+ All Categories
Home > Documents > Appendix A Position Kinematic Analysis. Trigonometric Method978-3-319-31970... · 2017. 8. 27. ·...

Appendix A Position Kinematic Analysis. Trigonometric Method978-3-319-31970... · 2017. 8. 27. ·...

Date post: 02-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
43
Appendix A Position Kinematic Analysis. Trigonometric Method Chapter 3 shows the kinematic analysis of several mechanisms by using Ravens method. Writing the equations that solve the problem when using this method is easy. However, nding the solution to such equations can be a complicated task. For that reason, we introduce the trigonometric method in this appendix, which is much simpler to write and solve. A.1 Position Analysis of a Four-Bar Mechanism Consider the mechanism shown in Fig. A.1 in which O 2 O 4 , O 2 A, AB and O 4 A are the lengths of links 1, 2, 3 and 4 respectively. On the other hand, angles h 2 , h 3 and h 4 dene the angular position of links 2, 3 and 4 considering the counterclockwise rotations positive. In order to determine angles h 3 and h 4 , we need to nd the value of distance O 4 A (Eq. A.1) as well as angles b (Eq. A.3), d (Eq. A.7) and / (Eq. A.5). The value of distance O 4 A can be determined in triangle DO 2 AO 4 : O 4 A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi O 2 O 4 2 þ O 2 A 2 2 O 2 O 4 O 2 A cos h 2 q ðA:1Þ The same triangle veries (Eq. A.2): O 4 A sin b ¼ O 2 A sin h 2 ðA:2Þ where: b ¼ arcsin O 2 A O 4 A sin h 2 ðA:3Þ Angles / and d between bars 3 and 4 and diagonal O 4 A respectively, can be worked out from triangle DABO 4 . It veries (Eq. A.4) © Springer International Publishing Switzerland 2016 A. Simón Mata et al., Fundamentals of Machine Theory and Mechanisms, Mechanisms and Machine Science 40, DOI 10.1007/978-3-319-31970-4 367
Transcript
  • Appendix APosition Kinematic Analysis.Trigonometric Method

    Chapter 3 shows the kinematic analysis of several mechanisms by using Raven’smethod. Writing the equations that solve the problem when using this method iseasy. However, finding the solution to such equations can be a complicated task.For that reason, we introduce the trigonometric method in this appendix, which ismuch simpler to write and solve.

    A.1 Position Analysis of a Four-Bar Mechanism

    Consider the mechanism shown in Fig. A.1 in which O2O4, O2A, AB and O4A arethe lengths of links 1, 2, 3 and 4 respectively. On the other hand, angles h2, h3 andh4 define the angular position of links 2, 3 and 4 considering the counterclockwiserotations positive.

    In order to determine angles h3 and h4, we need to find the value of distance O4A(Eq. A.1) as well as angles b (Eq. A.3), d (Eq. A.7) and / (Eq. A.5). The value ofdistance O4A can be determined in triangle DO2AO4:

    O4A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO2O4

    2 þO2A2 � 2O2O4O2A cos h2q

    ðA:1Þ

    The same triangle verifies (Eq. A.2):

    O4A sin b ¼ O2A sin h2 ðA:2Þ

    where:

    b ¼ arcsin O2AO4A

    sin h2

    � �ðA:3Þ

    Angles / and d between bars 3 and 4 and diagonal O4A respectively, can beworked out from triangle DABO4. It verifies (Eq. A.4)

    © Springer International Publishing Switzerland 2016A. Simón Mata et al., Fundamentals of Machine Theory and Mechanisms,Mechanisms and Machine Science 40, DOI 10.1007/978-3-319-31970-4

    367

    http://dx.doi.org/10.1007/978-3-319-31970-4_3

  • O4B2 ¼ AB2 þO4A2 � 2ABO4A cos/ ðA:4Þ

    We can clear / from Eq. (A.4):

    / ¼ arccosAB2 þO4A2 � O4B2

    2ABO4AðA:5Þ

    In the same triangle its verified (Eq. A.6):

    O4B sin d ¼ AB sin/ ðA:6Þ

    Thus:

    d ¼ arcsin ABO4B

    sin/� �

    ðA:7Þ

    Once the values of b, d and / have been determined, we can obtain h3 (Eq. A.8)and h4 (Eq. A.9) in the mechanism (Fig. A.1):

    h3 ¼ /� b ðA:8Þ

    h4 ¼ �ðbþ dÞ ðA:9Þ

    When angle h2 takes values between 180° and 360°, angle b has a negative valueand Eqs. (A.8) and (A.9) are also applicable (Fig. A.2).

    2O 4O

    A

    B

    β δφ

    Fig. A.2 Open four-barmechanism with link 2 in aposition between 180° and360°

    2O 4O

    A

    B

    β

    δ

    φ

    Fig. A.1 Parametersinvolved in the calculation ofthe link positions in a four-barmechanism by means of thetrigonometric method

    368 Appendix A: Position Kinematic Analysis. Trigonometric Method

  • For a crossed four-bar mechanism (Fig. A.3) we will use Eqs. (A.10) and (A.11):

    h3 ¼ �ð/þ bÞ ðA:10Þ

    h4 ¼ d� b ðA:11Þ

    Again, when angle h2 takes values between 180° and 360°, angle b has anegative value and Eqs. (A.10) and (A.11) are also applicable (Fig. A.4).

    A.2 Position Analysis of a Crank-Shaft Mechanism

    Figure A.5 shows a crank-shaft mechanism. xB and yB are the Cartesian coordinatesof point B with respect a system centered on point O2 with its X-axis parallel to thepiston trajectory. xB is positive while yB is negative.

    2O 4O

    A

    B

    βδ

    φ

    Fig. A.3 Calculation of theposition of links 3 and 4 in acrossed four-bar mechanismby means of the trigonometricmethod

    2O 4O

    AB

    βδ

    φ

    Fig. A.4 Crossed four-barmechanism with link 2 in aposition between 180° and360°

    2O

    A

    B

    23

    4

    μ

    Bx

    By

    Fig. A.5 Crank-shaft mecha-nism and the parametersinvolved in the position anal-ysis with the trigonometricmethod

    Appendix A: Position Kinematic Analysis. Trigonometric Method 369

  • Position of links 3 and 4 can be worked out using Eqs. (A.12)–(A.15):

    AB sin l ¼ O2A sin h2 � yB ðA:12Þ

    l ¼ arcsinO2A sin h2 � yBAB

    ðA:13Þ

    h3 ¼ �l ðA:14Þ

    The x position of point B will be given by Eq. (A.15):

    xB ¼ O2A cos h2 þAB cos h3 ðA:15Þ

    It can easily be verified that Eq. (A.15) works for any position of input link 2.When the trajectory of point B is above O2, the sign of yB is positive and theseequations are also applicable.

    A.3 Position Analysis of a Slider Mechanism

    Consider the slider mechanism in Fig. A.6, where link 3 describes a straight tra-jectory along link 4 that rotates about O4 with offset O4B.

    Similarly as in previous problems, O2O4 and O2A are the lengths of links 1 and 2respectively while angles h2 and h4 define the angular position of links 2 and 4.Assuming that we know O2O4, O2A and h2, we can obtain unknown values AB(Eq. A.17) and h4 (Eq. A.20). To do so, we start by obtaining the value of O4A(Eq. A.16):

    O4A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO2O4

    2 þO2A2 � 2O2O4O2A cos h2q

    ðA:16Þ

    We can calculate AB as:

    AB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO4B

    2 � O4A2q

    ðA:17Þ

    2O

    A

    B

    2

    3

    42θ

    4Oβ

    δ

    Fig. A.6 Position analysis ofa slider-mechanism by meansof the trigonometric method

    370 Appendix A: Position Kinematic Analysis. Trigonometric Method

  • The value of angle d (Eq. A.18) is:

    d ¼ arctan O2A sin h2O2O4 þO2A cos h2

    ðA:18Þ

    Finally, h4 can be determined after first computing the value of b (Eq. A.19):

    b ¼ arctan ABO4B

    ðA:19Þ

    h4 ¼ dþð90� � bÞ ðA:20Þ

    If the offset is opposite, point B is below the X-axis and Eq. (A.20) changes toEq. (A.21):

    h4 ¼ d� ð90� � bÞ ðA:21Þ

    A.4 Two Generic Bars of a Mechanism

    Let us consider that we have carried out the kinematic analysis of links 2, 3 and 4 ofthe mechanism shown in Fig. A.7. We will continue the position analysis of links 5and 6 considering that the position of point C of link 3 is known.

    To find the position of links 5 and 6 we have to define triangle DCDO6 first(Fig. A.8).

    The length of side O6C (Eq. A.22) can be calculated by means of the x andy coordinates of points C and O6:

    O6C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxC � xO6Þ2 þðyC � yO6Þ2

    qðA:22Þ

    2O 4O

    A

    B

    C

    D

    6O

    2

    3

    4

    5

    6

    Fig. A.7 Six-bar mechanism

    Appendix A: Position Kinematic Analysis. Trigonometric Method 371

  • And its angle c (Eq. A.23) is:

    c ¼ arctan yC � yO6xC � xO6

    ðA:23Þ

    Angle / (Eq. A.25) can be computed by using the law of cosines (Eq. A.24):

    DO62 ¼ CD2 þO6D2 � 2CDO6D cos/ ðA:24Þ

    / ¼ arccosCD2 þO6D2 � DO62CDO6D

    ðA:25Þ

    Finally, angle d (Eq. A.26) is determined by using the law of sines:

    d ¼ arcsin CDO6D

    sin/� �

    ðA:26Þ

    Therefore, angles h5 and h6 are (Eqs. A.27 and A.28):

    h5 ¼ /� ð180� � cÞ ðA:27Þ

    h6 ¼ 180� þ c� d ðA:28Þ

    6O

    C

    γ

    δ

    φ

    DFig. A.8 Position analysis ofbars 5 and 6 by means of thetrigonometric method

    372 Appendix A: Position Kinematic Analysis. Trigonometric Method

  • Appendix BFreudenstein’s Method to Solvethe Position Equations in a Four-BarMechanism

    In Chap. 3 we developed the position analysis of a four-bar mechanism by means ofRaven’s method. In this appendix we explain Freudenstein’s method to solve theobtained equations and calculate the value of angles h3 and h4.

    B.1 Position Analysis of a Four-Bar Mechanism by UsingRaven’s Method

    We will apply Raven’s method to the four-bar mechanism shown in Fig. B.1.The vector loop equation (Eq. B.1) for the position analysis of the mechanism is:

    r1eih1 ¼ r2eih2 þ r3eih3 þ r4eih4 ðB:1Þ

    By converting this equation into its trigonometric form (Eq. B.2):

    r1ðcos h1 þ i sin h1Þ ¼ r2ðcos h2 þ i sin h2Þþ r3ðcos h3 þ i sin h3Þþ r4ðcos h4 þ i sin h4Þ

    ðB:2Þ

    And by separating its real and imaginary parts, we obtain the system (Eq. B.3)with two unknowns (h3 and h4):

    r1 cos h1 ¼ r2 cos h2 þ r3 cos h3 þ r4 cos h4r1 sin h1 ¼ r2 sin h2 þ r3 sin h3 þ r4 sin h4

    )ðB:3Þ

    B.2 Freudenstein’s Method

    We substitute h1 ¼ 0 in Eq. (B.3) and isolate h3 (Eq. B.4):

    © Springer International Publishing Switzerland 2016A. Simón Mata et al., Fundamentals of Machine Theory and Mechanisms,Mechanisms and Machine Science 40, DOI 10.1007/978-3-319-31970-4

    373

    http://dx.doi.org/10.1007/978-3-319-31970-4_3

  • r1 � r2 cos h2 � r4 cos h4 ¼ r3 cos h3�r2 sin h2 � r4 sin h4 ¼ r3 sin h3

    )ðB:4Þ

    We raise each equation to the second power and add them term by term(Eq. B.5):

    r21 þ r22 þ r24 � 2r1r2 cos h2 � 2r1r4 cos h4 þ 2r2r4ðcos h2 cos h4 þ sin h2 sin h4Þ ¼ r23ðB:5Þ

    By dividing all terms by the coefficient of term cos h2 cos h4 þ sin h2 sin h4,2r2r4, it yields Eq. (B.6):

    r21 þ r22 � r23 þ r242r2r4

    � r1r4cos h2 � r1r2 cos h4 þðcos h2 cos h4 þ sin h2 sin h4Þ ¼ 0 ðB:6Þ

    In order to simplify Eq. (B.6), we use the following coefficients (Eq. B.7):

    k1 ¼ r1r2k2 ¼ r1r4k3 ¼ r

    21 þ r22 � r23 þ r24

    2r2r4

    9>>>>>>=>>>>>>;

    ðB:7Þ

    Thus, Eq. (B.6) remains Eq. (B.8):

    k3 � k2 cos h2 � k1 cos h4 þðcos h2 cos h4 þ sin h2 sin h4Þ ¼ 0 ðB:8Þ

    We substitute cos h4 and sin h4 for their expressions in terms of the half angletangent (Eq. B.9):

    2O 4O

    2r

    3r

    4r

    A

    B

    1r2θ

    4θFig. B.1 Position analysis ofa four-bar mechanism bymeans of Raven’s method

    374 Appendix B: Freudenstein’s Method to Solve …

  • k3 � k2 cos h2 � k11� tan2 h421þ tan2 h42

    þ cos h21� tan2 h421þ tan2 h42

    þ sin h22 tan h42

    1þ tan2 h42

    !¼ 0

    ðB:9Þ

    Next, we remove the denominators and group the terms for tan, tan2 and theindependent term (Eq. B.10), all in the same member.

    ðk3 � k2 cos h2 � k1 � cos h2Þ tan2 h42 þ 2 sin h2 tanh42

    þðk3 � k2 cos h2 � k1 þ cos h2Þ ¼ 0ðB:10Þ

    Again, we rename the different coefficients (Eq. B.11) of the second degreeequation:

    A ¼ k3 � k2 cos h2 � k1 � cos h2B ¼ 2 sin h2C ¼ k3 � k2 cos h2 � k1 þ cos h2

    9=; ðB:11Þ

    Thus, Eq. (B.10) can be written as Eq. (B.12):

    A tan2h42

    þB tan h42

    þC ¼ 0 ðB:12Þ

    Hence, h4, which is the unknown that defines the angular position of link 4, is(Eq. B.13):

    h4 ¼ 2 arctan�B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiB2 � 4AC

    p

    2AðB:13Þ

    where the + and − signs indicate two possible solutions for the open and crossedconfigurations of the four-bar mechanism respectively.

    Similarly, but in this case isolating h4 in one of the members, we reach(Eq. B.14) for h3, which defines the angular position of link 3. Again, there are twopossible solutions depending on the configuration of the four-bar mechanism:

    h3 ¼ 2 arctan�E �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE2 � 4DF

    p

    2DðB:14Þ

    where the different coefficients (Eq. B.15) of the second degree equation (Eq. B.14)are:

    Appendix B: Freudenstein’s Method to Solve … 375

  • D ¼ k1 � k4 cos h2 þ k5 � cos h2E ¼ 2 sin h2F ¼ �k1 � k4 cos h2 þ k5 þ cos h2

    9=; ðB:15Þ

    And k4 and k5 (Eq. B.16) are:

    k1 ¼ r1r2k4 ¼ r1r3k5 ¼ r

    21 þ r22 þ r23 � r24

    2r2r3

    9>>>>>>=>>>>>>;

    ðB:16Þ

    376 Appendix B: Freudenstein’s Method to Solve …

  • Appendix CKinematic and Dynamic Analysisof a Mechanism

    The conveyor transfer mechanism shown in Fig. C.1 pushes boxes with a mass of8 kg from one conveyor belt to another. The motor link turns at a constant speed of40 rpm in counter clockwise direction.

    In order to make a complete kinematic and dynamic analysis of the mechanism,we will use all the analysis methods described in this book. We will carry out theanalysis at a given position. In general, the most interesting one for dynamicanalysis is the position at which the acceleration of the piston is maximum. Thisway we can determine the forces that act on the links in extreme conditions. Theposition chosen for this study is h2 ¼ 350�.

    This analysis includes the following sections:

    • Kinematic chain. Study and identification of the kinematic pairs. Number ofD.O.F of the mechanism. Kinematic inversion that results from fixing link 4.

    • Kinematic graph of slider displacement versus crank rotation.• Velocity analysis by means of the relative velocity method.• Velocity analysis by means of the method of Instantaneous Centers of Rotation.• Acceleration analysis by means of the relative acceleration method.• Velocity and acceleration analysis by means of Raven’s method.• Calculation of the inertial force and inertial torque of each of the links in the

    mechanism.• Dynamic analysis by means of the graphical method.• Dynamic analysis by means of the matrix method.

    C.1 Kinematic Chain

    We begin the study of the mechanism by drawing its kinematic diagram as shownin Fig. C.2. This figure also shows the nomenclature that will be used along thisstudy.

    Table C.1 shows the different types of kinematic pairs in the mechanism and thedegrees of freedom of each pair.

    © Springer International Publishing Switzerland 2016A. Simón Mata et al., Fundamentals of Machine Theory and Mechanisms,Mechanisms and Machine Science 40, DOI 10.1007/978-3-319-31970-4

    377

  • 4m

    1m

    2m

    2m

    1m6m

    3.2m

    3m

    3.7m

    6.5m

    Fig. C.1 Conveyor transfer mechanism

    23

    4

    A

    B

    2O

    4O

    C

    D5

    6

    Y

    X

    2DOx

    Fig. C.2 Kinematic diagram of the mechanism

    Table C.1 Type of kinematic pairs in the mechanism

    PAIR Type Number of D.O.F.

    1–2 Rotation 1

    2–3 Rotation 1

    3–4 Rotation 1

    1–4 Rotation 1

    4–5 Rotation 1

    5–6 Rotation 1

    1–6 Prismatic 1

    378 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • We use Kutzbach’s equation to calculate the number of degrees of freedom ofthe mechanism (Eq. C.1):

    • Number of links: N = 6• Kinematic pairs with 1 DOF: J1 ¼ 7• Kinematic pairs with 2 DOF: J2 ¼ 0

    DOF ¼ 3ðN � 1Þ � 2J1 � J2 ¼ 3ð6� 1Þ � 2 � 7� 0 ¼ 1 ðC:1Þ

    To better understand the mechanism, we will draw the kinematic diagram of oneof its inversions. In this case we will consider link 4 as the frame. This is shown inFig. C.3.

    C.2 Slider Displacement Versus Crank Rotation

    We will draw the kinematic graph of point D displacement versus crank rotation bymeans of the graphical method. To do so, we divide the whole turn of the crank in12 positions starting from position 0�. This way, we find the 12 positions of point Awhich correspond to 12 angular positions of the crank in steps of 30°. Knowing thelength of the links, we can find the equivalent 12 positions for points B, C and D(Fig. C.4).

    We can graph the position of point D versus the crank position. This is shown inFig. C.5. We can see that the stroke end positions of the piston are close to posi-tions h2 ¼ 10� and h2 ¼ 195�. In these positions, the velocity of the piston has to benull. As the velocity is the first time-derivative of displacement, this can be verifiedby tracing a line tangent to the curve at the end-of-stroke position. If the line ishorizontal, the velocity is null.

    23

    4

    5

    61

    Fig. C.3 Kinematic inver-sion of the mechanism whenlink 4 is fixed

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 379

  • C.3 Velocity Analysis by Relative Velocity Method

    Before starting the velocity analysis, the positions of the links have to be deter-mined. To do so, we will use the trigonometric method explained in Appendix A.Figure C.6 shows the angles and distances used to solve the position problem.

    We start with the four-bar mechanism formed by links 1, 2, 3 and 4. DistanceO2O4 (Eq. C.2) and angles h1 (Eq. C.3) and c (Eq. C.4) can be calculated as:

    23

    4

    A

    B

    2O

    4O

    C

    D5

    6

    Fig. C.4 Kinematic diagram of the mechanism in a complete turn of the crank in steps of 30°

    2DOx

    2θ0

    5−

    4−

    360°

    3−

    2−

    90° 180° 270°

    1−

    Fig. C.5 Kinematic graph of the slider displacement versus the crank rotation

    380 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • O2O4 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxO4 � xO2Þ2 þðyO4 � yO2Þ2

    q¼ 4:206m ðC:2Þ

    h1 ¼ 270� þ arctan 3:72 ¼ 331:6� ðC:3Þ

    c ¼ 180� � 90� � arctan 3:72

    ¼ 28:4� ðC:4Þ

    The application of the cosine rule to triangle DO2AO4 yields (Eq. C.5):

    O4A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO2O4

    2 þO2A2 � 2O2O4O2A cosðh2 � h1Þq

    ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4:2062 þ 12 � 2 � 4:206 cos 18:4�

    p¼ 3:272m

    ðC:5Þ

    And the sine rule on the same triangle yields (Eqs. C.6–B.7):

    O4A sinðb� cÞ ¼ O2A sinðh2 � h1Þ ðC:6Þ

    b ¼ cþ arcsinO2A sinðh2 � h1ÞO4A

    ¼ 28:4� þ arcsin sin 18:43:272

    ¼ 33:9� ðC:7Þ

    The application of the cosine rule to triangle DABO4 yields (Eqs. C.8 and C.9):

    O4B2 ¼ AB2 þO4A2 � 2ABO4A cos/ ðC:8Þ

    23

    4

    A

    B

    2O

    4O

    C

    D5

    6

    1θφ 4

    ϕ

    4DOx

    β

    γ

    δ

    4DOy

    2 4O Ox

    2DOx

    Fig. C.6 Calculation of theposition of links 3, 4, 5 an 6by means of the trigonometricmethod

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 381

  • / ¼ arccosAB2 þO4A2 � O4B2

    2ABO4A

    ¼ arccos 42 þ 3:2722 � 322 � 4 � 3:272 ¼ 47:4

    �ðC:9Þ

    Thus, the positions of the link 3 (Eq. C.10) is:

    h3 ¼ /� b ¼ 47:4� � 33:9� ¼ 13:5� ðC:10Þ

    The application of the sine rule to triangle DABO4 yields (Eqs. C.11 and C.12):

    O4B sin d ¼ AB sin/ ðC:11Þ

    d ¼ arcsin ABO4B

    sin/� �

    ¼ arcsin 4 sin 47:4�

    3

    � �¼ 79:12�

    ðC:12Þ

    Therefore, the position of link 4 (Eq. C.13) is:

    h4 ¼ 180� � b� d ¼ 180� � 33:9� � 79:12� ¼ 67� ðC:13Þ

    We continue with the position analysis of the crank-shaft mechanism formed bylinks 4, 5 and 6 in Fig. C.6.

    Although angle u4 formed by O4B and O4C has a fixed value and it could bepart of the data of the mechanism, in this case we have the length of the sides oftriangle DO4BC instead of angle u4 itself. We can easily obtain its value (Eq. C.15)by means of the rule of cosines (Eq. C.14):

    BC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiO4B

    2 þO4C2 � 2O4BO4C cosu4q

    ðC:14Þ

    u4 ¼ arccosO4B

    2 þO4C2 � BC22O4BO4C

    !

    ¼ arccos 32 þ 62 � 3:222 � 3 � 6

    � �¼ 15:1�

    ðC:15Þ

    The projection of triangle DO4CD over a direction perpendicular to the trajectoryof the piston yields the trigonometric equation (Eq. C.16):

    yDO4 þCD sin h5 ¼ O4C sinðh4 þu4Þ ðC:16Þ

    382 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • And clearing h5 (Eq. C.17), we obtain its value:

    h5 ¼ arcsinO4C sinðh4 þu4Þ � yDO4CD

    ¼ arcsin 6 sinð67� þ 15:1�Þ � 56:5

    ¼ 8:34�ðC:17Þ

    The projection of the sides of triangle DO4CD over de piston trajectory yields(Eq. C.18):

    xDO4 ¼ O4C cosðh4 þu4Þ � CD cos h5¼ 6 cosð67� þ 15:1�Þ � 6:5 cos 8:34� ¼ �5:607m ðC:18Þ

    Hence, the horizontal component of the distance between D and O2 (Eq. C.19)is:

    xDO2 ¼ xDO4 � xO2O4 ¼ �5:607m� ð�3:7mÞ ¼ �1:907m ðC:19Þ

    Therefore, the positions of the links (Eq. C.20) corresponding to crank positionh2 ¼ 350� are:

    h3 ¼ 13:5�h4 ¼ 67�h5 ¼ 8:34�

    xDO2 ¼ �1:907m

    9>>>=>>>;

    ðC:20Þ

    The following step is to find the velocity of the links when link 2 rotates at anangular speed of 40 rpm counterclockwise. We have to use the velocity of link 2 inradians per second: 4.19 rad/s.

    The velocity of point A (Eq. C.21) can be calculated as:

    vA ¼ x2 ^ rAO2 ¼î ĵ k̂

    0 0 4:19

    1 cos 350� 1 sin 350� 0

    �������������� ¼ 0:73̂iþ 4:13̂j

    ¼ 4:19 cm=s\80�ðC:21Þ

    To calculate the angular velocity of links 3 and 4 we have to use the relativevelocity vector equation: vB ¼ vA þ vBA.

    Vectors vB and vBA can be obtained the following way (Eqs. C.22 and C.23):

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 383

  • vBA ¼ x3 ^ rBA ¼î ĵ k̂0 0 x3

    4 cos 13:5� 4 sin 13:5� 0

    ������������

    ¼ �4x3ðsin 13:5�̂i� cos 13:5� ĵÞ ðC:22Þ

    vB ¼ x4 ^ rBO4 ¼î ĵ k̂0 0 x4

    3 cos 67� 3 sin 67� 0

    ������������ ¼ �3x4ðsin 67�̂i� cos 67� ĵÞ

    ðC:23Þ

    By introducing the three velocity vectors, vA, vB and vBA, in the relative velocityequation and projecting them on the X and Y Cartesian axles, we reach the system ofequations (Eq. C.24):

    0:73� 4x3 sin 13:5� ¼ �3x4 sin 67�4:13þ 4x3 cos 13:5� ¼ 3x4 cos 67�

    )ðC:24Þ

    The solution to the system of equations (Eq. C.24) yields the velocities of links 3and 4 (Eq. C.25):

    x3 ¼ �1:27 rad=sx4 ¼ �0:69 rad=s

    �ðC:25Þ

    Using these values, we can calculate velocities vB (Eq. C.26) and vBA(Eq. C.27):

    vB ¼ 1:91̂i� 0:81̂j ¼ 2:08m=s\336:96�13:5 ðC:26Þ

    vBA ¼ 1:185̂i� 4:939̂j ðC:27Þ

    The velocity of point C (Eq. C.28) can be determined by using the value of x4:

    vC ¼ x4 ^ rCO4 ¼î ĵ k̂

    0 0 x46 cosð67� þ 15:1�Þ 6 sinð67� þ 15:1�Þ 0

    ��������������

    ¼ 4:12̂i� 0:58̂j ¼ 4:16m=s\352:1�ðC:28Þ

    We use vector equation (C.29) to calculate the angular velocity of link 5 and thelinear velocity of link 6.

    384 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • vD ¼ vC þ vDC ðC:29Þ

    Since points C and D are two points of the same link, their relative velocity isgiven by Eq. (C.30):

    vDC ¼ x5 ^ rDC ¼î ĵ k̂

    0 0 x56:5 cosðh5 þ 180�Þ 6:5 sinðh5 þ 180�Þ 0

    ��������������

    ¼ �6:5x5ðsinðh5 þ 180�Þ̂i� cosðh5 þ 180�Þ̂jÞ

    ðC:30Þ

    The velocity of point D (Eq. C.31) has the same direction as the trajectory.Therefore, its vertical component is null:

    vD ¼ vD î ðC:31Þ

    By substituting the three velocity vectors, vC, vD and vDC, in Eq. (C.29) weobtain the system of equations (Eq. C.32):

    4:12� 6:5x5 sin 188:3� ¼ vD�0:58þ 6:5x5 cos 188:3� ¼ 0

    )ðC:32Þ

    Hence, the values of the velocities of links 5 and 6 (Eq. C.33) are:

    x5 ¼ �0:09 rad=sv6 ¼ vD ¼ 4:04m=s

    )ðC:33Þ

    And the vector velocity of point D (Eq. C.34) is:

    vD ¼ 4:04̂i ¼ 4:04m=s\0� ðC:34Þ

    Figure C.7 shows the velocity polygon of the mechanism. We can see howabsolute velocities start at velocity pole O and relative velocities connect the endpoints of the absolute velocity vectors. It can also be seen that triangle Dobc in thepolygon is similar to DO4BC in the mechanism since their sides are perpendicular.

    C.4 Instantaneous Center Method for Velocities

    To calculate the ICRs in the mechanism, we start by identifying the ICRs whichcorrespond to real joints. In this case, the known ICRs are: I12, I23, I34, I14, I45, I16,and I56 (Fig. C.8).

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 385

  • Then we draw a polygon with as many vertexes as links in the mechanism. Eachof the sides or diagonals of the polygon represents one ICR. A solid line is used todraw those ICRs that are already known while those which are unknown are drawnas dotted lines.

    In this case, to calculate the velocity of points B, C and D (Eqs. C.35–C.39), wehave to obtain ICRs I16, I24 and I46 by using Kennedy’s theorem.

    26D I=v v

    23

    4

    2 12O I=

    45C I=

    56D I=5

    6

    46I

    24I

    16 ( )I ∞

    23I

    B

    4 14O I=

    13I26I

    23A I=v v

    B′

    B′v

    Bv34I

    C′C′v

    Cv

    A′A′v

    Dv

    A

    36

    1

    5 4

    2

    Fig. C.8 Velocity calculation by means of the ICR method

    o

    Av

    Dv

    BvCv

    BAv

    CBvDCv

    a

    bc

    d

    AB⊥ 2O A⊥

    4O B⊥4O C⊥

    DC⊥

    BC⊥

    Fig. C.7 Velocity polygon

    386 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • I26I16I12I24I46

    �I24

    I23I34I14I12

    �I46

    I45I56I14I16

    Figure C.8 shows the graphical development of the method and the vectorobtained for each velocity.

    v23 ¼ vAv23 ¼ I13I23x3 ¼ 3:33m � x3

    �! x3 ¼ 1:26 rad=s ðC:35Þ

    vB ¼ BI13x3 ¼ 2:08m=s ðC:36Þ

    v24 ¼ I12I24x2 ¼ 0:58m � x2v24 ¼ I14I24x4 ¼ 3:52m � x4

    �! x4 ¼ 0:69 rad=s ðC:37Þ

    vC ¼ I14Cx4 ¼ 4:14m=s ðC:38Þ

    v26 ¼ I12I26x2 ¼ 0:96m � x2v26 ¼ vD

    �! vD ¼ 4:04m=s ðC:39Þ

    C.5 Acceleration Analysis with the Relative AccelerationMethod

    We know that the motor link turns at a constant rate of 40 rpm. Therefore, itsangular acceleration is null (a2 ¼ 0). In order to calculate the acceleration of thelinks, we start with the acceleration of point A (Eq. C.40). The tangential compo-nent will be zero as it depends on the angular acceleration value. Therefore, it willhave only one normal component:

    aA ¼ anAO2 ¼ x2 ^ vA ¼î ĵ k̂

    0 0 4:19

    0:73 4:13 0

    ��������������

    ¼ �17:3̂iþ 3:06̂j ¼ 17:55m=s2\170�ðC:40Þ

    To calculate the angular acceleration of links 3 and 4, we use the vectors(Eqs. C.41 and C.42):

    aB ¼ aA þ aBA ðC:41Þ

    anB þ atB ¼ anA þ atA þ anBA þ atBA ðC:42Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 387

  • anB ¼ x4 ^ vB ¼î ĵ k̂0 0 �0:69

    1:91 �0:81 0

    ������������ ¼ �0:559̂i� 1:318̂j ðC:43Þ

    atB ¼ a4 ^ rBO4 ¼î ĵ k̂0 0 a4

    3 cos 67� 3 sin 67� 0

    ������������ ¼ �3a4 sin 67�̂iþ 3a4 cos 67� ĵ

    ðC:44Þ

    anBA ¼ x3 ^ vBA ¼î ĵ k̂0 0 �1:27

    1:185 �4:939 0

    ������������ ¼ �6:272̂i� 1:506̂j ðC:45Þ

    atBA ¼ a3 ^ rBA ¼î ĵ k̂0 0 a3

    4 cos 13:5� 4 sin 13:5� 0

    ������������

    ¼ �4a4 sin 13:5�̂iþ 4a3 cos 13:5� ĵ ðC:46Þ

    Substituting these vectors (Eqs. C.43–C.46) in Eq. (C.42) and projecting themon the Cartesian axles, we reach the system of equations (Eq. C.47):

    �0:559� 3a4 sin 67� ¼ �17:3� 6:272� 4a3 sin 13:5��1:311þ 3a4 cos 67� ¼ þ 3:06� 1:506þ 4a3 cos 13:5�

    )ðC:47Þ

    The solution yields the angular speed of links 3 and 4 (Eq. C.48).

    a3 ¼ 1:98 rad=s2a4 ¼ 9 rad=s2

    �ðC:48Þ

    Once a4 is known, we can calculate the acceleration of point B (Eq. C.49):

    aB ¼ �25:4̂iþ 9:24̂j ¼ 27:03m=s\160� ðC:49Þ

    The acceleration of point C can be calculated by means of (Eq. C.50):

    aC ¼ aB þ aCB ðC:50Þ

    As points B and C belong to the same link, the components of the relativeacceleration (Eq. C.51) are:

    anCB ¼ x4 ^ vCBatCB ¼ a4 ^ rCB

    �ðC:51Þ

    388 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • Substituting the values previously obtained in Eq. (C.51), we calculate theacceleration vector of point C (Eq. C.52):

    aC ¼ �53:89̂iþ 4:59̂j ¼ 54:06m=s\175� ðC:52Þ

    To determine the angular acceleration of link 5 and the linear acceleration of link6, we use the vector equation (C.53):

    anD þ atD ¼ anC þ atC þ anDC þ atDC ðC:53Þ

    where:

    anD ¼ 0atD ¼ aD î

    �ðC:54Þ

    anDC ¼ x5 ^ vDCatDC ¼ a5 ^ rDC

    �ðC:55Þ

    Substituting vectors aC (Eq. C.52), aD (Eq. C.54) and aDC (Eq. C.55) inEq. (C.53) and projecting them onto the Cartesian axles, we reach to the system ofequations (Eq. C.56):

    aD ¼ �53:89þ 0:052� 6:5a5 sin 188:3�0 ¼ 4:59þ 0:0076þ 6:5a5 cos 188:3�

    )ðC:56Þ

    The solution of the system yields the accelerations of links 5 and 6 (Eq. C.57):

    a5 ¼ 0:72 rad=s2aD ¼ �53:14m=s2

    )ðC:57Þ

    Thus, the vector acceleration of point D (Eq. C.58) is:

    aD ¼ �53:14̂i ¼ 53:14m=s2\180� ðC:58Þ

    Figure C.9 shows the acceleration polygon of the mechanism. It can be noticedthat triangle Dobc of the acceleration polygon is similar to triangle DO4BC of themechanism. In the acceleration polygon, the sides of triangle Dobc are not per-pendicular to the sides of triangle DO4BC like in the velocity polygon. Angle /4(Eq. C.59) between the sides of both triangles can be calculated as:

    /4 ¼ arctanatCanC

    ¼ arctan atB

    anB¼ arctan a

    tCB

    anCB¼ arctan a4

    x24ðC:59Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 389

  • Therefore, triangle Dobc in the polygon is similar to triangle DO4BC in themechanism and rotated angle /4.

    C.6 Raven’s Method

    The number of needed vector loop equations depends on the number of unknowns.In this case, the position unknowns are h3, h4, h5 and r6. As each vector equationallows solving two unknowns and we have four, we will need 2 vector equations(Eq. C.60) (Fig. C.10).

    r1 þ r4 ¼ r2 þ r3r10 þ r5 þ r6 ¼ r40

    )ðC:60Þ

    Using the complex exponential form for the vectors, vector equation (Eq. C.60)can be written as (Eq. C.61):

    o

    Da

    a

    b

    c

    d

    AaBa

    Ca BAa

    CBa

    DCa

    Fig. C.9 Acceleration polygon

    3

    4

    A

    B

    2O

    4O

    C

    D5

    6

    1r

    2r 3r

    4r

    4′r

    5r

    6r

    1′r

    2θ1θ

    1θ ′6θ

    Fig. C.10 Kinematic dia-gram of the mechanism withthe two vector loop equationsused to solve the problem

    390 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • r1eih1 þ r4eih4 ¼ r2eih2 þ r3eih3r10eih10 þ r5eih5 þ r6eih6 ¼ r40eiðh4 þu4Þ

    )ðC:61Þ

    By separating the real and imaginary parts we obtain a system (Eq. C.62) withfour equations and four unknowns: h3, h4, h5 and r6:

    r1 cos h1 þ r4 cos h4 ¼ r2 cos h2 þ r3 cos h3r1 sin h1 þ r4 sin h4 ¼ r2 sin h2 þ r3 sin h3

    r10 cos h10 þ r5 cos h5 þ r6 cos h6 ¼ r40 cosðh4 þu4Þr10 sin h10 þ r5 sin h5 þ r6 sin h6 ¼ r40 sinðh4 þu4Þ

    9>>>=>>>;

    ðC:62Þ

    Using Freudenstein’s equation, explained in Appendix B of this book, the firsttwo equations of the system yields (Eqs. C.63 and C.64):

    h3 ¼ 2 arctan�B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiB2 � 4AC

    p

    2AðC:63Þ

    h4 ¼ 2 arctan�E �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE2 � 4DF

    p

    2DðC:64Þ

    where A, B, C, D, E and F coefficients (Eq. C.65) are:

    A ¼ k3 cos h1 � k2 cosðh2 � h1Þþ k1 � cos h2B ¼ 2ðsin h2 � k3 sin h1ÞC ¼ k3 cos h1 � k2 cosðh2 � h1Þþ k1 þ cos h2

    9>=>;

    D ¼ k3 cos h1 � k5 cosðh2 � h1Þþ k4 þ cos h2E ¼ 2ð� sin h2 þ k3 sin h1ÞF ¼ k3 cos h1 � k5 cosðh2 � h1Þþ k4 � cos h2

    9>=>;

    ðC:65Þ

    And where k1, k2, k3, k4 and k5 geometrical data (Eq. C.66) are:

    k1 ¼ r21 þ r22 þ r23�r24

    2r2r3

    k2 ¼ r1r3k3 ¼ r1r2k4 ¼ r

    21 þ r22 þ r24�r23

    2r2r4

    k5 ¼ r1r4

    9>>>>>>>>>=>>>>>>>>>;

    ðC:66Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 391

  • Using Freudenstein’s equation, explained in Appendix B of this book, the lasttwo equations of the system (Eq. C.62) yields (Eqs. C.67 and C.68):

    h5 ¼ arcsin r40 sinðh4 þu4Þ � r10

    r5ðC:67Þ

    r6 ¼ r5 cos h5 � r40 cosðh4 þu4Þ ðC:68Þ

    Using Eqs. (C.63), (C.64)–(C.67), (C.68), we can plot the position of the linksrelative to the positions of link 2 along one full turn. Figure C.11a shows angles h3,h4 and h5 and Fig. C.11b shows distance r6.

    These figures illustrate the benefits of mathematical methods over graphicalones. The latter would only yield the solution to one of the points in such curvesand the problem has to be solved again when there are any changes in the geometricparameters of the mechanism. Conversely, the expressions in Raven’s method yielda solution for all the points in the curve and they do not need to be modifiedwhenever geometrical data are modified.

    The solution of the obtained equations for h2 ¼ 350� yield (Eq. C.69) the fol-lowing values for the position unknowns:

    2θ0°

    3θ25°

    50°

    360°

    75°

    100°

    90° 180° 270°

    6r

    9

    8

    7

    6

    5

    10

    2θ360°90° 180° 270°0°

    (a)

    (b)

    Fig. C.11 a Angular positionof links 3, 4 and 5 in terms ofh2, b Plot of the linear posi-tion of link 6 versus h2

    392 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • h3 ¼ 13:5�h4 ¼ 67:03�h5 ¼ 8:3�r6 ¼ 5:607m

    9>>=>>; ðC:69Þ

    The position along the horizontal path of link 6 with respect to the coordinatesystem origin (Eq. C.71) will be given by the position of point D (Eq. C.70):

    r6 ¼ �xDO4 ¼ �xDO2 � xO2O4 ¼ �xDO2 � ð�3:7mÞ ¼ 5:607m ðC:70Þ

    So for h2 ¼ 350� the X coordinate of link 6 is:

    xDO2 ¼ �1:907m ðC:71Þ

    By differentiating with respect to time (Eq. C.61), we obtain (Eq. C.72):

    ir2x2eih2 þ ir3x3eih3 ¼ ir4x4eih4v6eip þ ir5x5eih5 ¼ ir40x4eiðh4 þu4Þ

    )ðC:72Þ

    We separate the real and imaginary parts in Eq. (C.72), which yields the equationsystem (Eq. C.73) with four unknowns: x3, x4, x5 and v6:

    �r2x2 sin h2 �r3x3 sin h3 ¼ �r4x4 sin h4r2x2 cos h2 þ r3x3 cos h3 ¼ r4x4 cos h4

    �v6 � r5x5 sin h5 ¼ �r40x4 sinðh4 þu4Þr5x5 cos h5 ¼ r40x4 cosðh4 þu4Þ

    9>>>=>>>;

    ðC:73Þ

    From the first two algebraic equations in Eq. (C.73) we can obtain the expres-sions for x3 (Eq. C.74) and x4 (Eq. C.75):

    x3 ¼ r2r3sin h4 � h2ð Þsin h3 � h4ð Þx2 ðC:74Þ

    x4 ¼ r2r4sin h3 � h2ð Þsin h3 � h4ð Þx2 ðC:75Þ

    Finally, from the third and fourth algebraic equation we reach expressions for x5(Eq. C.76) and v6 (Eq. C.77):

    x5 ¼ r40

    r5

    cosðh4 þu4Þcos h5

    x4 ðC:76Þ

    v6 ¼ �r5x5 sin h5 þ r40x4 sinðh4 þu4Þ ðC:77Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 393

  • Using Eqs. (C.74) and (C.75), we can plot the kinematic curve of the linkvelocity versus the position of link 2. These curves are shown in Fig. C.12a, b.

    Again, equations (Eqs. C.74–C.77) can be particularized for h2 ¼ 350� yieldingthe values for the velocity unknowns (Eq. C.78):

    x3 ¼ �1:27 rad=sx4 ¼ �0:69 rad=sx5 ¼ �0:09 rad=sv6 ¼ �4:04m=s

    9>>>=>>>;

    ðC:78Þ

    Once more, Eq. (C.72) can be time-differentiated again in order to find accel-erations (Eq. C.79):

    ð�r2x22 þ ir2a2Þeih2 þð�r3x23 þ ir3a3Þeih3 ¼ ð�r4x24 þ ir4a4Þeih4ð�r5x25 þ ir5a5Þeih5 þ a6eih6 ¼ ð�r40x24 þ ir40a4Þeiðh4 þu4Þ

    )ðC:79Þ

    By separating real and imaginary parts we reach, once more, a system (Eq. C.80)with four equations and four unknowns: a3, a4, a5 and a6.

    2θ360°90° 180° 270°

    −1.5

    −1

    0

    1

    1.5

    2θ360°90° 180° 270°

    6v

    −10

    −5

    0

    5

    10

    0.5

    −0.5

    (a)

    (b)

    Fig. C.12 a Angular veloci-ties of links 3, 4 and 5 interms of h2, b Plot of thelinear velocity of link 6versus h2

    394 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • �r2x22 cos h2 � r2a2 sin h2 � r3x23 cos h3 � r3a3 sin h3 ¼ �r4x24 cos h4 � r4a4 sin h4�r2x22 sin h2 þ r2a2 cos h2 � r3x23 sin h3 þ r3a3 cos h3 ¼ �r4x24 sin h4 þ r4a4 cos h4

    �r5x25 cos h5 � r5a5 sin h5þ a6 cos h6 ¼ �r40x24 cos h40 � r40a4 sinðh4 þu4Þ�r5x25 sin h5þ r5a5 cos h5 þ a6 sin h6 ¼ �r40x24 sin h40 þ r40a4 cosðh4þu4Þ

    9>>>>=>>>>;

    ðC:80Þ

    Again, we start by considering the first two algebraic equations in the system(Eq. C.80), which yield the angular accelerations of links 3 and 4 (Eq. C.81).

    a3 ¼ �r2a2 sin h2 þ r4a4 sin h4 � r2x22 cos h2 � r3x23 cos h3 þ r4x24 cos h4

    r3 sin h3

    a4 ¼ �r2a2 sinðh3 � h2Þþ r2x22 cosðh3 � h2Þþ r3x23 � r4x24 sinðh4 � h3Þr4 sinðh4 � h3Þ

    9>>=>>;ðC:81Þ

    Finally, a6 and a5 (Eq. C.82) are obtained from the last two algebraic equationsin the system (Eq. C.80):

    a5 ¼ r40a4 cosðh4 þu4Þ � r40x24 sinðh4 þu4Þþ r5x25 sin h5

    r5 cos h5a6 ¼ r40a4 sinðh4 þu4Þþ r40x24 cosðh4 þu4Þ � r5a5 sin h5 � r5x25 cos h5

    9=;ðC:82Þ

    These expressions (Eqs. C.81 and C.82) can be particularized for h2 ¼ 350�yielding the values for the unknowns (Eq. C.83):

    a3 ¼ 1:98 rad=s2a4 ¼ 9 rad=s2a5 ¼ 0:72 rad=s2a6 ¼ 53:14m=s2

    9>>=>>; ðC:83Þ

    C.7 Mass, Inertia Moments, Inertia Forces and Inertia Pairs

    We assume that we know the value of the mass and the moment of inertia of thelinks. Their values are included in Table C.2.

    Figure C.13 shows the center of mass of each link. Their position (Eq. C.84) isgiven by the following distances:

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 395

  • O2G2 ¼ 0:5mAG3 ¼ 2mBG4 ¼ 0:52m

    \O4BG4 ¼ 75:4�DG5 ¼ 3:25m

    9>>>>>>>=>>>>>>>;

    ðC:84Þ

    The acceleration of the center of mass of each link (Eq. C.85) has been deter-mined by Raven’s Method yielding the following results:

    aG2 ¼ �8:64̂iþ 1:52̂j ¼ 8:78m=s2\170�aG3 ¼ �21:35̂iþ 6:15̂j ¼ 22:22m=s2\163:94�aG4 ¼ �25:84̂iþ 4:57̂j ¼ 26:24m=s2\170�aG5 ¼ �53:55̂iþ 2:16̂j ¼ 53:59m=s2\177:69�aG6 ¼ �53:14̂i ¼ 53:14m=s2\180�

    9>>>>=>>>>;

    ðC:85Þ

    Once the masses, moments of inertia and accelerations of each center of masshave been determined, we can calculate the forces (Eq. C.86) and moments(Eq. C.87) due to inertia:

    Table C.2 Mass and moment of inertia of the links

    Link 2 3 4 5 6

    Mk (kg) 15.31 61.26 154.75 99.54 85

    Ik (kg m2) 1.278 81.68 495.76 358.479 –

    23

    4

    A

    B

    2O

    4O

    C

    6D G=5

    6 5G

    4G

    3G

    2G4 4O BG∠

    Fig. C.13 Position of thecenters of mass of the links

    396 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • FIn2 ¼ 15:31 � 8:78 ¼ 134:42NFIn3 ¼ 61:26 � 22:22 ¼ 1361:2NFIn4 ¼ 154:75 � 26:24 ¼ 4060:64NFIn5 ¼ 99:54 � 53:59 ¼ 5334:35NFIn6 ¼ 85 � 53:14 ¼ 4516:9N

    9>>>>>>=>>>>>>;

    ðC:86Þ

    MIn2 ¼ 1;278 � 0 ¼ 0MIn3 ¼ 81:68 � 1:98 ¼ 161:73NmMIn4 ¼ 495:76 � 9 ¼ 4461:84NmMIn5 ¼ 358:48 � 0:72 ¼ 258:1NmMIn6 ¼ 0

    9>>>>>>=>>>>>>;

    ðC:87Þ

    Figure C.14 shows the force and moment that acts on each link due to inertia.We can see that the force is opposite to the linear acceleration of the center of massand the moment is opposite to the angular acceleration of the link.

    C.8 Force Analysis. Graphical Method

    In order to calculate the torque that is acting on link 2 to equilibrate themechanism,wewill consider the inertia of the links as well as the force needed tomove the 80 kg box.We will consider a friction coefficient of 0.4 and will neglect the inertia force of thebox. Obviously, in a real problem the inertia of the box would have to be considered.

    3

    4

    A

    B

    2O

    4O

    C

    6D G=

    5

    65G

    4G

    3G

    2G2InF

    3InF

    4InF

    5InF

    6InF

    6Ga

    5Ga

    4Ga

    3Ga

    2Ga

    5InM

    4InM

    3InM

    Fig. C.14 Forces and moments due to inertia in the mechanism

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 397

  • So, in this example the force that has to be exerted by link 6 to move the box(Eq. C.88) is:

    FR ¼ lN ¼ 0:4ð80 kg � 9:81m=s2Þ ¼ 314:2N ðC:88Þ

    We study the forces on the mechanism starting with link 6 (Eq. C.89).

    F56 þF16 þFR ¼ 0 ðC:89Þ

    In order to simplify the problem, we will consider that force FR acts on point D.This will affect the position of reaction force F16 but as force FR is quite smallcompared to Fi6 and the distance from point D to the base of the piston is also smallcompared to the mechanism dimensions, the error is very small.

    Since the direction of force F56 is unknown, it will be broken into a vertical andhorizontal component, FV56 and F

    H56. We know that the direction of force F16 is

    perpendicular to the slider trajectory. So, this force will be equilibrated by FV56. Thevalue of FH56 (Eq. C.91) can be calculated by means of the force equilibrium of thehorizontal components of the forces acting on the link (Eq. C.90) as shown inFig. C.15b.

    0 ¼ RFx ¼ FR þFIn6 þFH560 ¼ RFy ¼ F16 þFV56

    �ðC:90Þ

    FH56 ¼ 4831:14N\180� ðC:91Þ

    Figure C.16 shows the free body diagram of link 5. As we already know, forceFH56 is equal to force F

    H65 but with opposite direction.

    C

    D

    5 5G

    5InF

    5InM65

    HF

    45F5Inh

    65Hh

    65VF 65

    VhFig. C.16 Free body dia-gram of link 5

    6D G=6

    6InF

    56F

    16F

    RFRF 6

    InF

    56HF

    (a) (b)Fig. C.15 a Free body dia-gram of link 6, b horizontalcomponents acting on link 6

    398 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • Next, we analyze the moment equilibrium at point C (Eqs. C.92–C.94) assumingthe direction of FV65 to be upwards:X

    j

    MCjz ¼ 0 ! hIn5 FIn5 � hV65FV65 þ hH65FH65 �MIn5 ¼ 0 ðC:92Þ

    0:6m � 5334:35N� 6:43m � FV65 þ 0:94m � 4831:14N� 258:1Nm ¼ 0 ðC:93Þ

    FV56 ¼ 1163:88N\90� ðC:94Þ

    Then, F65 will be (Eq. C.95):

    F65 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiFV65� 2 þ FH65� 2

    ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi4831:142 þ 1163:882

    p¼ 4969:32N

    hF65 ¼ arctanFV65FH65

    ¼ arctan 1163:884831:14

    ¼ 13:5�

    9>>>>>>>>>=>>>>>>>>>;

    ðC:95Þ

    where distances hIn5 , hV65 and h

    H65 (Eq. C.96) are:

    hIn5 ¼ G5C sinð360� � hFIn5 þ h5Þ ¼ 3:25 sin 10:65�

    hV65 ¼ DC cos h5 ¼ 6:5 cos 8:34�

    hH65 ¼ DC sin h5 ¼ 6:5 sin 8:34�

    9>>=>>; ðC:96Þ

    Back to link 6, we know the vertical forces acting on it, as FV65 ¼ �FV56 ¼ F16.The equilibrium of forces acting on link 5 (Eq. C.97) yields the value of force

    F45 (Eq. C.98) as shown in Fig. C.17.

    FH56 þFV56 þFIn5 þF45 ¼ 0 ðC:97Þ

    F45 ¼ 10;207:9N\185:36� ðC:98Þ

    Similarly, the equilibrium equations of links 3 and 4 yield the value of the forcestransmitted by the links.

    5InF

    65HF

    65VF

    65F45Fo

    Fig. C.17 Polygon of forcesacting on link 5

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 399

  • In link 3, we break force F43 into components FN343 and FN443 (Eq. C.101), with

    directions AB and O4B respectively (Fig. C.18). We consider the equilibrium ofmoments about point A (Eqs. C.99 and C.100) assuming that FN443 (Eq. C.101) goesupwards. X

    j

    MAjz ¼ 0 ! �hIn3 FIn3 þ hN443 FN443 �MIn3 ¼ 0 ðC:99Þ

    �0:986m � 1361:2Nþ 3:215 � FN443 � 161:73Nm ¼ 0 ðC:100Þ

    FN443 ¼ 467:77N ðC:101Þ

    Where distances hIn3 and hN443 can be measured on the drawing of the mechanism

    or be determined as (Eq. C.102):

    hIn3 ¼ G3A cosð90� þ hFIn3 � h3Þ ¼ 2 cos 60:44�

    hN443 ¼ BA sinðh4 � h3Þ ¼ 4 sin 53:5�

    )ðC:102Þ

    3A

    B3G

    3InF

    3InM

    23F

    443NF

    343NF

    3Inh

    443Nh

    Fig. C.18 Free body dia-gram of link 3

    4

    B

    4O

    C

    4G4InF

    4InM

    334NF

    54F

    14F

    4Inh3

    34Nh

    54h4

    34NF

    Fig. C.19 Free bodydiagram of link 4

    400 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • Figure C.19 shows the free body diagram of link 4. We can calculate FN343(Eq. C.105) by means of the equilibrium equation of moments with respect to pointO4 (Eqs. C.103 and C.104). We assume the direction of FN334 to be oriented to theleft. X

    j

    MO4jz ¼ 0 ! �hIn4 FIn4 þ hN334 FN334 � h54F54 �MIn4 ¼ 0 ðC:103Þ

    0 ¼ �2:923m � 4060:64Nþ 2:412m � FN334� 5:84m � 10;207:9N� 4461:84Nm ðC:104Þ

    FN334 ¼ 31;486N ðC:105Þ

    where distances hIn4 , hN334 and h54 (Eq. C.106) can be determined as:

    hIn4 ¼ O4B cosð90� þ hFIn4 � h4Þ ¼ 3 cos 13�

    h54 ¼ O4C cosð90� þ hF54 � h40 Þ ¼ 6 cos 13:26�hN334 ¼ O4B sinðh4 � h3Þ

    9>=>; ðC:106Þ

    The force equilibrium analysis of the forces acting on link 4 (Eq. C.107) yieldsF14 (Eq. C.108). Figure C.20 shows the force polygon.

    F54 þFIn4 þFN434 þFN334 þF14 ¼ 0 ðC:107Þ

    F14 ¼ 18;454N\24� ðC:108Þ

    Also, the analysis of the force equilibrium of link 3 (Eq. C.109) yields force F23(Eq. C.110). The force polygon of forces acting on link 3 is shown in Fig. C.21.

    FIn3 þF43 þF23 ¼ 0 ðC:109Þ

    F23 ¼ 31;520N\193:5� ðC:110Þ

    4InF

    334NF

    54F

    14F4

    34NF

    o

    Fig. C.20 Polygon of forces acting on link 4

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 401

  • Finally, Fig. C.22 shows the equilibrium analysis of link 2, from which we findthe value of the equilibrating torque (Eq. C.114) as well as force F12 (Eq. C.112).Since the value of FIn2 is very small compared to F32, we will neglect it inEq. (C.111). Therefore:

    F32 þF12 ¼ 0 ðC:111Þ

    F12 ¼ �F32 ¼ F23 ðC:112Þ

    Figure C.22 shows the free body diagram of link 2.Torque M0, which acts on link 2 to equilibrate the mechanism, can be obtained

    with (Eq. C.113): Xj

    MO2jz ¼ 0 ! h32F32 þM0 ¼ 0 ðC:113Þ

    M0 ¼ �0:398m � 31;520N ¼ �12;568:6Nm ðC:114Þ

    where distance h32 (Eq. C.115) can be calculated as follows:

    h32 ¼ O2A sinð360� � hF32 � h2Þ ¼ 1 � sin 23:5� ðC:115Þ

    43F

    23F

    3InFo

    Fig. C.21 Polygon of forces acting on link 3

    A2O

    2G2InF

    32F

    0M

    32h

    Fig. C.22 Free body dia-gram of link 2

    402 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • C.9 Dynamic Analysis. Matrix Method

    We start the dynamic analysis of the mechanism by writing the equations of theforce and moment equilibrium of each link (Eqs. C.116–C.20). Figure C.23 showsradius vectors pi, qi and ri used in the moment equations:

    • Link 2:

    F32 � F21 ¼ m2aG2p2 ^ F32 � q2 ^ F21 þM0 ¼ IG2a2

    )ðC:116Þ

    • Link 3:

    F43 � F32 ¼ m3aG3p3 ^ F43 � q3 ^ F32 ¼ IG3a3

    )ðC:117Þ

    • Link 4:

    F54 � F43 þF14 ¼ m4aG4p4 ^ F54 � q4 ^ F43 þ r4 ^ F14 ¼ IG4a4

    )ðC:118Þ

    3

    4

    A

    B

    2O

    4O

    C

    6D G=

    5

    65G

    4G

    3G

    2G

    5p5q

    2p2q 3q

    3p

    4p

    4q

    4r4φ

    Fig. C.23 Radius vectorsused in the moment equilib-rium equations

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 403

  • • Link 5:

    F65 � F54 ¼ m5aG5p5 ^ F65 � q5 ^ F54 ¼ IG5a5

    )ðC:119Þ

    • Link 6:

    F16 � F65 þFR ¼ m6aG6 ðC:120Þ

    The moment equilibrium equation of link 6 is not necessary as we suppose theforces are concurrent at point D and a6 ¼ 0.

    Equations C.116–C.20 yield a system of 14 algebraic equations (Eq. C.121) and14 unknowns where F16x ¼ 0 as the direction of force F16 has to be perpendicular tothe sliding trajectory. So, in this example it will only have a vertical component.

    Projecting each force equation on the X and Y axles and finding the vectorproducts in the torque equations, we reach the following system of equations:

    F32x � F21x ¼ m2aG2xF32y � F21y ¼ m2aG2y

    ðp2xF32y � p2yF32xÞ � ðq2xF21y � q2yF21xÞþM0 ¼ IG2a2F43x � F32x ¼ m3aG3xF43y � F32y ¼ m3aG3y

    ðp3xF43y � p3yF43xÞ � ðq3xF32y � q3yF32xÞ ¼ IG3a3F54x � F43x þF14x ¼ m4aG4xF54y � F43y þF14y ¼ m4aG4y

    ðp4xF54y � p4yF54xÞ � ðq4xF43y � q4yF43xÞþ ðr4xF14y � r4yF14xÞ ¼IG4a4F65x � F54x ¼ m5aG5xF65y � F54y ¼ m5aG5y

    ðp5xF65y � p5yF65xÞ � ðq5xF54y � q5yF54xÞ ¼ IG5a5F16x � F65x ¼ m6aG6x � FRF16y � F65y ¼ m6aG6y

    9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

    ðC:121Þ

    The system (Eq. C.121) can be written in matrix form (Eq. C.122):

    ½L�q ¼ F ðC:122Þ

    404 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • where:

    ½L� ¼

    �1 0 1 0 0 0 0 0 0 0 0 0 0 00 �1 0 1 0 0 0 0 0 0 0 0 0 0q2y �q2x �p2y p2x 0 0 0 0 0 0 0 0 0 10 0 �1 0 1 0 0 0 0 0 0 0 0 00 0 0 �1 0 1 0 0 0 0 0 0 0 00 0 q3y �q3x �p3y p3x 0 0 0 0 0 0 0 00 0 0 0 �1 0 1 0 1 0 0 0 0 00 0 0 0 0 �1 0 1 0 1 0 0 0 00 0 0 0 q4y �q4x �p4y p4x �r4y r4x 0 0 0 00 0 0 0 0 0 �1 0 0 0 1 0 0 00 0 0 0 0 0 0 �1 0 0 0 1 0 00 0 0 0 0 0 q5y �q5x 0 0 �p5y p5x 0 00 0 0 0 0 0 0 0 0 0 �1 0 0 00 0 0 0 0 0 0 0 0 0 0 �1 1 0

    0BBBBBBBBBBBBBBBBBBBBBB@

    1CCCCCCCCCCCCCCCCCCCCCCA

    ðC:123Þ

    q ¼

    F21xF21yF32xF32yF43xF43yF54xF54yF14xF14yF65xF65yF16yM0

    0BBBBBBBBBBBBBBBBBBBBBB@

    1CCCCCCCCCCCCCCCCCCCCCCA

    ðC:124Þ

    F ¼

    m2aG2xm2aG2yIG2a2m3aG3xm3aG3yIG3a3m4aG4xm4aG4yIG4a4m5aG5xm5aG5yIG5a5

    m6aG6x � FRm6aG6y

    0BBBBBBBBBBBBBBBBBBBBBB@

    1CCCCCCCCCCCCCCCCCCCCCCA

    ðC:125Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 405

  • The analytical expressions of the radius vectors in matrix ½L� are defined in Eqs.(C.126)–(C.129). Angles h2, h3, h4, u4 and h5 are the ones defined in Sect. 3.6 forthe analysis with Raven’s Method. Angle /4 is defined in Fig. C.23.

    • Link 2:

    p2 ¼ AG2ðcos h2̂iþ sin h2 ĵÞq2 ¼ �O2G2ðcos h2̂iþ sin h2 ĵÞ

    �ðC:126Þ

    • Link 3:

    p3 ¼ BG3ðcos h3̂iþ sin h3 ĵÞq3 ¼ �AG3ðcos h3̂iþ sin h3 ĵÞ

    �ðC:127Þ

    • Link 4:

    p4 ¼ CO4ðcosðh4 þu4Þ̂iþ sinðh4 þu4Þ̂jÞ � O4G4ðcosðh4 þ/4Þ̂iþ sinðh4 þ/4Þ̂jÞq4 ¼ BO4ðcos h4̂iþ sin h4 ĵÞ � O4G4ðcosðh4 þ/4Þ̂iþ sinðh4 þ/4Þ̂jÞr4 ¼ �O4G4ðcosðh4 þ/4Þ̂iþ sinðh4 þ/4Þ̂jÞ

    9=;

    ðC:128Þ

    • Link 5:

    p5 ¼ �DG5ðcos h5̂iþ sin h5 ĵÞq5 ¼ CG5ðcos h5̂iþ sin h5 ĵÞ

    �ðC:129Þ

    If we find the values of these vectors (Eqs. C.126–C.129) for h2 ¼ 350� weobtain (Eq. C.130):

    p2 ¼ 0:4924̂i� 0:0868̂jmq2 ¼ �p2p3 ¼ 1:9447̂iþ 0:4672̂jmq3 ¼ �p3p4 ¼ 0:1692̂iþ 3:1052̂jmq4 ¼ 0:5144̂i� 0:0766̂jmr4 ¼ �0:6598̂i� 2:8373̂jmp5 ¼ �3:2157̂i� 0:4712̂jmq5 ¼ �p5

    9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

    ðC:130Þ

    406 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • The analytical expressions of the acceleration vector of the center of mass ofeach link (Eqs. C.131–C.34) are:

    aG2 ¼ O2G2a2ð� sin h2̂iþ cos h2ĵÞ � O2G2x22ðcos h2̂iþ sin h2 ĵÞ ðC:131Þ

    aG3 ¼ O2Aa2ð� sin h2̂iþ cos h2 ĵÞ � O2Ax22ðcos h2̂iþ sin h2 ĵÞþG3Aa3ð� sin h3̂iþ cos h3 ĵÞ � G3Ax23ðcos h3̂iþ sin h3 ĵÞ

    ðC:132Þ

    aG4 ¼ O4G4a4ð� sinðh4 þ/4Þ̂iþ cosðh4 þ/4Þ̂jÞ� O4G4x24ðcosðh4 þ/4Þ̂iþ sinðh4 þ/4Þ̂jÞ

    ðC:133Þ

    aG5 ¼ CO4a4ð� sinðh4 þu4Þ̂iþ cosðh4 þu4Þ̂jÞ� CO4x24ðcosðh4 þu4Þ̂iþ sinðh4 þu4Þ̂jÞþG5Ca5ð� sinðh5 þ 180�Þ̂iþ cosðh5 þ 180�Þ̂jÞ� G5Cx25ðcosðh5 þ 180�Þ̂iþ sinðh5 þ 180�Þ̂jÞ

    ðC:134Þ

    aG6 ¼ CO4a4ð� sinðh4 þu4Þ̂iþ cosðh4 þu4Þ̂jÞ� CO4x24ðcosðh4 þu4Þ̂iþ sinðh4 þu4Þ̂jÞþDCa5ð� sinðh5 þ 180�Þ̂iþ cosðh5 þ 180�Þ̂jÞ� DCx25ðcosðh5 þ 180�Þ̂iþ sinðh5 þ 180�Þ̂jÞ

    ðC:135Þ

    If we find the values of all the elements in the vector F for h2 ¼ 350� and solvethe system (Eq. C.122), we obtain the values (Eq. C.136) for the unknowns(Eq. C.124):

    F21 ¼ 32;239̂iþ 7386̂jNF32 ¼ 32;106̂iþ 7409̂jNF14 ¼ 16;636̂iþ 7550̂jNF54 ¼ 10;161̂iþ 944̂jNF65 ¼ 4833̂iþ 1173̂jNF16 ¼ 1173̂jNM0 ¼ �12;872Nm

    9>>>>>>>>>>>>>=>>>>>>>>>>>>>;

    ðC:136Þ

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 407

  • One of the main advantages of the Matrix Method for the dynamic analysis whencompared to the graphical method is the ability to calculate the value of theunknowns along a complete cycle.

    With the latter we can only find one solution for one position of the crank in thecurve and the expressions cannot be used again if there are any changes in thegeometrical data of the mechanism.

    Figure C.24 shows a curve with the value of the instantaneous motor torque forthe different positions of the crank, h2. The value of the motor torque is given byM0and it is the torque that is necessary to apply to motor link 2 in order to obtain thedesired speed and acceleration. In this case, x2 ¼ 4:19 rad=s and a2 ¼ 0.

    2θ360°90° 180° 270°

    0M

    −10,000

    −5,000

    0

    5,000

    10,000

    −15,000

    −20,000

    Fig. C.24 Instantaneousmotor torque M0 versus crankangle h2

    2θ360°90° 180° 270°

    SF

    0

    5,000

    10,000

    15,000

    2,500

    7,500

    12,500

    Fig. C.25 Shaking forcecurve versus crank angle h2

    408 Appendix C: Kinematic and Dynamic Analysis of a Mechanism

  • Moreover, we can obtain the curve of the magnitude of the shaking force versusthe positions of the crank (Fig. C.25). The shaking force is given by Eq. (C.137):

    FS ¼ F21 þF41 þF61 ðC:137Þ

    In Fig. C.25 we can see that the maximum value for the shaking force is at aposition close to h2 ¼ 350�. In this case, this position coincides with the maximumacceleration of link 6.

    Appendix C: Kinematic and Dynamic Analysis of a Mechanism 409

    Appendix A Position Kinematic Analysis.Trigonometric MethodAppendix B Freudenstein’s Method to Solvethe Position Equations in a Four-BarMechanismAppendix C Kinematic and Dynamic Analysisof a Mechanism


Recommended