+ All Categories
Home > Documents > APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection...

APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection...

Date post: 09-May-2020
Category:
Upload: others
View: 17 times
Download: 4 times
Share this document with a friend
75
66 APPENDIX A SAMPLE CALCULATIONS Following are sample calculations detailing the entire process for calculating the various values reported. This example is entirely for the exterior girder, EGL, from the Haunched Girder specimen. Load Capacity: Determine Moment Capacity: M y = A BC *F yBC *d eBC + 0.25*A TC *F yTC *d eTC 1 '* * 85 . 0 25 . 0 b f F A F A a c yTC TC yBC BC = d eBC = H – y BC – a/2 d eTC = h + y TC – a/2 M d = 0.6 * M y For EGL, with nominal material properties: A BC = 5.7188 in. 2 A TC = 2.875 in. 2 F y = 50.0 ksi f c ’ = 4.0 ksi b 1 = 47.5 in. A BC F yBC + A TC F yTC = 5.7188*50 + 0.25*2.875*50 = 321.88 kips 9931 . 1 5 . 47 * 0 . 4 * 85 . 0 88 . 321 = = a in. a/2 = 0.9965 in.
Transcript
Page 1: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

66

APPENDIX A

SAMPLE CALCULATIONS

Following are sample calculations detailing the entire process for calculating thevarious values reported. This example is entirely for the exterior girder, EGL, from theHaunched Girder specimen.

Load Capacity:

Determine Moment Capacity:

My = ABC*FyBC*deBC + 0.25*ATC*FyTC*deTC

1'**85.0

25.0

bf

FAFAa

c

yTCTCyBCBC +=

deBC = H – yBC – a/2

deTC = h + yTC – a/2

Md = 0.6 * My

For EGL, with nominal material properties:

ABC = 5.7188 in.2

ATC = 2.875 in. 2

Fy = 50.0 ksi

fc’ = 4.0 ksi

b1 = 47.5 in.

ABCFyBC + ATCFyTC = 5.7188*50 + 0.25*2.875*50 = 321.88 kips

9931.15.47*0.4*85.0

88.321==a in. a/2 = 0.9965 in.

Page 2: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

67

deBC = 35.0 – 1.138 – 0.9965 = 32.8655 in.

deTC = 10.0 + 0.842 – 0.9965 = 9.8455 in.

Myn = ABC*Fy*deBC + 0.25*ATC*Fy*deTC

= 5.7188*50*32.8655 + 0.25*2.875*50*9.8455

= 9751.4 k-in. = 812.6 k-ft

Mdn = 0.6 * Myn = 487.6 k-ft

Determine Load Capacity:

MCL = RL(15) – Rsj(5) – 15(15/2)wg – P(5)

RL = Rsj + 15wg + P

For EGL,

wg = 0.220 klf

Rsj = 1.464 kips

RL = 1.464 + 15*0.220 + P = 4.764 + P

MCL = 4.764*15 + 15P – 1.464*5 – (152/2)*0.220 – 5P

= 39.39 + 10P

Solve for P using MCL = Myn

10P = Myn – 39.39

For Myn = 812.6 k-ft, P = 77.3 kips

TLyn = 2*(P + Rsj) + 30wg = 2(77.3 + 1.464) + 30*0.220

= 164.1 kips = Total Load on EGL

Page 3: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

68

Moment of Inertia: (Provided by D. Samuelson, Nucor Research and Development.)

Detail No. 1

Calculate Joist-Girder Noncomposite Moment of Inertia

in 161.167188.5875.2

)138.125( 7188.5)842.0( 875.2)( =

+−+

=+

−+=

BCTC

BCGirderJoistBCTCTCGirderJoist AA

ydAyAy

BCTC

eBCTCBCTCteNoncomposiGirderJoist AA

dAAIII

+++=

2

Where:

in 23.020 in 1.138-in 0.842 -in 25 depth effectivegirder Joist

in 1.138 chord bottom of centroidfor Location

in 0.842 chord topof centroidfor Location

in 8.718 angles 2 x in 359.4angles chord bottomboth for Inertia ofMoment

in 2.488 angles 2 x in 244.1 angles chord both topfor Inertia ofMoment

in 25 girder joist steel ofDepth

44

44

===

==

==

===

===

==

e

BC

TC

BC

TC

GirderJoist

d

y

y

I

I

d

2 1/2"2"

3'-4 1/2"

Abc= 5.7188 in

6"

6"

6"

1"

2L - 4 x 0.375

1'

2

Atc = 2.875 in2L - 3 x 0.250

2

7"

y=1.138"

Effective Width =3'-11 1/2"

3"

5"5"

1"1"

0.842"

1'-11.020"

y Joist Girder =1'-4.161"

2'-1"

10"

Page 4: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

69

Calculate Transformed Moment of Inertia for Concrete Slab

Detail No. 2

4779.7ksi 1.878,3

ksi 29,000n

ksi 1.878,34530pcf) 145( 3333 1.5'5.1

==

===

=

ccc

C

s

fwE

E

En

2VL 18 Ga. deck, deck thickness = 0.0474 in1 layer 6 x 6 – W1.4 x W1.4 welded wire fabric

3'-11 1/2"

10"

3"

a b

c d ef

gef

hg

fe

he

f

e

f

i

jk l k

m mkk l

kn

422

22244

22

22

in 025,1)in 7188.5in 875.2(

)in 020.23)(in 7188.5)(in 875.2(in 718.8in 488.2

in 5.7188 angles 2 x in 859.2 angles chord bottomboth of Area

in 2.875 angles 2 x in 438.1 angles chord both top of Area

=+

++=

===

===

teNoncomposiGirderJoist

BC

TC

I

A

A

Page 5: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

70

Table No. 1

ElementArea

(in2)

ElementArea/ n

(in2)

1No.Pieces

Area

(in2)

AreaTrans-formed

(in2)

y totopslab(in)

Atrans xy

(in3)

h

(in)

Atrans xh2

(in4)

Io

(in4)a 130.00 17.384 1 130.0 17.3844 5.00 86.9221 -1.3253 30.5346 144.87b 18.00 2.4071 1 18.00 2.4071 6.000 14.4424 -2.3253 13.0152 4.8141c 24.00 3.2094 1 24.00 3.2094 2.00 6.4189 1.6747 9.0012 4.2792d 12.50 1.6716 1 12.50 1.6716 2.500 4.1789 1.1747 2.3066 3.4825e 3.00 .4012 5 15.00 2.0059 1.500 3.0088 2.1747 9.4865 1.5044f 1.00 .1337 5 5.00 .6686 3.666 2.4517 .0080 0.0000 .1486g 15.00 2.0059 2 30.0 4.0118 1.500 6.0177 2.1747 18.9730 3.0088h 25.00 3.3432 2 50.00 6.6863 2.500 16.7158 1.1747 9.2265 13.93i 3.00 .4012 1 3.000 .4012 1.500 .6018 2.1747 1.8973 .3009j .1185 .1185 1 .1185 .1185 5.000 .5925 -1.3253 .2081 0.0000k .1060 .1060 5 .5299 .5299 4.000 2.1198 -.3253 .0561 .1767l .2370 .2370 2 .4740 .4740 3.000 1.4220 .6747 .2158 .0001m .2370 .2370 2 .4740 .4740 5.000 2.3700 -1.3253 .8325 .0001n .0474 .0474 1 .0474 .0474 3.000 .1422 .6747 .0216 0.0000

mesh 0.1116 0.1116 1 0.112 0.1116 2.909 .3248 .7654 .0654 .0001Totals 232.3575 31.8152 289.2555 40.2018 147.7294 95.8404 76.5157

Haunch flashing metal was ignored in the above calculation.

42dtransforme in 3561.2725157.1768404.95I

slab of topin to 6747.32018.40

147.7294

=+=+=

==⋅

=

∑∑∑

otrans

trans

transdtransforme

IhA

A

yAy

Calculate Combined Transformed Moment of Inertia for Concrete Slab & Girder

Area of top and bottom chord = 2.875 in2 + 5.7188 in2= 8.5938 in2

Distance from centroid of joist to top of slab = y= =+10joisty 16.161 + 10= 26.161 in

Table No. 2

Element 1ElementArea

(in2)

Y totop ofslab(in)

Area *y

(in3)

h

(in)

Area xh2

(in4)

Io

(in4)Joist

Girder8.5938 26.161 224.82 18.5261 2,949.5 1,025

Slab 40.2018 3.6747 147.7295 3.9602 630.492 272 Total 48.7956 372.5496 3,580.0 1,297.4

1Element area shown for slab has been transformed into equivalent area of steel . See Table No. 1

Page 6: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

71

42 in 4,877.4 1,297.4 580,3

slab of topfrom "6349.77956.48

5496.372

=+=+=

===

∑∑∑

Ocomposite

centroid

IhAI

A

yAy

Adjustment to Icomposite for Shear Stud Slippage

Adjusting for Web Shortening Effects

Detail No. 3

tenoncomposi

ggirderjoisttenoncomposionloaduniformforcenterline EI

lw

384

5 4

=∆

( ) ( )[ ]in 556.3

)in psi)(1,025 24(29x10

in) 120(4in) 360(3in 120 lb 830,6324

43

0.1349" )in psi)(1,025 384(29x10

in/ft) 12(ft) plf)(30 5(220

46

2222

46

34

=−

=−

=∆

==∆

EIalPa

loadsedconcentratforcenterline

girderjoisttenoncomposionloaduniformforcenterline

in 3.6909 in 3.556 in 1349.0 =+=∆+∆=∆ LoadedConcentratteNoncomposiLoadUniformteNoncomposiTotal

4/ in 645,4

05.1

4.877,4

05.1

assumed. was1.05

offactor slip studshear a concrete, theand studsshear ebetween th slipagefor Adjusting

===−composite

depthspanforadjustednon

II

10'30'

10'

w = 220 plf63.83 K

10'

63.83 K

Page 7: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

72

Using the Vulcraft Joist Design Program, the deflection of the noncomposite joist underthe loading shown in Detail No. 3 was calculated to be 3.97”. The Vulcraft joist programassumes that: 1) The top chord is a continuous member and 2) That the webs and chordsare connected to the top and bottom chords by pinned joints.

The difference between the theoretical centerline deflection and the deflection from theVulcraft Program is due to web effects. Correcting the moment of inertia for web effects:

( ) 444 in 318,49297.0in 645,4

in 3.97

in 6909.3in 645,4 ==

=effectswebforadjustedI

Correcting Composite Moment of Inertia for Span / Depth Effects

Using results of 18 prior full-scale composite joist tests, an empirical equation to adjust forSpan / Depth joist ratios was derived. This additional adjustment was required after takinginto account shear stud slip and web shorting effects so that the measured deflectionswould more closely match predicted deflections.

Icalc = 3,323 in4 for EGL

4

composite

44

/ /

22

/

/

2

in 3,323 is ratiodepth span /

and effects, webslip, studshear for adjustingafter IG for Ifor valuecalculated The

in 323,3 2995.1

in 318,4

DepthSpan / for factor Adjustment

2995.14.14

1692.7991775.0 Depth Span / for factor Adjustment

4.14in 25

in/ft 12ft x 30

1692.79

91775.0

where

form theof is effectsdepth span \ for the adjustingfor sellectedequation The

=

===

=+=+=

===

==

=

+=

depthspanforadjustednondepthspanforadjusted

depthspanforadjusted

depthspanforadjustednon

II

x

ba

DepthJoistSpanJoist

x

b

a

I

Iy

xb

ay

Page 8: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

73

APPENDIX B

COMPOSITE JOIST-GIRDER TEST RESULTS

Following are plots of the data obtained from the various composite joist-girderspecimens. The data is plotted as total load on the girder versus the measureddisplacement or force (vertical deflection, chord member strain, web member strain,concrete strain, slip, etc.) The test data is organized according to girder for eachspecimen. Each section begins with a summary of the girder configuration and relatedinformation. Total load refers to the combined loading of the structure self-weight plusthe applied load introduced through the hydraulic rams.

The first load point of each data set establishes a zero position. The second datapoint within each set accounts for the self-weight of the steel in the specimen. The thirdpoint indicates effect of the placement of concrete. All subsequent data points refer to theeffects of the cycles of live load applied during testing.

Page 9: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

74

COMPOSITE FLUSH FRAMED JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: EGL(EG3) TEST DATES: 28-30 November 1995

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 48.9 plf

Depth: 30 in. Spacing: 7 ftTop Chord: 2L-3.00x3.00x0.250 Yield Stress: 58.0 ksi

Bottom Chord: 2L-4.00x4.00x0.375 Yield Stress: 60.2 ksiDeck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 4900 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 15 per half-span, 30 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load per Joist-Girder: 189.5 kips

Theoretical Moment of Inertia: 2705 in.4

TEST RESULTSTotal Load on Joist-Girder at Failure: 160.8 kips

Maximum Total Load on Joist-Girder: 174.3 kipsMidspan Deflection at Failure: 2.74 in.

Experimental Moment of Inertia: 2965 in.4

Mode of Failure: Compression buckling of web member W3R

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.92

Theoretical Max. Total Load on Joist-Girder

LOCATION OF INSTRUMENTATION ON JOIST-GIRDER

Page 10: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

75

Figure B.1.1 Total Load vs. Bottom Chord Midspan Deflection of EGL

Figure B.1.2 Total Load vs. Bottom Chord Quarter Deflections of EGL

0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

CL Bottom

0

20

40

60

80

100

120

140

160

180

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

EQ Bottom

WQ Bottom

Page 11: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

76

Figure B.1.3 Total Load vs. Bottom Chord Lateral Deflections of EGL

0

20

40

60

80

100

120

140

160

180

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60

Bottom Chord Lateral Defl. (in.)

Tot

al L

oad

(kip

s)

LAT E

LAT W

Page 12: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

77

Figure B.1.4 Total Load vs. Slip of EGL

Figure B.1.5 Total Load vs. Concrete Strain of EGL

0

20

40

60

80

100

120

140

160

180

-0.18 -0.16 -0.14 -0.12 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

0

20

40

60

80

100

120

140

160

180

-600 -500 -400 -300 -200 -100 0

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

Page 13: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

78

Figure B.1.6 Total Load vs. Bottom Chord Strain of EGL

Figure B.1.7 Total Load vs. Top Chord (TC1) Strain of EGL

0

20

40

60

80

100

120

140

160

180

0 400 800 1200 1600 2000 2400

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC (1)

BC (2)

BC (3)

0

20

40

60

80

100

120

140

160

180

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1 (5)

TC1 (6)

TC1 (7)

TC1 (8)

Page 14: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

79

Figure B.1.8 Total Load vs. Top Chord (TC2) Strain of EGL

Figure B.1.9 Total Load vs. Top Chord (TC4) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-500 -400 -300 -200 -100 0 100 200

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2 (9)

TC2 (10)

TC2 (11)

TC2 (12)

0

20

40

60

80

100

120

140

160

180

-500 0 500 1000 1500 2000 2500 3000

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4 (17)

TC4 (18)

TC4 (19)

TC4 (20)

Page 15: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

80

Figure B.1.10 Total Load vs. Top Chord (TC5) Strain of EGL

Figure B.1.11 Total Load vs. Top Chord (TC6) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-600 -500 -400 -300 -200 -100 0 100 200 300

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5 (21)

TC5 (22)

TC5 (23)

TC5 (24)

0

20

40

60

80

100

120

140

160

180

-1200 -1000 -800 -600 -400 -200 0 200

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6 (25)

TC6 (26)

TC6 (27)

TC6 (28)

Page 16: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

81

Figure B.1.12 Total Load vs. Vertical (V3) Strain of EGL

Figure B.1.13 Total Load vs. Vertical (V6) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-600 -500 -400 -300 -200 -100 0 100 200

Vertical (V3) Strain ( µε )

Tot

al L

oad

(kip

s)

V3 (29)

V3 (30)

V3 (31)

V3 (32)

0

20

40

60

80

100

120

140

160

180

-600 -500 -400 -300 -200 -100 0 100

Vertical (V6) Strain ( µε )

Tot

al L

oad

(kip

s)

V6 (33)

V6 (34)

V6 (35)

V6 (36)

Page 17: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

82

Figure B.1.14 Total Load vs. Brace Force of EGL (East Braces)

Figure B.1.15 Total Load vs. Brace Force of EGL (West Braces)

0

20

40

60

80

100

120

140

160

180

-4 -2 0 2 4 6 8

Brace Force (kips)

Tot

al L

oad

(kip

s)

BR E1

BR E2

0

20

40

60

80

100

120

140

160

180

-2 0 2 4 6 8 10

Brace Force (kips)

Tot

al L

oad

(kip

s)

BR W1

BR W2

Page 18: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

83

COMPOSITE FLUSH FRAMED JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: IG TEST DATES: 28-30 November 1995

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 91.3 plf

Depth: 30 in. Spacing: 7 ftTop Chord: 2L-4.00x4.00x0.375 Yield Stress: 58.7 ksi

Bottom Chord: 2L-5.00x5.00x0.625 Yield Stress: 55.0 ksiDeck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 4900 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 28 per half-span, 56 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 350.9 kips

Transformed Moment of Inertia: 5324 in.4

TEST RESULTSTotal Load on Joist-Girder at Failure: 329 kips

Maximum Total Load on Joist-Girder: 341.4 kipsMidspan Deflection at Failure: 7.2 in.

Experimental Moment of Inertia: 5541 in.4

Mode of Failure: Failure of filler welds; Web buckling

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.97

Theoretical Max. Total Load on Joist-Girder

LOCATION OF INSTRUMENTATION ON JOIST-GIRDER

Page 19: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

84

Figure B.2.1 Total Load vs. Bottom Chord Midspan Deflection of IG

Figure B.2.2 Total Load vs. Bottom Chord Quarter Deflections of IG

0

50

100

150

200

250

300

350

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

EQ Bottom

WQ Bottom

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

CL Bottom

Page 20: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

85

Figure B.2.3 Total Load vs. Bottom Chord Lateral Deflections of IG

Figure B.2.4 Total Load vs. Slip of IG

0

50

100

150

200

250

300

350

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Bottom Chord Lateral Defl. (in.)

Tot

al L

oad

(kip

s)

LAT M

0

50

100

150

200

250

300

350

-0.45 -0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

Page 21: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

86

Figure B.2.5 Total Load vs. Concrete Strain of IG

Figure B.2.6 Total Load vs. Bottom Chord Strain of IG

0

50

100

150

200

250

300

350

-1400 -1200 -1000 -800 -600 -400 -200 0 200

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

0

50

100

150

200

250

300

350

0 400 800 1200 1600 2000 2400 2800 3200 3600

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC (1)

BC (2)

BC (3)

BC (4)

Page 22: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

87

Figure B.2.7 Total Load vs. Top Chord (TC1) Strain of IG

Figure B.2.8 Total Load vs. Top Chord (TC2) Strain of IG

0

50

100

150

200

250

300

350

-1200 -1000 -800 -600 -400 -200 0 200 400 600

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1 (5)

TC1 (6)

TC1 (7)

TC1 (8)

0

50

100

150

200

250

300

350

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2 (9)

TC2 (10)

TC2 (11)

TC2 (12)

Page 23: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

88

Figure B.2.9 Total Load vs. Top Chord (TC3) Strain of IG

Figure B.2.10 Total Load vs. Top Chord (TC4) Strain of IG

0

50

100

150

200

250

300

350

-1400 -1200 -1000 -800 -600 -400 -200 0 200 400 600

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3 (13)

TC3 (14)

TC3 (15)

TC3 (16)

0

50

100

150

200

250

300

350

-1200 -1000 -800 -600 -400 -200 0 200 400 600 800

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4 (17)

TC4 (18)

TC4 (19)

TC4 (20)

Page 24: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

89

Figure B.2.11 Total Load vs. Top Chord (TC5) Strain of IG

Figure B.2.12 Total Load vs. Top Chord (TC6) Strain of IG

0

50

100

150

200

250

300

350

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5 (21)

TC5 (22)

TC5 (23)

TC5 (24)

0

50

100

150

200

250

300

350

-800 -600 -400 -200 0 200 400 600

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6 (25)

TC6 (26)

TC6 (27)

TC6 (28)

Page 25: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

90

Figure B.2.13 Total Load vs. Vertical (V3) Strain of IG

Figure B.2.14 Total Load vs. Vertical (V6) Strain of IG

0

50

100

150

200

250

300

350

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0

Vertical (V3) Strain ( µε )

Tot

al L

oad

(kip

s)

V3 (29)

V3 (30)

V3 (31)

V3 (32)

0

50

100

150

200

250

300

350

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0

Vertical (V6) Strain ( µε )

Tot

al L

oad

(kip

s)

V6 (33)

V6 (34)

V6 (35)

V6 (36)

Page 26: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

91

COMPOSITE FLUSH FRAMED JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: EGR(EG4) TEST DATES: 28-30 November 1995

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 48.9 plf

Depth: 30 in. Spacing: 7 ftTop Chord: 2L-3.00x3.00x0.250 Yield Stress: 59.5 ksi

Bottom Chord: 2L-4.00x4.00x0.375 Yield Stress: 60.0 ksiDeck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 4900 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 15 per half-span, 30 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 189.0 kips

Theoretical Moment of Inertia: 2705 in.4

TEST RESULTSTotal Load on Joist-Girder at Failure: 165.9 kips

Maximum Total Load on Joist-Girder: 172.9 kipsMidspan Deflection at Failure: 3.1 in.

Experimental Moment of Inertia: 2944 in.4

Mode of Failure: Compression buckling of web member W3R

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.91

Theoretical Max. Total Load on Joist-Girder

LOCATION OF INSTRUMENTATION ON JOIST-GIRDER

Page 27: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

92

Figure B.3.1 Total Load vs. Bottom Chord Midspan Deflection of EGR

Figure B.3.2 Total Load vs. Bottom Chord Quarter Deflections of EGR

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

CL Bottom

0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Bottom Chord Deflection (in.)

Tot

al L

oad

(kip

s)

EQ Bottom

WQ Bottom

Page 28: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

93

Figure B.3.3 Total Load vs. Bottom Chord Lateral Deflections of EGR

Figure B.3.4 Total Load vs. Slip of EGR

0

20

40

60

80

100

120

140

160

180

-0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Bottom Chord Lateral Defl. (in.)

Tot

al L

oad

(kip

s)

LAT E

LAT W

0

20

40

60

80

100

120

140

160

180

-0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

Page 29: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

94

Figure B.3.5 Total Load vs. Concrete Strain of EGR

Figure B.3.6 Total Load vs. Bottom Chord Strain of EGR

0

20

40

60

80

100

120

140

160

180

-500 -400 -300 -200 -100 0 100

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

0

20

40

60

80

100

120

140

160

180

-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC (1)

BC (2)

BC (3)

BC (4)

Page 30: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

95

Figure B.3.7 Total Load vs. Top Chord (TC1) Strain of EGR

Figure B.3.8 Total Load vs. Top Chord (TC2) Strain of EGR

0

20

40

60

80

100

120

140

160

180

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1 (5)

TC1 (6)

TC1 (7)

TC1 (8)

0

20

40

60

80

100

120

140

160

180

-1000 -800 -600 -400 -200 0 200 400 600

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2 (9)

TC2 (10)

TC2 (11)

TC2 (12)

Page 31: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

96

Figure B.3.9 Total Load vs. Top Chord (TC3) Strain of EGR

Figure B.3.10 Total Load vs. Top Chord (TC4) Strain of EGR

0

20

40

60

80

100

120

140

160

180

-600 -400 -200 0 200 400 600 800

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3 (13)

TC3 (14)

TC3 (15)

TC3 (16)

0

20

40

60

80

100

120

140

160

180

-600 -400 -200 0 200 400 600 800 1000 1200

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4 (17)

TC4 (18)

TC4 (19)

TC4 (20)

Page 32: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

97

Figure B.3.11 Total Load vs. Top Chord (TC5) Strain of EGR

Figure B.3.12 Total Load vs. Top Chord (TC6) Strain of EGR

0

20

40

60

80

100

120

140

160

180

-600 -400 -200 0 200 400 600 800

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5 (21)

TC5 (22)

TC5 (23)

TC5 (24)

0

20

40

60

80

100

120

140

160

180

-1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400 600

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6 (25)

TC6 (26)

TC6 (27)

TC6 (28)

Page 33: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

98

Figure B.3.13 Total Load vs. Vertical (V3) Strain of EGR

Figure B.3.14 Total Load vs. Vertical (V6) Strain of EGR

0

20

40

60

80

100

120

140

160

180

-400 -300 -200 -100 0 100

Vertical (V3) Strain ( µε )

Tot

al L

oad

(kip

s)

V3 (29)

V3 (30)

V3 (31)

V3 (32)

0

20

40

60

80

100

120

140

160

180

-400 -350 -300 -250 -200 -150 -100 -50 0 50 100

Vertical (V6) Strain ( µε )

Tot

al L

oad

(kip

s)

V6 (33)

V6 (34)

V6 (35)

V6 (36)

Page 34: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

99

COMPOSITE STUB JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: EGL TEST DATES: 4-6 June 1996

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 52.8 plf

Depth: 25 in. Spacing: 7 ftTop Chord: 2L-3.00x3.00x0.250 Yield Stress: 50.1 ksi

Bottom Chord: 2L-4.00x4.00x0.375 Yield Stress: 54.6 ksiStub: S5x10 Yield Stress: 49.0 ksi

Deck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 3000 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 14 per half-span, 28 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load per Joist-Girder: 169.7 kips

Theoretical Moment of Inertia: 3077 in.4

TEST RESULTSTotal Load per Joist-Girder at Failure: 148.7 kips

Maximum Total Load per Joist-Girder: 148.7 kipsMidspan Deflection at Failure: 3.19 in.

Experimental Moment of Inertia: 3096 in.4

Mode of Failure: Loss of shear connection along east third of span

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load per Joist-Girder = 0.88

Theoretical Max. Total Load per Joist-Girder

INSTRUMENTATION LOCATIONS

Page 35: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

100

Figure B.4.1 Total Load vs. Midspan Deflections of EGL

Figure B.4.2 Total Load vs. Third-Point Deflections of EGL

0

20

40

60

80

100

120

140

160

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Midspan Deflection (in.)

Tot

al L

oad

(kip

s)

CL Top

CL Bottom

0

20

40

60

80

100

120

140

160

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Third-Point Deflections (in.)

Tot

al L

oad

(kip

s)

ET Top

WT Top

Page 36: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

101

Figure B.4.3 Total Load vs. Slip of EGL

Figure B.4.4 Total Load vs. Concrete Strain of EGL

0

20

40

60

80

100

120

140

160

-0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Slip (in.)

Tot

al L

oad

(kip

s) Slip E1

Slip E2

Slip W1

Slip W2

0

20

40

60

80

100

120

140

160

-600 -500 -400 -300 -200 -100 0 100 200 300 400

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

CL

WT

Page 37: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

102

Figure B.4.5 Total Load vs. Bottom Chord Strain of EGL

Figure B.4.6 Total Load vs. Stub Strain of EGL

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC(1)

BC(2)

BC(3)

BC(4)

0

20

40

60

80

100

120

140

160

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0

Stub Strain ( µε )

Tot

al L

oad

(kip

s)

Stub(37)

Stub(38)

Stub(39)

Stub(40)

Page 38: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

103

Figure B.4.7 Total Load vs. Top Chord (TC1) Strain of EGL

Figure B.4.8 Total Load vs. Top Chord (TC2) Strain of EGL

0

20

40

60

80

100

120

140

160

-350 -300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1(5)

TC1(6)

TC1(7)

TC1(8)

0

20

40

60

80

100

120

140

160

-1200 -1000 -800 -600 -400 -200 0 200

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2(9)

TC2(10)

TC2(11)

TC2(12)

Page 39: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

104

Figure B.4.9 Total Load vs. Top Chord (TC3) Strain of EGL

Figure B.4.10 Total Load vs. Top Chord (TC4) Strain of EGL

0

20

40

60

80

100

120

140

160

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3(13)

TC3(14)

TC3(15)

TC3(16)

0

20

40

60

80

100

120

140

160

-500 -400 -300 -200 -100 0 100 200 300

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4(17)

TC4(18)

TC4(19)

TC4(20)

Page 40: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

105

Figure B.4.11 Total Load vs. Top Chord (TC5) Strain of EGL

Figure B.4.12 Total Load vs. Top Chord (TC6) Strain of EGL

0

20

40

60

80

100

120

140

160

-550 -500 -450 -400 -350 -300 -250 -200 -150 -100 -50 0 50

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5(21)

TC5(22)

TC5(23)

TC5(24)

0

20

40

60

80

100

120

140

160

-200 -100 0 100 200 300 400

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6(25)

TC6(26)

TC6(27)

TC6(28)

Page 41: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

106

Figure B.4.13 Total Load vs. Diagonal Web (W5R) Strain of EGL

Figure B.4.14 Total Load vs. Diagonal Web (W5) Strain of EGL

0

20

40

60

80

100

120

140

160

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5R) Strain ( µε )

Tot

al L

oad

(kip

s)

W5R(29)

W5R(30)

W5R(31)

W5R(32)

0

20

40

60

80

100

120

140

160

-1400 -1200 -1000 -800 -600 -400 -200 0 200

Diagonal Web (W5) Strain ( µε )

Tot

al L

oad

(kip

s)

W5(33)

W5(34)

W5(35)

W5(36)

Page 42: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

107

COMPOSITE STUB JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: IG TEST DATES: 4-6 June 1996

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 94.4 plf

Depth: 25 in. Spacing: 7 ftTop Chord: 2L-4.00x4.00x0.375

Bottom Chord: 2L-5.00x5.00x0.625 Yield Stress: 59.4 ksiStub: S5x10

Deck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 3000 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 28 per half-span, 56 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 370.6 kips

Theoretical Moment of Inertia: 5930 in.4

TEST RESULTSTotal Load on Joist-Girder at Failure: 299.0 kips

Maximum Total Load on Joist-Girder: 299.0 kipsMidspan Deflection at Failure: 3.87 in.

Experimental Moment of Inertia: 5709 in.4

Mode of Failure: Crushing of concrete at load points

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.81

Theoretical Max. Total Load on Joist-Girder

INSTRUMENTATION LOCATIONS

Page 43: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

108

Figure B.5.1 Total Load vs. Midspan Deflections of IG

Figure B.5.2 Total Load vs. Third-Point Deflections of IG

0

50

100

150

200

250

300

350

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Midspan Deflection (in.)

Tot

al L

oad

(kip

s)

CL Top

CL Bottom

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7

Third-Point Deflections (in.)

Tot

al L

oad

(kip

s)

ET Top

WT Top

Page 44: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

109

Figure B.5.3 Total Load vs. Slip of IG

Figure B.5.4 Total Load vs. Concrete Strain of IG

0

50

100

150

200

250

300

350

-0.10 0.00 0.10 0.20 0.30 0.40 0.50

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

0

50

100

150

200

250

300

350

-600 -500 -400 -300 -200 -100 0 100 200 300 400

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

CL

WT

Page 45: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

110

Figure B.5.5 Total Load vs. Bottom Chord Strain of IG

Figure B.5.6 Total Load vs. Stub Strain of IG

0

50

100

150

200

250

300

350

-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC(1)

BC(2)

BC(3)

BC(4)

0

50

100

150

200

250

300

350

-1600 -1400 -1200 -1000 -800 -600 -400 -200 0

Stub Strain ( µε )

Tot

al L

oad

(kip

s)

Stub(37)

Stub(38)

Stub(39)

Stub(40)

Page 46: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

111

Figure B.5.7 Total Load vs. Top Chord (TC1) Strain of IG

Figure B.5.8 Total Load vs. Top Chord (TC2) Strain of IG

0

50

100

150

200

250

300

350

-350 -300 -250 -200 -150 -100 -50 0 50 100 150 200

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1(5)

TC1(6)

TC1(7)

TC1(8)

0

50

100

150

200

250

300

350

-1200 -1000 -800 -600 -400 -200 0

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2(9)

TC2(10)

TC2(11)

TC2(12)

Page 47: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

112

Figure B.5.9 Total Load vs. Top Chord (TC3) Strain of IG

Figure B.5.10 Total Load vs. Top Chord (TC4) Strain of IG

0

50

100

150

200

250

300

350

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3(13)

TC3(14)

TC3(15)

TC3(16)

0

50

100

150

200

250

300

350

-1000 -800 -600 -400 -200 0 200 400

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4(17)

TC4(18)

TC4(19)

TC4(20)

Page 48: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

113

Figure B.5.11 Total Load vs. Top Chord (TC5) Strain of IG

Figure B.5.12 Total Load vs. Top Chord (TC6) Strain of IG

0

50

100

150

200

250

300

350

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5(21)

TC5(22)

TC5(23)

TC5(24)

0

50

100

150

200

250

300

350

-250 -200 -150 -100 -50 0 50 100 150 200 250

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6(25)

TC6(26)

TC6(27)

TC6(28)

Page 49: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

114

Figure B.5.13 Total Load vs. Diagonal Web (W5R) Strain of IG

Figure B.5.14 Total Load vs. Diagonal Web (W5) Strain of IG

0

50

100

150

200

250

300

350

-2000 -1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5R) Strain ( µε )

Tot

al L

oad

(kip

s)

W5R(29)

W5R(30)

W5R(31)

W5R(32)

0

50

100

150

200

250

300

350

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200

Diagonal Web (W5) Strain (me)

Tot

al L

oad

(kip

s)

W5(33)

W5(34)

W5(35)

W5(36)

Page 50: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

115

COMPOSITE STUB JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: EGR TEST DATES: 4-6 June 1996

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 52.8 plf

Depth: 25 in. Spacing: 7 ftTop Chord: 2L-3.00x3.00x0.250

Bottom Chord: 2L-4.00x4.00x0.375 Yield Stress: 53.5 ksiStub: S5x10

Deck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 3000 psi

Shear Connector: Type: 3/4 in. x 4 1/2 in. Welded Headed Shear StudsQuantity: 14 per half-span, 28 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 166.4 kips

Theoretical Moment of Inertia: 3077 in.4

TEST RESULTSTotal Load on Joist-Girder at Failure: 141.3 kips

Maximum Total Load on Joist-Girder: 141.3 kipsMidspan Deflection at Failure: 2.62 in.

Experimental Moment of Inertia: 3137 in.4

Mode of Failure: Loss of shear connection along west third of span

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.85

Theoretical Max. Total Load on Joist-Girder

INSTRUMENTATION LOCATIONS

Page 51: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

116

Figure B.6.1 Total Load vs. Midspan Deflections of EGR

Figure B.6.2 Total Load vs. Third-Point Deflections of EGR

0

20

40

60

80

100

120

140

160

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Midspan Deflection (in.)

Tot

al L

oad

(kip

s)

CL Top

CL Bottom

0

20

40

60

80

100

120

140

160

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Third-Point Deflection (in.)

Tot

al L

oad

(kip

s)

ET Top

WT Top

Page 52: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

117

Figure B.6.3 Total Load vs. Slip of EGR

Figure B.6.4 Total Load vs. Concrete Strain of EGR

0

20

40

60

80

100

120

140

160

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

0

20

40

60

80

100

120

140

160

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100

Concrete Strain ( µε )

Tot

al L

oad

(kip

s)

CL

WT

Page 53: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

118

Figure B.6.5 Total Load vs. Bottom Chord Strain of EGR

Figure B.6.6 Total Load vs. Stub Strain of EGR

0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Bottom Chord Strain ( µε )

Tot

al L

oad

(kip

s)

BC(1)

BC(2)

BC(3)

BC(4)

0

20

40

60

80

100

120

140

160

-1200 -1000 -800 -600 -400 -200 0 200

Stub Strain ( µε )

Tot

al L

oad

(kip

s)

Stub(37)

Stub(38)

Stub(39)

Stub(40)

Page 54: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

119

Figure B.6.7 Total Load vs. Top Chord (TC1) Strain of EGR

Figure B.6.8 Total Load vs. Top Chord (TC2) Strain of EGR

0

20

40

60

80

100

120

140

160

-200 -150 -100 -50 0 50 100 150 200 250

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1(5)

TC1(6)

TC1(7)

TC1(8)

0

20

40

60

80

100

120

140

160

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2(9)

TC2(10)

TC2(11)

TC2(12)

Page 55: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

120

Figure B.6.9 Total Load vs. Top Chord (TC3) Strain of EGR

Figure B.6.10 Total Load vs. Top Chord (TC4) Strain of EGR

0

20

40

60

80

100

120

140

160

-700 -600 -500 -400 -300 -200 -100 0 100 200 300

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3(13)

TC3(14)

TC3(15)

TC3(16)

0

20

40

60

80

100

120

140

160

-1000 -800 -600 -400 -200 0 200 400

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4(17)

TC4(18)

TC4(19)

TC4(20)

Page 56: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

121

Figure B.6.11 Total Load vs. Top Chord (TC5) Strain of EGR

Figure B.6.12 Total Load vs. Top Chord (TC6) Strain of EGR

0

20

40

60

80

100

120

140

160

-1200 -1000 -800 -600 -400 -200 0 200 400

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5(21)

TC5(22)

TC5(23)

TC5(24)

0

20

40

60

80

100

120

140

160

-400 -300 -200 -100 0 100 200 300

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6(25)

TC6(26)

TC6(27)

TC6(28)

Page 57: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

122

Figure B.6.13 Total Load vs. Diagonal Web (W5R) Strain of EGR

Figure B.6.14 Total Load vs. Diagonal Web (W5) Strain of EGR

0

20

40

60

80

100

120

140

160

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5R) Strain ( µε )

Tot

al L

oad

(kip

s)

W5R(29)

W5R(30)

W5R(31)

W5R(32)

0

20

40

60

80

100

120

140

160

-2000 -1500 -1000 -500 0 500

Diagonal Web (W5) Strain ( µε )

Tot

al L

oad

(kip

s)

W5(33)

W5(34)

W5(35)

W5(36)

Page 58: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

123

COMPOSITE HAUNCHED JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: EGL TEST DATES: 17-19 December 1996

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 46.1 plf

Depth: 25 in. Spacing: 6 ft - 9 in.Top Chord: 2L-3.00x3.00x0.250 Yield Stress: 58.0 ksi

Bottom Chord: 2L-4.00x4.00x0.375 Yield Stress: 55.3 ksiDeck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 4500 psi

Haunch: 5 in.Shear Connector: Type: 3/4 in. x 8.0 in. Welded Headed Shear Studs

Quantity: 27 per half-span, one at midspan, 55 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 181.7 kips

Theoretical Moment of Inertia: 3323 in.4

TEST RESULTS Total Load on Joist-Girder at Failure: 176.6 kips

Maximum Total Load on Joist-Girder: 176.6 kipsMidspan Deflection at Failure: 3.36 in.

Experimental Moment of Inertia: 3694 in.4

Mode of Failure: Yielding of bottom chord

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 0.97

Theoretical Max. Total Load on Joist-Girder

LOCATION OF INSTRUMENTATION ON JOIST-GIRDER

Page 59: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

124

Figure B.7.1 Total Load vs. Midspan Deflections of EGL

Figure B.7.2 Total Load vs. Third-Point Deflections of EGL

0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Midspan Deflection (in.)

Tot

al L

oad

(kip

s)

CL Top

CL Bottom

0

20

40

60

80

100

120

140

160

180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Third-Point Deflection (in.)

Tot

al L

oad

(kip

s)

ET Bottom

WT Bottom

Page 60: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

125

Figure B.7.3 Total Load vs. Slip of EGL

Figure B.7.4 Total Load vs. Concrete Strain of EGL

0

20

40

60

80

100

120

140

160

180

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

0

20

40

60

80

100

120

140

160

180

-1100 -1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 100

Concrete Strains ( µε )

Tot

al L

oad

(kip

s)

CL

WT

Page 61: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

126

Figure B.7.5 Total Load vs. Bottom Chord (BC1) Strain of EGL

Figure B.4.6 Total Load vs. Bottom Chord (BC2) Strain of EGL

0

20

40

60

80

100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000 16000

Bottom Chord (BC1) Strain ( µε )

Tot

al L

oad

(kip

s)

BC1(1)

BC1(2)

BC1(3)

BC1(4)

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000 3500

Bottom Chord (BC2) Strain ( µε )

Tot

al L

oad

(kip

s)

BC2(5)

BC2(6)

BC2(7)

BC2(8)

Page 62: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

127

Figure B.7.7 Total Load vs. Bottom Chord (BC3) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-1000 0 1000 2000 3000 4000 5000 6000 7000 8000

Bottom Chord (BC3) Strain ( µε )

Tot

al L

oad

(kip

s)

BC3(9)

BC3(10)

BC3(11)

Page 63: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

128

Figure B.7.8 Total Load vs. Top Chord (TC1) Strain of EGL

Figure B.7.9 Total Load vs. Top Chord (TC2) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1(13)

TC1(14)

TC1(15)

TC1(16)

0

20

40

60

80

100

120

140

160

180

-1500 -1000 -500 0 500 1000 1500 2000

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2(17)

TC2(18)

TC2(19)

TC2(20)

Page 64: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

129

Figure B.7.10 Total Load vs. Top Chord (TC3) Strain of EGL

Figure B.7.11 Total Load vs. Top Chord (TC4) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3(21)

TC3(22)

TC3(23)

TC3(24)

0

20

40

60

80

100

120

140

160

180

-400 -200 0 200 400 600 800 1000

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4(25)

TC4(26)

TC4(27)

TC4(28)

Page 65: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

130

Figure B.7.12 Total Load vs. Top Chord (TC5) Strain of EGL

Figure B.7.13 Total Load vs. Top Chord (TC6) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5(29)

TC5(30)

TC5(31)

TC5(32)

0

20

40

60

80

100

120

140

160

180

-400 -200 0 200 400 600 800 1000

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6(33)

TC6(34)

TC6(35)

TC6(36)

Page 66: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

131

Figure B.7.14 Total Load vs. Diagonal Web (W5R) Strain of EGL

Figure B.7.15 Total Load vs. Diagonal Web (W5) Strain of EGL

0

20

40

60

80

100

120

140

160

180

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400 600

Diagonal Web (W5R) Strain ( µε )

Tot

al L

oad

(kip

s)

W5R(37)

W5R(38)

W5R(39)

W5R(40)

0

20

40

60

80

100

120

140

160

180

-1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5) Strain ( µε )

Tot

al L

oad

(kip

s)

W5(41)

W5(42)

W5(43)

W5(44)

Page 67: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

132

COMPOSITE HAUNCHED JOIST-GIRDER TEST SUMMARY SHEET

GIRDER DESIGNATION: IG TEST DATES: 17-19 December 1996

TEST DESCRIPTIONJoist-Girder: Span: 30’-0” Weight: 89.2 plf

Depth: 25 in. Spacing: 6 ft - 9 in.Top Chord: 2L-4.00x4.00x0.375 Yield Stress: 55.7 ksi

Bottom Chord: 2L-5.00x5.00x0.625 Yield Stress: 53.4 ksiDeck: Type: 2 VL Gage: 18 gaSlab: Total Depth: 5 in. Compressive Strength: 4500 psi

Haunch: 5 in.Shear Connector: Type: 3/4 in. x 8.0 in. Welded Headed Shear Studs

Quantity: 53 per half-span, one at midspan, 107 total

THEORETICAL CALCULATIONSTheoretical Max. Total Load on Joist-Girder: 353.2 kips

Theoretical Moment of Inertia: 6400 in.4

TEST RESULTS Total Load on Joist-Girder at Failure: 334.0 kips

Maximum Total Load on Joist-Girder: 409.1 kipsMidspan Deflection at Failure: 2.28 in.

Experimental Moment of Inertia: 6152 in.4

Mode of Failure: Yielding of bottom chord at the east third point

COMPARISON OF ACTUAL TO THEORETICALMaximum Total Load on Joist-Girder = 1.16

Theoretical Max. Total Load on Joist-Girder

LOCATION OF INSTRUMENTATION ON JOIST-GIRDER

Page 68: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

133

Figure B.8.1 Total Load vs. Midspan Deflections of IG

Figure B.8.2 Total Load vs. Third-Point Deflections of IG

0

50

100

150

200

250

300

350

400

450

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Midspan Deflection (in.)

Tot

al L

oad

(kip

s)

CL Top

CL Bottom

0

50

100

150

200

250

300

350

400

450

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Third-Point Deflection (in.)

Tot

al L

oad

(kip

s)

ET Bottom

WT Bottom

Page 69: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

134

Figure B.8.3 Total Load vs. Slip of IG

Figure B.8.4 Total Load vs. Concrete Strain of IG

0

50

100

150

200

250

300

350

400

450

-0.10 0.00 0.10 0.20 0.30 0.40 0.50

Slip (in.)

Tot

al L

oad

(kip

s)

Slip E1

Slip E2

Slip W1

Slip W2

0

50

100

150

200

250

300

350

400

450

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200

Concrete Strains ( µε )

Tot

al L

oad

(kip

s)

CL

WT

Page 70: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

135

Figure B.8.5 Total Load vs. Bottom Chord (BC1) Strain of IG

Figure B.8.6 Total Load vs. Bottom Chord (BC2) Strain of IG

0

50

100

150

200

250

300

350

400

450

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Bottom Chord (BC1) Strain ( µε )

Tot

al L

oad

(kip

s)

BC1(1)

BC1(2)

BC1(3)

BC1(4)

0

50

100

150

200

250

300

350

400

450

-500 0 500 1000 1500 2000 2500

Bottom Chord (BC2) Strain ( µε )

Tot

al L

oad

(kip

s)

BC2(5)

BC2(6)

BC2(7)

BC2(8)

Page 71: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

136

Figure B.8.7 Total Load vs. Bottom Chord (BC3) Strain of IG

0

50

100

150

200

250

300

350

400

450

-600 -400 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Bottom Chord (BC3) Strain ( µε )

Tot

al L

oad

(kip

s)

BC3(9)

BC3(10)

BC3(11)

BC3(12)

Page 72: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

137

Figure B.8.8 Total Load vs. Top Chord (TC1) Strain of IG

Figure B.8.9 Total Load vs. Top Chord (TC2) Strain of IG

0

50

100

150

200

250

300

350

400

450

-100 0 100 200 300 400 500 600 700 800 900

Top Chord (TC1) Strain ( µε )

Tot

al L

oad

(kip

s)

TC1(13)

TC1(14)

TC1(15)

TC1(16)

0

50

100

150

200

250

300

350

400

450

-400 -200 0 200 400 600 800

Top Chord (TC2) Strain ( µε )

Tot

al L

oad

(kip

s)

TC2(17)

TC2(18)

TC2(19)

Page 73: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

138

Figure B.8.10 Total Load vs. Top Chord (TC3) Strain of IG

Figure B.8.11 Total Load vs. Top Chord (TC4) Strain of IG

0

50

100

150

200

250

300

350

400

450

-1000

-800 -600 -400 -200 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Top Chord (TC3) Strain ( µε )

Tot

al L

oad

(kip

s)

TC3(21)

TC3(22)

TC3(23)

TC3(24)

0

50

100

150

200

250

300

350

400

450

-200 0 200 400 600 800 1000 1200 1400 1600 1800

Top Chord (TC4) Strain ( µε )

Tot

al L

oad

(kip

s)

TC4(25)

TC4(26)

TC4(27)

TC4(28)

Page 74: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

139

Figure B.8.12 Total Load vs. Top Chord (TC5) Strain of IG

Figure B.8.13 Total Load vs. Top Chord (TC6) Strain of IG

0

50

100

150

200

250

300

350

400

450

-400 -300 -200 -100 0 100 200 300 400 500 600 700

Top Chord (TC5) Strain ( µε )

Tot

al L

oad

(kip

s)

TC5(29)

TC5(30)

TC5(31)

TC5(32)

0

50

100

150

200

250

300

350

400

450

-100 0 100 200 300 400 500 600

Top Chord (TC6) Strain ( µε )

Tot

al L

oad

(kip

s)

TC6(33)

TC6(34)

TC6(35)

TC6(36)

Page 75: APPENDIX A SAMPLE CALCULATIONS Load CapacityUsing the Vulcraft Joist Design Program, the deflection of the noncomposite joist under the loading shown in Detail No. 3 was calculated

140

Figure B.8.14 Total Load vs. Diagonal Web (W5R) Strain of IG

Figure B.8.15 Total Load vs. Diagonal Web (W5) Strain of IG

0

50

100

150

200

250

300

350

400

450

-1600 -1400 -1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5R) Strain ( µε )

Tot

al L

oad

(kip

s)

W5R(29)

W5R(30)

W5R(31)

W5R(32)

0

50

100

150

200

250

300

350

400

450

-1200 -1000 -800 -600 -400 -200 0 200 400

Diagonal Web (W5) Strain ( µε )

Tot

al L

oad

(kip

s)

W5(33)

W5(34)

W5(35)

W5(36)


Recommended