 I 01 17 Omiddot 0 0 00

Os T LHI7A2 2 0s7 Tl LHI7Al 0 I

91281 11 23 61 I 401 55 5 i 2 2 47 I 51 40 0 55middot 102~ OSO i 0 0 01 2 0 01 01Os T Ui97A3 3 01 00 1122128 831261 I 25 80 15 21 0 42 15 27 80 50 102 045

TsC LHIIAI I 01 I I 0 Tl TIs Uil7AS 6

lE 01 0 0 0 01 01 00

TsC lH98A2 21 123132 81251 5 25 5 85 5 0 30 51 25 i 701 701 100 085

I I 01 0 01 0 I 0 01 00LH96A5 5 11227 85 26 0 TsC Ui96A8 8 101 301 71 24 01 0 01 0 I 0 0 01 00 TsC

30 10 55 5 2 01 37 5 32 85 851 102 080 11530 85 24 E 30 5 55 5 2 2 2 31 0 32 i 80 801 lIl1 080

T lOUlSwoal LHt9AI 1 11331 6225 6

T iOUlSwoat LHt9A3 3 T T_ lH9MS 4 104 321 7222 01 0 0 2 01 01 0 010

0 E 5 01 5 0 0 0 0 5 00

T 10s1 iLH100A3 3_13916 21 10 I 80 35 2 2 41 84 0 80 I 01 35 891 035

To UilOOA5 5 105128 7623 01 0 0 4 0 0 0 00

T LHl00Al 1 i

01 0 0 0 I 0 0 01 00

Ts I LHIOIA3 3 4716 28 12 0 0 0 0 0 0 01 00 IUiIOIA6 6 11627 68 24 E 35 0 45 2 5 2 21 44 0 40 55 55 89 OSS

T LHl01AI 1 0 E 1

T UiIOIA6 9 8520 45 17 E 0 0 0 2 I I 0 0 0 010

IT T LHI02AI I 0 5 0 0 0 0 0 0 0 00

T LHI02A2 2 44 21 2311 E 0 010I 0 0 0 0 01 0

IT UiI02A3 3 I 0 i 80 35 5 5 65 0 80

I 01 35 1001 035

T Ui02AS 5 lOO 26 83 231 16 2 35 SI SS 2 5 5 42 0 42 I 80 80 1021 080 0 0 0 5 0 01 0 010

IT T LHI02A6 6 8722 6522

Qlb LH103AI I I 0 E 0 0 0 0 1 I 0 0 01 00

T LH103A2 2 174 371 137 27 E 0 0 0 0 I 0 0 01 00

T 0lIgt LHI04AI I I 0 E 0 0 0 0 I 01 01 01 00 T 0lIgt Uil04A2 2 0 E O 0 0 0 0 0 01 010

T Qlb LH105AI I 161 381 121 25 5 0 0 0 0 0 0 0 00 Ts OIl LHl0SA3 3 161 311 130 28 E 20 15 80 5 2 01 27 0 22 I 75 75 102 075

T LHIOIlA2 2 133 351 8623 E IS 5 80 01 IS 0 15 I 851 85 1001 085 T LH10SA3 3 110134 76221 2 90 5 2 0 8 5 2 901 90 191 0185

UiIOllM 4 144137 107 26 E 11 3 lOO 2 01 2 2 0 1001 001 102 086 --Ts Ts I LHIOIlA5 5 128133 86 24 01 0 0 0 I 01 0 01 00I I I 10 2 85 21 01 12 2 10 I 67 67 191 085Ts Uil06A7 7 05 321 7318 I I 01 0 0 0 I 01 01 00

Os I LH107AI 1 shyT LHI06A6 8 0 0

0 E I 01 0 0 0 0 01 01 00

LHI07A2 2 45 211 2410 E I 65 25 5 5 2 71 n 0 70 0 251 102 0125Os I 0 0 0 7 1 0 0 0 00Os LHI07A3 3 0 0 0 0 0 0 0 0 010

Os LHI07A6 8 Os I LHI07AS 5 35 18 17 4 E I

0 I I 01 0 0 0 0 0 0 00

CJ LHI08A2 2 119261 9327 E I 0 0 01 0 I 0 0 0 010

CJ LHI06A3 3 52119 3314 i o 0 0 0 I 01 0 01 010

CJ LH106A4I 4 I 0 01 0 0 0 I 0 0 0 010

LHI08AI 1 I I 0 E I 0 0 0 0 I 0 0 0 00Os LHI09A2 2 0 lE I 0 0 0 000 0 0 0

~ lBE I 0 0 0 0 I 0 0 0 010Os T LHI09A3 3 53 17 36114 0 120 E I I I i 01 0 0 0 I 01 0 01 00

10s7 Ts LHI08A7 71 2Si22 3 2 511E I 01 0 0 0 0 0 0 010

Os T

Os Ts LHI09AS

LHI09A9 I 01 28E I I I 01 01 0 0 I 01 0 0 00 I 0 01 01 01 I I 01 01 0 00Ts ITsbck IUi09AO I 101 bullbull 0 I I

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 56: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 7 Shear box tests

The shear box test

The test consists of a brass box split horizontally at the centre of the soil specimen

(illustrated in figure A71) where the soil is gripped by metal grilles A vertical load is

applied to the top of the sample by means of weights As the shear plane is predominately

in the horizontal direction the vertical load is also the normal load on the plane of failure

Having applied the required vertical load a shearing force is gradually exerted on the box

usually from a proving ring - annular steel ring that has been carefully machined and

balanced When a load is applied to such a ring a deflection will take place that can be

measured on a dial gauge enabling the causative force to be obtained from the ring

calibration supplied by the manufacturer

Normal load

Shear force 1 ( _~_~ c~porous disc

I~ Shear force porousdisc

halfmiddot of box

Figure A71 Diagrammatic sketch of the shear box apparatus

A second dial gangue (fixed to the shear box) is used to determine the strain of the test

sample At any point during the shear the proving ring reading is taken at fixed strain

intervals (strain =movement of box length of box) and failure of the soil specimen is

indicated by a sudden drop in the magnitude of the proving ring reading or a levelling off

in successive readings

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 57: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 7 Shear box tests

6~~

6(~

T=C~~

C1n tI 11 ~

c-O or _ soil tJ=O or c soil If

c- tJ bull

soil

Figure A72 illustrates the soil classification according to the shear strength of

sediments

1shy

Geological interpretation and slope risk assessment at Windermere northern Tasmania

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 58: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

)

APPENDIX 8 DESCRIPTIONS OF SLOPE STABILITY MODELS USED

Bishops Simplified Method

Cousins Method of Tables

Galena

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 59: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 8 Slope stability models

Bishops Simplified Method

Bishops Simplified Method is a simplistic means of calculating the stability of slopes in

terms if the factor of safety (Fs) The model uses a number of in parameters (equation

A81) which are applied to circular slip failure planes This model is renown for )

producing realistic results and it is relatively easy to calculate

Fs =L[cb + W (l-r) tanep] (lm) LW sina bullbullbullbullbullbullbullbullbullbullbullbullbullequation ASl

Where r - pore pressure t - Shear stress lt1gt - Residual angle of internal friction c - Cohesion W - sediment weight a - angle between the slope and the normal

Cousins Stability Charts

Cousins through extensive computer analysis has identified that specific average pore

pressure ratios relate to a slope angle I and a stability number Nf where r =YfWh This

method depicts the relationship between slope angle and the co-ordinates of the critical

slip circle for a number of pore pressure ratios Such a relationship can be derived from

the tables illustrated in figure A81 providing the correct input parameters are available

From this the stability number or factor of safety can be derived

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 60: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Appendix 8 Slope stability models

3~ Toe circles Toe circles Toe circles shy200 f--I-- ~

~

~

~ 1~ ~~-- ~~~-= ~ A 50

~

~ 98 ~G

ltl~ 0 Jbullbull 50 ~ 8 50 E 50 ~ lt

20 Ace so~ 40 -gt~~s ~ 30 15 20

~ ~ --l~Q 20 IS ~ l6 10 20 -=shyrJ) I 6 I 5111

lid -=2 3 ~~~~+

f--~ - 2 2--B -~~

7 - I I 6

50 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45

Slope i (degrees) Slope i (degrees) Slope i (degrees)

la) (b) (c)

Figure ASl Stability numbers for toe circles (a) r =0 b) r =025 c) r =05

(Cernica 1995)

Galena Slope Stability Analysis System

Galena is a computerised slope stability-modelling package which incorporates three

methods of calculating slope stability Bishops Simplified Method Spenser-Wrigth and

Samara Method The model used is depends on the type of failure plane Le if failure is

circular or non circular This model is user friendly and produces results rapidly The

model enables failure surface to be defined in terms of the actual slope rather than as

abstract point in space (Galena 1998)

Geological interpretation and slope risk assessment at Windermere northern Tasmania

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 61: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

Rochelle Macdonald Geological investication slope risk assessment at Windermere northern Tasmania Honours 1998

Field B9lt~~~r1 B~~~gescription AMG Nortt AMG Easti f9sition________________ _ 137813 23 dql~~i~~ __ t1g~Iy_~~atheredsiqLeri~_~9u_Ici~~~ __ ____ __ _ __ ___ ___54~sect~~Q~~~q I gnr ~ I~1Cl~ l--li9f1w~y L_os Jtl9E3 lqs_Rd 137814 37 claystone Alternating clay and sand layers subhorizontal bedding 5426652 501550 property no 1416

________________~_+-_L~~+________~-c----____~------c----~~~~~~-----+__~~___1~~~__+_=___c_----~____~~_______=_---------------

___ 1_3_78~1~ 21 basalt Weathered basalt clast 5427230 500960 Cliff on top of Gaunts Hill _ 137816 35 basalt Contact between Tertiary basalt and Tertiary sediments 5426652 501550 top Gaunts Hill property no 1416

______~ --- ----+-~~~_+______~__c_~_____~------c-------~~~~----~~~~_+___=_~~+_~_____~+__--~~~-----~---~~~--

137817 22~~~_~____ Hi9hly weathered basalt boulders 542Y~1- 5011~QE~9E~rtYI_o~Jj1_ _ _ _ __ __13_~_~ _box__t--e_st--ing--------__~_+-5=_4_27c_4-=-60=+____5=_=0__0__72=_5=-+p-roop__e-rt-y-=-n__o- ~ _-=6~7-+=-clc=aLys=-=t_=_one~T=h__e=--re--s--u_lta-n--t_blo=_c--k___a--ft-=-er__s_h_e-a--r 14-1--7~

137819 34 basalt Thin section of Tertiary basalt capping Gaunts Hill 5427215 501150 Gaunts Landslides _--~~ -------------+=-=-----+=-~-----_____~____~______~~_____~~~--__t____=__=_=~=+_____==__==_J_~~___=__~_______---- ~--~--------

137820 36 basalt Thin section throuQh Tertiary basalt boulder 5426652 501550 Proppertv no 1416

Tertiary Jurassic Appendix 8 137813-137820

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 62: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

References

REFERENCES

Barlow MH amp Newton RG (1975) Patterns andprocesses in mans physical environment McGraw-Hill Sydney 250 p

Baillie etal (1987) Late Cambrian to Devonian In Burrett CF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15

Bell FG (1992) Engineering properties ofsoils and rocks third ed ButterworthshyHeinemann 345p

Berkman DA (1976) Field Geologists Manual The Australian Institute of Mining and Metallurgy Australia 295pp

Blatt et al (1980) Origin ofsedimentary rocks Prentice - Hall Inc New Jersey 783p

Bryant EA (1993) Natural Hazards Cambridge University Press New York pp 236shy256

) Bureau ofMeteorology (1998) Climatic records Acacia House Commonwealth of Australia Bureau ofMeteorology

Burrough PA (1986) Principals of geographic information systems for land resource assessments Monographs on Soil and Resources Survey 12 194p

Carson M amp Kirby M (1972) Hillslope processes Cambridge Uni Press London 260pp

Cernica IN (1995) Geotechnical Engineering Soil Mechanics John Wiley amp Sons Inc Brisbane 449p

Clarke GM (1986) Debris slide amp Debris Flow Historical Events in the Appalachians South of the Glacial Border in Costa lE amp Wieczorek GF editors Debris FlowsAvalanches process recognition and mitigation Geol Soc America Rev Eng Geology 7 pp 125-137

Direen NG (1995) Geophysical Modelling ofthe Longford Basin Honours thesis University of Tasmania

Donaldson RC (1991) Rosetta Landslide Geological investigation and slope risk assessment Dept ofMines and Mineral Resources Tasmania Report 199120 80pp

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 63: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

References

Eckel (1958) Landslides and engineering practice National Academy ofScience Special report 29 232 p

Elmer S (1971) Slope stability at Windermere Unpublished Tasmanian Mines Department Report 197110

Forsythe SM (1989) Late Carboniferous - Triassic In Burrett eF and Martin EL (eds) Geology and Mineral Resources of Tasmania Geological Society of Australia Special Pub 15309-333

Forsythe SM (1996) Land stability zonation map Launceston Area Urban Engineering Geology Series Tasmanian Geological Survey

Galena Slope stability model online httpwwwrockwarecomcataloglgalena

Gerrard1 (1992) Soil Geomorphology An Integration ofPedology and Geomorphology Chapman and Hall Great Britain 269p

Graham J (1964) Mechanisms ofsoil stabilisation CSIRO Pub Melbourne D5-1 to D5-30

Gray et al (1974) Complex history of Badger Head area Northern Tasmania Aust 1 Earth Sci vo140(2) 155-168

Gulline (197381) Frankfort sheet Geological Survey ExplanatoryReport Geological Atlas 1 mile series zone 7 sheet 38 (8215s) Tasmanian Department ofMines

Gulline AB (1981) Frankford Sheet Geological Survey Explanatory Report Tasmanian Department ofMines zone 7 sheet 38 (8215s) 25pp

Habib P (1983) Soil and rock mechanics Cambridge University Press London 135 p

Hail 1R (1977) Applied Geomorphology Elsevier Scientific Publishing Company pp 157-181

Haneberg We (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886shy892

Heath R (1997) Geotechnical risk assessment ofthe Claremont area Hobart Tasmania Honours Thesis 92pp

Herbert (1982) in Haneberg WC (1991) Pore pressure diffusion and the hydrological response of nearly saturated thin landslide deposits to rainfall Journal ofGeology vol 99 pp 886-892

Hutchinson JN (1967) The free degradation of conference on shear strength

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 64: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

References

properties of natural soils and rocks Norwegian Geotec Institute vol 1 113 shy118

Ingles aG (1991) Land stability Windermere Farm East Tamar Technical report for T Hodgman Unisearch Limited

Iverson RM amp Major 1J (1986) Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilisation Water Resources Research vol 22 no 11 pp 1543-1548

Iverson RM amp Major J1 (1987) Rainfall ground-water flow and seasonal movement at Minor Creek landslide Geological Society ofAmerica Bulletin vol 99 pp579shy

- 594

Keefer et al (1987) Real-Time Landslide Warning During Heavy Rainfall Science vol 238 pp 921-925

Keller EA (1992) Environmental Geology 6th ed Macmillian Publishing Corp New York pp 48-55

Knight CJ (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197191

Knight CJ amp Matthews WL (1976) A Landslip Study in Tertiary Sediments Northern Tasmania Bulletin ofthe Association ofEngineering Geology 14 pp 17-22

Leaman et al (1973) Gravity Survey of the Tamar Region Northern Tasmania Tasmanian Department ofMines Geological Survey Paper no 1

Leaman DL amp Stevenson PC (1972) Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 197223

Leopold et al (1964) Fluvial processes in geomorphology Freeman San Francisco 280pp

Longman MT (19646) Explanatory Report of the Launceston Quadrangle 1 mile Geology map series (K55-739) Tasmanian Department ofMines

Longman MT amp DE Leaman (1968) Gravity Survey of the Tertiary Basin in Northern Tasmania Tasmanian Department ofMines Geological Survey Bulletin no 51

Londe P (1973) The role of rock mechanics in the reconnaissance of rock foundations water seepages in rock slopes and the analysis of the stability of rock slopes J Eng Geology vol 5 pp 57-127

Lowe J (1966) Stability andperformance ofslopes and embankments American Society ofAvile Engineering pp 1-35

Geological IfIVestigation and Slope Risk Assessment at Windermere Northern Tasmania

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 65: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

I

References

Luck DP (1997) Site classification report for Payne s property Consulting Engineers Report D P Luck and Associates

Lupini et al (1981) The strained residual strength of cohesive soils Geotechnique 31 no 2 p 181 - 213

Matthews WL (1976) Test pits on R Ambroses property at Windermere Unpublished Tasmanian Mines Department Report 197632

MarshalI TJ Holmes lW amp Rose CW (1996) Soil Physics 3rd ed Cambridge Uni Press USA 450 pp

~Clenagan amp BailIie (1975) Geological Survey Explanatory Report Geo atlas 125000 series sheet sk-554 Launceston Tasmanian Department ofMines

MitchelI lK (1976) Series in soil engineering John WilIey and Sons New York 422p

Moon A (1984) Investigation ofBovilis Landslide near Devonport Masters thesis University ofTasmania 66p

Moore WR (1981) Slope Stability of Lot 1 Adams Subdivision Windermere Unpublished Tasmanian Mines Department Report 198152

Moore WR (1982a) Slope Stability Investigation of Archers proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198222

Moore WR (1982b) Slope Stability Investigation of a Proposed Subdivision at Windermere Unpublished Tasmanian Mines Department Report 198288

Moore WR (1985) Propose House Site 3 High Level Block Ambroses Subdivision Windermere council recommendations Tasmanian Department ofMines

Moore WR (1986) Investigation of Cracking Picketts House Windermere Road Windermere Unpublished Tasmanian Mines Department Report 198683

Moore WR (1988) Investigation of cracked house on Windermere Road East Tamar Unpublished Tasmanian Mines Department Report 198821

Montgomery CW (1997) Environmental Geology 5th ed WCB McGraw-HilI New York pp 171-191

Murch et al (1995) Environmental Geology John WilIey amp sons Inc New York pp 145-160

Partion et al (1974) General report on mass movements r International Congress of the International Association ofEngineering Geologists Sao Paulo Brazil Proceedings Vol 2

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 66: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

References

Reid ME (1994) A Pore Pressure Diffusion Model for estimating landslide-influencing rainfall The Journal ofGeology vol 102 pp 709-717

Ritter DF (1986) Process Geomorphology 2nd ed Southern Illinois Uni Carbondale

Sama SK (1979) Stability analysis of embankments and slopes ASCE geotechnique vol 23 4 pp 423-433

Schmidt et al (1995) Limits to Relief Science vol 270 pp 921-925

Skempton AW (1964) Long-term stability of slopes Geotechnique vol 14 no 277shy101

Smith GN (1971) Elements ofsoil mechanics for Civil and Mining Engineers 2nd ed Crosby and Lockworld London

Stevenson Pe (1973) Stability of Land at Windermere East Tamar Unpublished Tasmanian Mines Department Report 197391

Stevenson Pe amp Sloan DJ (1980) The evolution of a risk-zoning system for landslide areas in Tasmania Australia In Webster lA (convenor) The third Aust- NZ conference on geomechanics vol 2 Proceedings of Tech Groups - NZ Institute of Engineers Wellington NZ 6 (1) 273-279

Sutherland FL (1971) The Geology and Petrology of the Tertiary Volcanic rocks of the Tamar Trough Northern Tasmania Rec Q Vie Mus 36 58pp

Telfer AL (1988) Landslides and landuse planning Tasmanian Dept of Mines Geological Survey Bulletin 63 62p

Terlien MTJ (1996) Modelling Spatial and Temporal Variations in Rainfall-Triggered landslides ITC Publications no 32 ITC Enschede 254 p

Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia) Geomorphology 20 pp 165-175

Terzaghi K (1950) Mechanism of landslides in application of geology to engineering practice Geol Soc Am Berkey Volume

Ulrich T (1987) Stability of rock protection on slopes Journal ofHydraulic Engineering vol 113 pp 879-891

Walker etal (1985) Geotechnical Risk associated with hill side development Aust Geomech News vol 10 pp 29-35

Walker B amp Fell R (1987) Soil slope stability instability and stabilisation AA Balkema Pub Netherlands 440 p

Walker MB (1991) Chambers science and technology dictionary W amp R Chambers

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania

Page 67: APPENDIX 1: LITERATURE REVIEW 'THE EFFECT OF SOIL AND ... · cohesive soils is important, because slightly compressed soils (normally consolidated) have a high water content. In contrast,

References

New York pp 35

Wells PM (1988) Palynology of Tertiary sediments from Windermere Drill holes 1 amp 3 Tasmanian Department of Mines Unpublished Tasmanian Mines Department Report J98805

Wu et aI Risk of landslides in shallow soils and its relation to clear cutting in SE Alaska Forest Science Vol26 p 495-510

Yong RN amp Selig ET (1980) Application of plasticity and generalised stress-strain in Geotechnical engineering American Soc Civil Eng New York 351 p

Young A (1977) Slopes I amp A Constable Ltd Great Britain 288p

0shy

~-

Geological Investigation and Slope Risk Assessment at Windermere Northern Tasmania


Recommended