+ All Categories
Home > Documents > APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf...

APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf...

Date post: 13-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
54
APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER
Transcript
Page 1: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

APPENDIX H-5

WATER QUALITY IN THE ATHABASCA RIVER

Page 2: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- i -

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION......................................................................................................... 1

2 MODEL DERIVATION ................................................................................................ 2 2.1 INTRODUCTION .............................................................................................................2 2.2 BASIC FORMULATION...................................................................................................2 2.3 ACCOUNTING FOR MULTIPLE SOURCE INPUTS ......................................................3 2.4 ACCOUNTING FOR SOURCE FLOWS..........................................................................5 2.5 ACCOUNTING FOR REACH-SPECIFIC MIXING AND HYDRAULIC

CHARACTERISTICS.......................................................................................................8 2.6 ACCOUNTING FOR WATER WITHDRAWALS............................................................10 2.7 ACCOUNTING FOR DELAYED MIXING OF THE CLEARWATER AND

ATHABASCA RIVERS...................................................................................................10

3 FLOW AND WATER QUALITY INPUTS................................................................... 12 3.1 FLOW CONDITIONS AND WATER RELEASES..........................................................12 3.2 OIL SANDS RELATED FLOWS....................................................................................12 3.3 BACKGROUND FLOWS ...............................................................................................17 3.4 SEWAGE FLOWS .........................................................................................................17 3.5 INFLOW WATER QUALITY ..........................................................................................18

3.5.1 Oil Sands Related Inputs ...............................................................................18 3.5.2 Background Inputs .........................................................................................21 3.5.3 Water Quality of Sewage Effluent ..................................................................21 3.5.4 Licensed Water Withdrawals .........................................................................21

4 MODEL RESULTS.................................................................................................... 23 4.1 ATHABASCA RIVER AT THE FIREBAG RIVER ..........................................................23 4.2 ATHABASCA RIVER AT EMBARRAS..........................................................................23

5 REFERENCES.......................................................................................................... 49

LIST OF TABLES

Table 1 Leopold-Maddock Values and Transverse Mixing Coefficients for the Lower Athabasca River..........................................................................................10

Table 2 Flow Information Used in the Athabasca River Model...........................................13 Table 3 Long-term Population Estimates for the Town of Fort McMurray..........................17 Table 4 Pit Lake Water Quality Used for the Athabasca River Model................................19 Table 5 Licensed Project Withdrawals................................................................................22 Table 6A Predicted Water Quality of the Athabasca River in the Firebag River

Mixing Zone for the Application Case....................................................................25 Table 6B Predicted Water Quality of the Athabasca River in the Firebag River

Mixing Zone for the Application Case....................................................................28 Table 7A Predicted Water Quality of the Athabasca River in the Firebag River

Mixing Zone for the CEA Case ..............................................................................31 Table 7B Predicted Water Quality of the Athabasca River in the Firebag River

Mixing Zone for the CEA Case ..............................................................................34

Page 3: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- ii -

Table 8A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case ..............................................................37

Table 8B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case ..............................................................40

Table 9A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case.........................................................................43

Table 9B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case.........................................................................46

LIST OF FIGURES

Figure 1 Input Nodes and Reach Segmentation for the Athabasca River Model ..................4

Page 4: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 1 -

1 INTRODUCTION

Athabasca River water quality was predicted for each assessment snapshot described in Section 10.2.3 of the EIA Update, under the Baseline, Application and Cumulative Effects Assessment (CEA) cases. The Baseline Case includes all existing and approved projects in the Oil Sands Region, such as Suncor Project Millennium, Suncor South Tailings Pond Project, Suncor North Steepbank Extension, Shell Jackpine Mine – Phase 1, Albian Muskeg River Mine and Mine Expansion, Canadian Natural Horizon Oil Sands Project, the Petro-Canada Fort Hills Oil Sands Project and Imperial Oil, Kearl Oil Sands Project (Suncor 1998; Suncor 2003a; Suncor 2005; CNRL 2002; Golder and Cantox 2002; Shell 1997; Shell 2005; TrueNorth 2001a and Imperial 2005). The Application Case includes the addition of the Northern Lights Mining and Extraction Project (The Project) and serves to examine the incremental effect of this project on the water quality of the Athabasca River. The CEA Case includes all of the previously mentioned projects as well as the planned Total Joslyn North Mine Project, Suncor Voyageur South Project and Shell Athabasca Oil Sands Project (AOSP).

The water quality of the Athabasca River was assessed at two nodes: one at the mouth of the Firebag River, and one just upstream of the Embarras River, which is downstream of all the oil sands projects in the area. Details of the modelling equations used in the Athabasca River Model (ARM) and a description of the model inputs are presented in Sections 1.1.2 and 1.1.3, respectively. Results for the Baseline, Application and CEA cases are presented in Section 1.1.4. Section 1.1.5 provides a discussion of the uncertainty associated with the water quality predictions for the Athabasca River.

Page 5: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 2 -

2 MODEL DERIVATION

2.1 INTRODUCTION

Athabasca River water quality was predicted using a two-dimensional (vertically-averaged), dispersion model, which is based on the analytical solutions to river dispersion equations developed by Fischer et al. (1979). ARM has recently been updated to include reach specific transverse-mixing coefficients, water withdrawals (Golder 2004) and mixing of the Clearwater and Athabasca downstream of Fort McMurray (Golder 2006). The model was run stochastically for this assessment, consistent with the approach used in recent Oil Sands EIAs (Suncor 2005; Shell 2005; Imperial 2005). Stochastic modelling allows for the simulation of average daily in-stream water quality throughout the 39 year flow record (i.e., 1967 to 2005; Environment Canada 2006).

The ARM incorporates the following key assumptions:

• vertical mixing is complete and instantaneous;

• longitudinal dispersion is not included;

• dispersion coefficients are constant across the width of the river; and

• substances released into the Athabasca River remain in the water column (i.e., precipitation, decay, settling and sediment partitioning do not occur).

2.2 BASIC FORMULATION

For a single hypothetical point-source load with negligible flow, the following equation describes the concentration at any location downstream of the source (Fischer et al. 1979):

( ) ( ) ( )∑=

−=

−−

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎥⎥⎦

⎢⎢⎣

⎡ +−−+

⎥⎥⎦

⎢⎢⎣

⎡ −−−+=

Nrj

Nrj

uxxk

BKjj

udWMeCxC

i

2

20

2

20

0

/)( 2exp

2exp,

ξηη

ξηη

πξη (1)

where:

C(x,η) = concentration in Athabasca River (mg/L) CBK = background concentrations in Athabasca River, upstream of Fort

McMurray (mg/L) M = load of constituent from the source release (kg/d) K = decay rate of constituent (s-1)

Page 6: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 3 -

x = longitudinal distance downstream from the upstream boundary of the reach (m)

xi = longitudinal distance of source downstream from the upstream boundary of the reach (m)

u = velocity of Athabasca River at the upstream boundary of the reach (Equation I5-13) (m/s)

d = depth of Athabasca River at the upstream boundary of the reach (Equation 15) (m)

W0 = river width at the upstream boundary of the modelled reach (Equation 14) (m)

ξ = the normalized transverse mixing coefficient (dimensionless) J = the j’th reflection Nr = the number of river bank reflections depends on the rate of transverse

mixing across the river and the distance downstream, x, in the calculation; an Nr=2 was applied

η = the normalized location across the river (normalized by fraction of river flow) (dimensionless)

ηo = the normalized location across the river of the centre of the source (normalized by fraction of river flow) (dimensionless)

The normalized transverse mixing coefficient (ξ ) is:

)0(

2Q

xuEd t=ξ (2)

where:

Et = transverse mixing coefficient of the reach (m2/s) Q(0) = river flow at the upstream boundary of each reach (m3/s)

The width, velocity and depth of the river can be determined from Q(0) using the Leopold-Maddock relationships described in Section 1.1.4. Taking the sum of the concentrations from all upstream sources then provides the predicted water quality at a given location.

2.3 ACCOUNTING FOR MULTIPLE SOURCE INPUTS

The model has the capability of handling both point-source discharges (e.g., stream discharge or mine effluents) and non-point source discharges (e.g., groundwater seepage).

Page 7: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number
Page 8: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 5 -

To accommodate multiple sources, the model was set-up to include a number of discharge points distributed along the length of the river between Fort McMurray and just upstream of the Embarras River (Figure 1). Each potential water release from existing or approved projects and tributary flows was routed through one of these discharge nodes. The characteristics of each node were then selected to reflect the type of flow passing through that node. Tributary inflows and direct surface discharges were considered as line sources anchored to the appropriate river bank, with the width of each line set to reflect the amount of flow passing through the node. In contrast, seepages were treated as exponential line sources stretching from the appropriate river bank to half the river width. The attributes assigned to line sources are discussed in more detail in Section 1.1.4.

2.4 ACCOUNTING FOR SOURCE FLOWS

The Athabasca River Model contains adjustments to the basic Fischer equations to accurately approximate the initial mixing of small source flows by distributing the loading for the source along a short lateral segment of the river (i.e., it is represented as a line source with the width of the line proportional to the flow of the discharge). The width of the line for source i (wi [dimensionless]) can be user defined but has a minimum width (wmin i [dimensionless]) given by:

( )xsii QQw /min = (3)

where:

Qsi.=.flow rate of source i (m3/s) Q(x).=.flow in Athabasca River of the point being modelled (m3/s)

Line sources with greater width than the minimum width may be specified, for example, when a release has a multi-port diffuser.

A line-source release is treated as an infinite number of point sources along a distance across the river equal to the line source’s width. An equation for calculating river concentrations downstream of a line source can, therefore, be derived by integrating the point-source equation over the width of the line source and accounting for the finite width of a river by reflecting the plume at both river bank boundaries. A line source with different flows along the line, such as a zone of influent groundwater seepage, can be represented as a series of line sources with differing flows. The general equation describing the concentration downstream of several sources is:

Page 9: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 6 -

( )

( )( ) ( )( )

( )( ) ( )( )∑ ∑∑= −=

−−

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛ −−−+⎟⎟⎠

⎞⎜⎜⎝

⎛ −−++

⎟⎟⎠

⎞⎜⎜⎝

⎛ +−−+⎟⎟⎠

⎞⎜⎜⎝

⎛ +−+

+=s r

r

itiN

i

N

Nj

i

hihi

i

hihi

i

hihi

i

hihi

uxxkN

h

ohiBK jrjr

jrjrC

CxC1

/

1 2erf

2erf

2erf

2erf

e2

),(

ξηη

ξηη

ξηη

ξηη

η

(4)

where:

Ns = the number of sources upstream of the modelled location Nti = number of line segments for the i’th source i = the i’th source h = the h’th segment in a series of line sources Cohi = initial concentration of h’th section of the i’th source, fully vertically

mixed over the line source segment river flow fraction (Equation I5-5) rhi = half width of the line source segment (whi) normalized by fraction of river

flow (i.e., rhi= whi/2) (dimensionless) ηhi = the normalized location across the river of the centre of the h’th source

(dimensionless) ξI = the normalized transverse mixing coefficient for a line source. (Equation 7)

(dimensionless)

The above line source equation has been normalized by the fraction of river flow (i.e., the lateral distance is represented by the fraction of total river flow). The initial concentration for a line source is calculated by mixing the line source flow with the river flow over the width of the line source:

( )xhi

sishiohi Cr2

CqC

'= (5)

where:

qshi = the line source flow rate (Equation 10) (m3/s) 'C si = the line source concentration adjusted to background concentration

(Equation 6) (mg/L)

The concentration of the source is adjusted for the background concentration in the Athabasca River:

BKsisi CCC −=' (6)

where:

Csi = the line source concentration that is assumed to be the same for each line source segment, although it need not be (mg/L)

Page 10: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 7 -

The normalized transverse mixing coefficient is given by:

six

ti QQ

xuEd−

=)(

2ξ (7)

The value of d, and u are determined from Q(0) as outlined below in Equation (13) to Equation (15).

To account for changes in seepage rate with distance from shore, a series of line sources are used with varying initial concentrations. The initial concentrations are determined by an exponential function and are distributed in such a way that the total seepage mass of each constituent is conserved. The seepage rate from the bank to the centre of the river was, therefore, assumed to follow the following form of decay (Shaw and Prepas 1990):

ηQksisi eKQq −= 1' (8)

where:

qsi’ = line source segment seepage per unit η (dimensionless) K1 = a scaling constant (dimensionless) kQ = exponential decay constant (0.1 used as default) (dimensionless)

Integrating this functional form for the seepage rate over the half width of the river and normalizing by the total seepage, the seepage flow fractions between ηa and ηb (i.e., lateral locations of the seepage segment) can be expressed as:

Q

bQaQ

k

kk

si

ab

Qq

5.0e1ee

−−

−−

=ηη

(9)

where:

qab = line source segment seepage between river flow fraction ηa and ηb (m3/s) Qsi = total seepage to river (m3/s)

The seepage for each segment can then be expressed in terms of the line source segment centre, ηhi and its half width, rhi:

Q

hihiQhihiQ

k

rkrk

si

shi

Qq

5.0

)()(

e1ee

+−−−

−−

=ηη

(10)

Page 11: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 8 -

2.5 ACCOUNTING FOR REACH-SPECIFIC MIXING AND HYDRAULIC CHARACTERISTICS

The ARM is an analytical model that does not require segmentation of the river in any form as required by other water quality models, such as WASP and HSPF. However, the analytical solutions in the model do not allow lateral mixing rates and hydraulic characteristics to vary along the modelled segment of the Athabasca River. To allow for this variation, the lower Athabasca River was divided into five reaches, which are each modelled separately (Golder 2004). Reach boundaries were selected based on a tracer dye study of the lower Athabasca River that was completed by Trillium and Hydrographics (2003), and the Leopold-Maddock values and transverse mixing coefficient assigned to each reach were assumed to remain constant throughout each individual reach. The reach boundaries are shown in Figure 1.

To account for releases that occur upstream of a given reach boundary, the following steps were taken:

• Each reach boundary was defined as a lateral transect of ten equally spaced segments lying end to end across the river width.

• Moving in a downstream direction, concentrations were estimated for each segment using the equations outlined in Section 1.1.3. The derived concentration information was then used to calculate loads to the river for segments at the upstream boundary of the next reach.

• The reach in question was modelled using a line source at the upstream boundary, with the load corresponding to each segment equally distributed across the segment.

The transverse, or lateral, mixing coefficient and the Leopold-Maddock coefficients for each reach were estimated based on the results of the 2003 tracer dye study (Trillium and Hydrographics 2003). In the tracer dye study, the dimensionless transverse mixing coefficient (β) was scaled to the hydraulic radius of the river to give the following relationship between the transverse mixing coefficient and the dimensionless form:

*RUt βε = (11)

where:

t = the transverse mixing coefficient (m2/s) U* = the shear velocity (Equation 12) (m/s) R = the hydraulic radius (m)

Page 12: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 9 -

The shear velocity is given by:

gRSU =* (12)

where:

g = the acceleration due to gravity (9.81 m/s2) S = the water surface slope of the river (dimensionless).

For rivers where the width is much larger than the depth, the hydraulic radius can be approximated by: R = d/2 for ice-cover conditions and d for open-water conditions, where d is the average river depth (m) (Fisher et al. 1979).

Two different approaches to estimate the transverse mixing coefficient were used as a component of the tracer dye study (Trillium and Hydrographics 2003). The reach-averaged approach uses average reach hydraulic characteristics (as does ARM) and model assumptions similar to ARM; therefore, the reach-averaged transverse mixing coefficients are more appropriate for use in ARM. The dimensionless mixing coefficients for each reach are presented in Table 1.

Leopold-Maddock relationships were used to estimate the hydraulic characteristics of the Athabasca River under different flow conditions. The relationships take the following form:

vb

vQav = (13)

wb

wQaw = (14)

db

d Qad = (15)

where:

Q = the river discharge (m3/s) v = the average river velocity (m/s) w = the average width (m) d = the average depth (m)

The other parameters (av, bv, aw, bw, ad, and bd) are the Leopold-Maddock coefficients. The coefficients were derived for each reach of the Athabasca River using the HEC-RAS model developed for each of the reaches (Trillium and Hydrographics 2003). Hydraulic characteristics were predicted for a range of river flows, and regression equations were used to estimate the Leopold-Maddock coefficients for the five reaches. Table 1 shows the Leopold-Maddock

Page 13: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 10 -

coefficients, the dimensionless mixing coefficient and the slope of the river for each of the five reaches during both ice cover and open water conditions.

Table 1 Leopold-Maddock Values and Transverse Mixing Coefficients for the Lower Athabasca River

Reach av bv ad bd aw bw

Dimensionless Transverse

Mixing Coefficient (β)

River Slope

Open Water Fort McMurray to McLean Creek 0.06 0.39 0.11 0.44 42 0.17 2.4 0.00039 McLean Creek to Muskeg River 0.11 0.23 0.14 0.54 40 0.24 0.6 0.00014 Muskeg River to Ells River 0.18 0.25 0.14 0.40 22 0.35 1.3 0.00012 Ells River to Firebag River 0.12 0.24 0.12 0.49 35 0.27 2.4 0.00011 Firebag River to Embarras 0.18 0.18 0.25 0.28 30 0.54 2.7 0.00014 Ice-Cover Fort McMurray to McLean Creek 0.10 0.39 0.08 0.43 25 0.18 2.4 0.00039 McLean Creek to Muskeg River 0.19 0.26 0.09 0.51 21 0.23 0.6 0.00014 Muskeg River to Ells River 0.25 0.24 0.12 0.40 17 0.37 1.3 0.00012 Ells River to Firebag River 0.13 0.32 0.11 0.43 24 0.24 2.4 0.00011 Firebag River to Embarras 0.13 0.31 0.07 0.49 25 0.21 2.7 0.00014

Source Athabasca River Model Update and Reach Segmentation (Golder 2004).

2.6 ACCOUNTING FOR WATER WITHDRAWALS

The model was configured to include reach specific water withdrawals from existing, approved and planned oil sands developments. The sum of all the licensed withdrawals for a given reach was calculated and subtracted from the reach flow. Withdrawals were not included for the pre-development and far-future scenarios. Water withdrawals that were considered for the Project are presented in Section 1.2.

2.7 ACCOUNTING FOR DELAYED MIXING OF THE CLEARWATER AND ATHABASCA RIVERS

Background water quality was defined using in-stream monitoring data collected from the Athabasca River just upstream of Fort McMurray and from the mouth of the Clearwater River. The contribution of upstream pulp mills and municipalities were thus accounted for in the background data. The Athabasca River Model boundary was set downstream of Fort McMurray. However, AENV’s long-term water quality monitoring site is situated upstream of Fort McMurray, and does not account for inflow from the Clearwater River. A modelling approach was used to estimate concentrations in the Athabasca River immediately downstream of the Clearwater River by combining the continuous daily flow and concentrations from the Clearwater and Athabasca rivers.

Page 14: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 11 -

The approach that was developed accounts for the delayed mixing that occurs between the Athabasca and Clearwater rivers (Golder 2006). The upstream boundary was divided into ten lateral segments. Five to nine segments were assigned Athabasca River water quality depending on the relative flows of the two rivers, one segment was assumed to be a transitional area where the Athabasca and Clearwater rivers begin to mix, and the remaining segments were assigned Clearwater River water quality. The concentration in the transitional segment was calculated to ensure that the average concentration across all segments was equal to the concentration calculated assuming the two rivers were fully mixed. The fully mixed concentration was calculated using the following equation:

( )( )D

CCCDUP Q

QCQQCC

** +−=

(16)

where:

CP = predicted concentration of substance ‘x’ in the Athabasca River downstream of the Clearwater River

CU = concentration of substance ‘x’ in the Athabasca River upstream of Fort McMurray [WDS stations AB07CC0020/0030/DA1470 (AENV 2006)]

QD = flow in the Athabasca River downstream of Fort McMurray [HYDAT station 07DA001 (Environment Canada 2006)]

CC = concentration of substance ‘x’ in the Clearwater River [Golder (2002, 2003), RAMP (2004) and WDS stations: AB07CD0100/0210 (AENV 2006)]

QC = flow in the Clearwater River [HYDAT station 07CD001 (Environment Canada 2006)]

Page 15: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 12 -

3 FLOW AND WATER QUALITY INPUTS

3.1 FLOW CONDITIONS AND WATER RELEASES

3.2 OIL SANDS RELATED FLOWS

Flow information included in ARM from existing, approved and planned projects in each time snapshot are summarized in Table 2. Flow rates for each inflow to the Athabasca River from oil sands developments were assigned using the following assumptions:

• direct seepage flows from existing, approved and planned developments were included as constant flows as reported in previous EIAs;

• pit lake outflows were entered as average annual flows as reported in previous EIAs; and

• indirect releases via tributaries were entered as either daily flows generated by either HSPF or Goldsim (Syncrude 2006; Shell 2005; Suncor 2007) or direct releases ignoring tributary flow (TrueNorth 2001a; CNRL 2002);

In previous EIAs (e.g. Imperial 2005) output from small streams models was used, whenever available, as input to ARM. This approach was revised for the present assessment, because the results from the small streams models presented in previous EIAs may not include the most up-to-date estimates of mine water quality and/or lack predictions for all of the parameters considered in the present assessment. For the revised approach, process water inflows that were inputs to small stream models were included as direct inflows to the Athabasca River. This approach is considered to be conservative, as it does not consider any of the attenuation or decay that is included in the small streams models. Three exceptions to this approach were for Beaver Creek, the Muskeg River and Poplar Creek. For each of these inflows, recent HSPF or Goldsim model output was available and was used to represent inflows from these tributaries to the Athabasca River.

Page 16: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 13 -

Table 2 Flow Information Used in the Athabasca River Model Flow (m3/s)

Node Source Flow Type Assigned Water Chemistry

Water Chemistry Reference Background 2024 2038

Initial Pit Lake

DischargeFar-

future

N1 Fort McMurray Sewage Fort McMurray sewage Ft. Mc. sewage Table A-31 estimated as outlined in Section I5-3.2.1

N2 McLean Creek Pit Lake Discharge Millennium Pit Lake Table I5-4 0 0 0.0012 0.0012 0.35 Seepage From STP process affected seepage Table A-30 0 0 0 0 0.02

N34 Poplar Creek surface discharge Voyageur South Model output Suncor (2007) time series(c)

N34a Voyageur South Seepage Deep basal Seepage process affected seepage Table A-30 0 0 0 0 0.011

direct discharge surficial aquifer (Suncor) Table A-30 0 0.0086 0.0015 0.0015 0.0015 sand seepage process affected seepage Table A-30 0 0 0.01 0.01 0 N5a Millennium seepage CT seepage process affected seepage Table A-30 0 0.0036 0.0018 0.0018 0.0018

N4 Shipyard Lake (via) Suncor basal seepage process affected seepage Table A-30 0 0.0086 0.0038 0.0038 0.0038 N6 Pond 4 &5 Suncor site drainage Table A-32 0 0.016 0 0 0

Suncor Lease 86/17 - South Mine Drainage Pond 5 Suncor site drainage Table A-32 0 0.03 0.04 0.04 0.04

Pond 1 & 2/3 Suncor site drainage Table A-32 0 0 0.039 0.039 0.039 N6a Pond 2/3 process affected seepage Table A-30 0 0. 0.0057 0.0057 0.0057

Suncor Lease 86/17 - South Mine Drainage (seepage)

Pond 5 Flue Gas Desulfurization Pond Suncor FGD Table A-34 0 0.01 0.00008 0.00008 0.00008

N7 Suncor Lease 86/17 - Tar Island Dyke Seepage

Pond 1 process affected seepage Table A-30 0 0.065 0.065 0.065 0.065

N8 Wastewater Discharge Point wastewater system Suncor wastewater Table A-36 0 0.285 0.285 0.285 0

cooling pond effluent cooling pond effluent Table A-33 0 0.118 0.118 0.118 0 south terrace Suncor site drainage Table A-32 0 0 0.0098 0.0098 0.0098 river side Suncor site drainage Table A-32 0 0 0.001 0.001 0.001 Pond 2/3 process affected seepage Table A-30 0 0.005 0 0 0 river side seepage process affected seepage Table A-30 0 0.0013 0 0 0 Pond 2/3 process affected seepage Table A-30 0 0 0.001 0.001 0.001 riverside CT process affected seepage Table A-30 0 0 0.0118 0.0118 0.0118

N8a Wastewater Discharge Point-seepage

Pond 2/3 CT process affected seepage Table A-30 0 0 0.011 0.011 0.011

Page 17: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 2 Flow Information Used in the Athabasca River Model (continued)

- 14 -

Flow (m3/s)

Node Source Flow Type Assigned Water Chemistry

Water Chemistry Reference Background 2024 2038

Initial Pit Lake

DischargeFar-

future

N9 Steepbank River surface discharge Steepbank River Tables A-16 to A19 time series(a) muskeg dewatering muskeg dewatering Table A-37 0 0.205 0 0 0 basal seepage process affected seepage Table A-30 0 0 0 0 0.0066 Pit Lake discharge North Steepbank Pit Lake Table I5-4 0 0 0.088 0.088 0.088 Millennium CT Seepage process affected seepage Table A-30 0 0 0 0 0.001 Tailings Seepage process affected seepage Table A-30 0 0 0 0 0.004

Pit Lake Seepage process affected seepage Table A-30 0 0 0 0 0.0008

N9a Steepbank River Seepage seepage process affected seepage Table A-30 0 0.0011 0.0011 0.0011 0.0013

mid-plant drainage Suncor site drainage Table A-32 0 0.00034 0.00034 0.00034 0

N10 Mid-Plant Drainage Discharge Point

sewage Suncor sewage effluent Table A-35 0 0.004 0.004 0.004 0 N11 Pond 4 Seepage Pond 4 process affected seepage Table A-30 0 0.001 0.001 0.001 0.001 N12 Pond 5 Seepage Pond 5 process affected seepage Table A-30 0 0.0035 0.0047 0.0047 0.0047

N13 North Mine Drainage Discharge Point north terrace Suncor site drainage Table A-32 0 0.014 0.010 0.010 0.010

north mine drainage Suncor site drainage Table A-32 0 0.0035 0.0038 0.0038 0.0038 N13a

North Mine Drainage Discharge Point (seepage)

north terrace Flue Gas Desulphurization process affected seepage Table A-30 0 0.018 0.019 0.019 0.019

N14 Pond 6 Drainage drainage Suncor site drainage Table A-32 0 0.054 0.03 0.03 0.03

N14a Pond 6 Drainage (seepage) Pond 5 CT process affected seepage Table A-30 0 0.0068 0.0008 0.0008 0.0008

N15 Pond 6 Seepage Pond 6 seepage process affected seepage Table A-30 0 0.0068 0.0036 0.0036 0.0036

N35 Beaver Creek Mildred Lake EPL discharge Beaver Creek Table I5-4 0 0 0.088 0.088 0.088

N35a Beaver Creek Seepage

Mildred Lake EPL Seepage process affected seepage Table A-30 0 0.012 0.012 0.012 0.012

N16 Muskeg River surface discharge Muskeg River Shell (2005)(d) time series(b) N17 Shell Seepage tailings pond seepage muskeg dewatering Table A-37 0 0.0009 0 0 0 process affected seepage Table A-30 0 0 0.014 0.014 0.014

Page 18: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 2 Flow Information Used in the Athabasca River Model (continued)

- 15 -

Flow (m3/s)

Node Source Flow Type Assigned Water Chemistry

Water Chemistry Reference Background 2024 2038

Initial Pit Lake

DischargeFar-

future

N17a Deep Seepage Jackpine CT seepage process affected seepage Table A-30 0 0 0 0 0.003 MRM sand seepage process affected seepage Table A-30 0 0 0 0 0.013 Aurora and Kearl sand seepage process affected seepage Table A-30 0 0 0 0 0.012

Jackpine sand seepage process affected seepage Table A-30 0 0 0 0 0.0022

surface discharge Mackay River Tables A-24 and A-25 time series(a)

N3 MacKay River Pit Lake discharge Mildred Lake North EPL Table I5-4 0 0 0.088 0.088 0.088

N36 Total Deep Basal Seepage Deep basal Seepage process affected seepage Table A-30 0 0.013 0 0 0

N18 Isadore's Lake surface discharge Isadore's Lake Shell (2005) time series(b) CT seepage process affected seepage Table A-30 0 0 0 0 0.0026 sand seepage process affected seepage Table A-30 0 0 0 0 0.0081 wetlands wetlands Table I5-4 0 0 0.046 0.046 0.046 surface discharge Ells River Tables A-20 to A-23 time series(a) Total Pit Lake CNRL 2 Pit Lake Table I5-4 0 0 0 0.81 0.81 Total Muskeg dewatering muskeg dewatering Table A-37 0 0.005 0 0 0

N27 Ells River

Total Pit Lake Seepage process affected seepage Table A-30 0 0.005 0.005 0 0

N19 Syncrude Pit Lake Discharge

Syncrude overburden dewatering muskeg dewatering Table A-37 0 0 0.025 0.025 0.025

Syncrude Pit Lake discharge Syncrude Pit Lake Table I5-4 0 0 0.17 0.17 0.17

Syncrude sand seepage process affected seepage Table A-30 0 0 0.004 0.004 0.004

N19a Syncrude Seepage Syncrude basal aquifer seepage process affected seepage Table A-30 0 0 0.006 0.006 0.006

Syncrude CT seepage process affected seepage Table A-30 0 0 0.004 0.004 0.004 Waste Seepage process affected seepage Table A-30 0 0 0.00007 0.00007 0.00007 Pit Lake 1 Seepage process affected seepage Table A-30 0 0 0.00012 0.00012 0.00012

surficial aquifer surficial aquifer Table A-28 0 0 0.000003 0.000003 0.000003

N28 Tar River

Pit Lake 1 discharge CNRL 1 Pit Lake Table I5-4 0 0 0.032 0.032 0.032 CNRL basal seepage 1 process affected seepage Table A-30 0 0 0.07 0.07 0.035 CNRL basal seepage 2 muskeg dewatering Table A-37 0 0 0 0 0.0245 N28a CNRL Seepage CNRL basal seepage 3 process affected seepage Table A-30 0 0 0.00063 0.00063 0.011

Page 19: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 2 Flow Information Used in the Athabasca River Model (continued)

- 16 -

Flow (m3/s)

Node Source Flow Type Assigned Water Chemistry

Water Chemistry Reference Background 2024 2038

Initial Pit Lake

DischargeFar-

future

N21 Fort Creek Aurora muskeg drainage muskeg dewatering Table A-37 0 0.14 0 0 0 Aurora CT seepage process affected seepage Table A-30 0 0 0.004 0.004 0.004

N32 CNRL Muskeg/ Overburden Dewatering

muskeg/ overburden dewatering muskeg dewatering Table A-37 0 0.028 0 0 0

N22 Fort Creek 2 South Pit Lake (Area 7) Fort Hills South Pit Lake Table I5-4 0 0.08 0.13 0.13 0.13

N22a Fort Creek 2 Seepage

thickened tailings seepage process affected seepage Table A-30 0 0.004 0.004 0.004 0.004

N23 Fort Creek 3 overburden dewatering muskeg dewatering Table A-37 0 0.008 0 0 0

N23a Fort Creek 3 Seepage

thickened tailings seepage process affected seepage Table A-30 0 0 0.0088 0.0088 0.0088

N24 Fort Creek 4 (via) tailings management area seepage process affected seepage Table A-30 0 0.001 0 0 0

Tailing Seepage process affected seepage Table A-30 0 0 0.031 0.031 0.031 Seepage from waste areas process affected seepage Table A-30 0 0 0.0002 0.0002 0.0002

sand seepage process affected seepage Table A-30 0 0 0.0003 0.0003 0.0003Deep basal Seepage process affected seepage Table A-30 0 0 0.00012 0.00012 0.00012

N33 CNRL Diversion Channel

CNRL 2 Pit Lake Discharge CNRL 2 Pit Lake Table I5-4 0 0 0.28 0.28 0.28

N25a Susan Lake 1 Seepage

thickened tailings seepage process affected seepage Table A-30 0 0 0 0 0.0054

N26 Susan Lake 2 North Pit Lake (Area 8) Fort Hills North Pit Lake Table I5-4 0 0 0 0 0.17 N31 Firebag River surface discharge Firebag River Appendix I3 time series

(a) Based on monitored flow data from Environment Canada (2006). (b) Flows were included as presented in Shell (2005). (c) Flows were included as presented in Suncor (2007).

Page 20: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 17 -

3.3 BACKGROUND FLOWS

Although background flows in the Athabasca, Clearwater, MacKay, Steepbank and Ells rivers were obtained from measured flow records (Environment Canada 2006), daily information was not available for the entire 39 year simulation period. Missing data points were filled while preserving the statistical distribution of the existing daily data for each station, as well as the regional cross-correlations between nearby stations. A stochastic time series was first developed by randomly sampling the distribution derived from the historical data to develop a time series. A desired auto-regressive lag and cross-site correlation structure was then imposed by systematically re-ordering the time series of previously generated data, such that the statistical properties of the generated and historical flow series were similar. This process was also undertaken on an annual basis to preserve the annual auto-correlation as well as the auto-correlation between the start and end days of two subsequent years. The simulated time series was used to fill in gaps in the historical data series. The statistical properties of the available historical series (i.e., mean, standard deviation and distribution type) were preserved once the “in-filling” was accomplished.

3.4 SEWAGE FLOWS

The potential influence of the Fort McMurray domestic wastewater treatment plant was also accounted for in the model through the inclusion of a point source release at the upstream boundary of the model. A relationship between sewage flow and population size was derived using 1996 and 2001 sewage flow information from the Regional Municipality of Wood Buffalo and population projection for Fort McMurray during the same period. An approximate per capita generation rate of 300 L/person/day was derived from this relationship. Estimates of population growth in Fort McMurray for Baseline, Application and CEA cases are summarized in Table 3.

Table 3 Long-term Population Estimates for the Town of Fort McMurray

Population Year

Baseline Application CEA

current conditions 72,000 72,000 72,000 2024 94,000 96,000 106,000 2038 94,000 96,000 106,000 initial pit lake discharge 94,000 96,000 106,000 far-future 94,000 96,000 106,000

Page 21: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 18 -

3.5 INFLOW WATER QUALITY

3.5.1 Oil Sands Related Inputs

Each Athabasca River inflow presented in Table 2 was assigned an appropriate water quality profile. With two exceptions, the profiles were developed following the approach outlined in Section 1.2. The first exception included waters released through the Muskeg River, Beaver Creek and Poplar Creek. Water quality for these three systems was defined using the daily concentrations predicted in previous studies (Shell 2005; Syncrude 2006; Suncor 2007)

The second exception involved pit lake water quality, which was defined using the predictions from previously completed EIAs. Unlike other inflows, the quality of the pit lake outflows was assumed to be constant. A summary of the different pit lake water qualities used in ARM is presented in Table 4.

Page 22: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 19 -

Table 4 Pit Lake Water Quality Used for the Athabasca River Model

Beaver Creek(a) CNRL EPL1(b) CNRL EPL2(b) Fort Hills

North(c) Fort Hills South(c) Mildred

Lake North EPL(d)

North Steepbank Pit Lake(e) Millennium Pit Lake(f) Synenco EPL2(g) Synenco EPL3(g) Muskeg River Mine

Wetlands(h) Parameter

Far 2053 Far 2053 Far Far 2024 2040 Far Far 2040 Far 2058 Far 2052 Far 2052 Far 2054 Far

Synenco Northern Lights snapshots where water quality was used

2038 Initial Pit Lake Discharge Far-future

2038 Initial Pit Lake Discharge

Far-future 2038 Initial Pit Lake Discharge

Far-future Far-future 2024 2038 Initial Pit Lake Discharge

Far-future Far-future 2038 Initial Pit Lake Discharge

Far-future

2038 Initial Pit Lake Discharge

Far-future

2038 Initial Pit Lake Discharge

Far-future 2038 Initial Pit Lake Discharge

Far-future 2038 Initial Pit Lake Discharge

Far-future

aluminum (Al) 0.7 0.089 0.088 1.7 0.7 0.13 0.27 0.2 0.1 0.7 0.43 0.71 0.48 0.53 0.44 0.44 0.41 0.41 0.052 0.038 ammonia 0.092 0.0023 0.0017 0.017 0.0083 0.05 0.21 0.17 0.05 0.024 0.023 0.0045 0.0022 0 0.0083 0.0083 0.0083 0.0083 0.046 0.011 antimony (Sb) 0.0007 0.00034 0.00034 0.0012 0.0007 0.0002 0.001 0.0006 0.0002 0.0007 0.0034 0.0017 0.0005 0.0004 0.0018 0.0018 0.0018 0.0018 0.0017 0.00079 arsenic (As) 0.0032 0.0013 0.0013 0.0035 0.0024 0 0.0013 0.001 0.001 0.006 0.0028 0.0015 0.0014 0.001 0.0066 0.0067 0.0064 0.0063 0.0024 0.0011 barium (Ba) 0.077 0.069 0.069 0.081 0.077 0.07 0.17 0.17 0.17 0.077 0.094 0.061 0.06 0.05 0.064 0.064 0.064 0.064 0.08 0.045 beryllium (Be) 0.00039 0.0000057 0.0000017 0.00068 0.00039 0.0003 0.0008 0.0006 0.0004 0.00039 0.0012 0.00099 0.001 0.001 0.00073 0.00072 0.00073 0.00073 0.00073 0.00047 boron (B) 0.56 0.14 0.14 0.4 0.38 0.22 0.56 0.38 0.17 1.3 1.4 0.62 0.68 0.37 0.46 0.46 0.55 0.55 0.94 0.31 cadmium (Cd) 0.0024 0.00038 0.00038 0.0045 0.0024 0.0003 0.0006 0.0005 0.0001 0.0024 0.0011 0.0013 0.0013 0.0014 0.036 0.036 0.033 0.0032 0.00061 0.00033 calcium 41 66 66 43 58 56 75 78 79 55 36 55 47 53 48 49 48 48 46 28 chloride 185 29 24 36 32 5.0 14 8.0 4.0 252 45 41 38 35 41 48 39 42 22 7.9 chromium (Cr) 0.0048 0.0027 0.0027 0.0078 0.0048 0.0005 0.0021 0.0018 0.0015 0.0048 0.0047 0.0023 0.0016 0.0015 0.0092 0.0092 0.009 0.0091 0.0035 0.002 cobalt (Co) 0.0067 0.0021 0.0021 0.012 0.0067 0.0004 0.001 0.001 0.0008 0.0067 0.0073 0.0037 0.0045 0.003 0.0016 0.0016 0.0016 0.0016 0.0011 0.00052 copper (Cu) 0.0043 0.002 0.002 0.0071 0.0043 0.0008 0.0025 0.0018 0.0011 0.0043 0.005 0.0029 0 0 0.0044 0.0045 0.0043 0.0044 0.0025 0.0012 dissolved organic carbon 33 37 37 32 39 12 18 16 12 36 36 29 29 25 39 39 39 39 28 15

iron (Fe) 1.9 1.7 1.7 2.0 1.7 0.4 0.58 0.58 0.49 0.63 0.5 1.1 1.2 1.3 0.87 0.86 0.8 0.79 0.74 0.62 lead (Pb) 0.0059 0.00085 0.00082 0.011 0.0059 0.0007 0.0024 0.0019 0.0016 0.0059 0.0029 0.0012 0 0 0.0011 0.0011 0.0014 0.0014 0.0013 0.00098 magnesium 15 23 23 15 21 12 20 19 17 20 11 15 14 15 15 15 15 15 14 8.1 manganese (Mn) 0.15 0.068 0.067 0.074 0.078 0.07 0.16 0.15 0.15 0.045 0.07 0.074 0.083 0.092 0.032 0.032 0.03 0.03 0.11 0.079 mercury (Hg) 0.000025 0.0000054 0.0000053 0.000022 0.000013 0.000012 0.000059 0.000055 0.000053 0.000013 0.000044 0.000039 0 0 0.00044 0.00066 0.00061 0.00041 0.000031 0.000019molybdenum (Mo) 0.0094 0.00054 0.00053 0.035 0.01 0.026 0.14 0.068 0.013 0.019 0.36 0.15 0.15 0.04 0.33 0.33 0.35 0.35 0.29 0.09 labile - naphthenic acids 1.0 0.008 0.0022 0.22 0.089 0.57 2.0 1.8 1.5 0.28 0.37 0.055 0 0 0 0 0 0 1.9 0.36

refractory - naphthenic acids 4.2 0.61 0.58 6.7 4.5 2.6 5.2 3.8 3.1 8.1 14 6.0 0.083 0.065 1.1 1.2 1.3 1.4 7.3 2.5

nickel (Ni) 0.0073 0.0029 0.0029 0.014 0.0073 0.002 0.005 0.004 0.003 0.0073 0.0079 0.0041 0.01 0 0.0096 0.0096 0.01 0.01 0.005 0.0026 potassium 5.0 3.6 3.6 5.4 5.0 2.0 6.0 4.0 3.0 5.0 7.7 4.2 4.9 3.8 2.3 2.2 3.0 3.0 7.0 2.5 selenium (Se) 0.00058 0.00033 0.00032 0.0017 0.00091 0.00061 0.0033 0.0017 0.0004 0.00075 0.0011 0.00062 0 0 0.00029 0.00029 0.00031 0.00031 0.0011 0.00053 silver (Ag) 0.000049 0.000015 0.000013 0.000069 0.000049 0 0 0 0 0.000049 0.00007 0.00003 0 0 0.00011 0.00011 0.00011 0.00011 0.00016 0.000094sodium 211 47 43 113 109 53 102 78 35 346 195 106 121 89 213 208 225 227 156 52 strontium (Sr) 0.25 0.2 0.2 0.27 0.22 0.18 0.42 0.31 0.23 0.47 0.64 0.38 0.46 0.26 0.74 0.74 0.79 0.78 0.55 0.21 sulphate 91 33 33 77 48 23 47 36 20 199 156 87 57 32 18 17 24 24 205 66 sulphide 0.00029 0.00097 0.00069 0.0035 0.0012 0 0.003 0.002 0.002 0.000026 0.0024 0.00039 0 0 0.00061 0.000006 0.00018 0.0028 0.00017 0.000082tainting potential 0.17 0.022 0.0066 0.21 0.17 0 0 0 0 0.17 0.15 0.04 0 0 0.17 0.17 0.17 0.17 0.23 0.043 total dissolved solids 785 393 381 544 551 300 568 487 390 1257 799 543 551 447 137 136 132 132 637 260

nitrogen, total 3.6 2.2 2.2 3.9 3.6 1.4 4.4 2.8 1.3 3.6 5.9 2.8 3.4 2.3 3.6 3.6 3.6 3.6 2.2 1.0 total phenolics 0.00019 0.00037 0.00033 0.00088 0.00035 0.002 0.003 0.002 0.002 0.000017 0.00072 0.00012 0 0 0.00035 0.00035 0.000001 0.000001 0.0001 0.000052phosphorus, total 0.18 0.18 0.18 0.17 0.18 0.03 0.061 0.056 0.045 0.18 0.08 0.093 0.087 0.092 0.18 0.18 0.18 0.18 0.058 0.039 toxicity - acute 0.13 0.0011 0.00029 0.083 0.02 0.04 0.24 0.16 0.02 0.043 0.22 0.025 0.009 0.004 0.02 0.02 0.02 0.02 0.12 0.023 toxicity - chronic 0.15 0.002 0.00033 0.086 0.024 0.07 0.54 0.43 0.21 0.044 0.21 0.024 0.006 0.003 0.024 0.024 0.024 0.024 0.29 0.053 vanadium (V) 0.0043 0.00096 0.00093 0.0087 0.0043 0.004 0.021 0.011 0.003 0.0043 0.011 0.0067 0.007 0.004 0.003 0.0029 0.0029 0.003 0.0087 0.003 zinc (Zn) 0.031 0.021 0.021 0.033 0.031 0.022 0.027 0.024 0.02 0.031 0.029 0.026 0.03 0.031 0.016 0.016 0.017 0.016 0.022 0.015 PAH Group 1 0.00035 0 0 0.0024 0.00035 0.025 0.11 0.068 0.017 0.00035 0.0026 0.00034 0.0005 0.0002 0.0076 0.0073 0.009 0.0091 0.00063 0.00013

Page 23: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 Table 4 Pit Lake Water Quality Used for the Athabasca River Model (continued)

- 20 -

Beaver Creek(a) CNRL EPL1(b) CNRL EPL2(b) Fort Hills

North(c) Fort Hills South(c) Mildred

Lake North EPL(d)

North Steepbank Pit Lake(e) Millennium Pit Lake(f) Synenco EPL2(g) Synenco EPL3(g) Muskeg River Mine

Wetlands(h) Parameter

Far 2053 Far 2053 Far Far 2024 2040 Far Far 2040 Far 2058 Far 2052 Far 2052 Far 2054 Far PAH Group 2 0.00067 0 0 0.0039 0.00067 0.004 0.031 0.016 0.003 0.00067 0.02 0.0017 0.0005 0.0002 0.04 0.041 0.043 0.04 0.001 0.00022 PAH Group 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00018 0.00017 0.00016 0.00016 0 0 PAH Group 4 0 0 0 0 0 0 0 0 0 0 0.00031 0.000084 0 0 0.00011 0.00012 0.0001 0.0001 0.0027 0.00053 PAH Group 5 0.03 0 0 0 0 0 0 0 0 0.0097 0.00054 0.00011 0 0 0 0 0 0 0.004 0.00076 PAH Group 6 0.0035 0 0 0 0 0 0 0 0 0.011 0.015 0.0012 0 0 0.028 0.028 0.027 0.026 0.00043 0.000095PAH Group 7 0 0 0 0 0 0 0 0 0 0 0.0028 0.00053 0 0 0.0094 0.0098 0.0094 0.0085 0.031 0.006 PAH Group 8 0.02 0 0 0 0 0 0 0 0 0.0075 0.016 0.0023 0 0 0.073 0.076 0.072 0.074 0.085 0.017 PAH Group 9 0 0 0 0 0 0 0 0 0 0 0.0026 0.00032 0 0 0.011 0.01 0.0093 0.01 0.00046 0.0001

(a) From Syncrude (2006). (b) From CNRL (2002). (c) From True North (2001). (d) From Syncrude (2006). (e) From Suncor (2005). (g) From Synenco (2006). (f) From Suncor (2004). (h) From Shell (2005).

Page 24: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 21 -

3.5.2 Background Inputs

The process for deriving water quality profiles for the natural tributaries was the same as that outlined in Appendix H-2. Distributions were randomly sampled on a daily basis to provide a continuous concentration time-series for the 39 year flow record. Seasonal distribution information for the Athabasca River upstream of Fort McMurray and the Clearwater River is presented in Appendix H-2. Seasonal background water quality distributions were also generated for other major tributaries to the Athabasca River, including the Ells, MacKay, and Steepbank rivers. The time series of background concentrations for the Muskeg River was obtained from Shell (2005), and the time series of background concentrations for the Firebag River was obtained from Appendix H-3. Contributions from small tributaries, such as McLean, Tar and Fort creeks, were not included in the Athabasca River Model, since they make up such a small portion of the Athabasca River watershed. Mine waters discharged to these streams were, as previously stated, added directly to the Athabasca River.

3.5.3 Water Quality of Sewage Effluent

Sewage effluent distributions were based on measured data collected from Fort McMurray Sewage Treatment Plant. Exceptions include total nitrogen (TN), total phosphorus (TP) and ammonia, for which distributions were based on monitoring data collected from the Gold Bar Wastewater Treatment Plant between 1994 and 2003 (Golder 2005). The resulting profiles are presented in Appendix H-2.

3.5.4 Licensed Water Withdrawals

Water withdrawals from the Athabasca River by oil sands operators in the lower Athabasca River watershed were included in ARM. As a conservative approach, it was assumed that all of the operators would continually use their maximum annual allotted withdrawals. The licensed withdrawals for each project are listed in Table 5. All withdrawals were set to zero for the background and far-future snapshots.

Page 25: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 22 -

Table 5 Licensed Project Withdrawals

Project Average Annual Withdrawal [m3/s]

Syncrude Mildred Lake 0.7 Suncor Millennium Mine 0.69 Albian Sands Muskeg River Mine 0.68 TrueNorth, Fort Hills Oil Sands Project 0.53 Shell Jackpine Mine 0.75 Canadian Natural Resources Limited Horizon Project 2.51 Imperial Oil Resources Kearl Oil Sands Project 1.2 Total Joslyn Creek North Mine Project(a) 0.35 Synenco Northern Lights Project(b) 0.66 Shell Athabasca Oil Sands Project(a) 0.42

(a) Included in the CEA Case only. (b) Included in the Application and CEA cases only. (c) Source : Shell (2005).

Page 26: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 23 -

4 MODEL RESULTS

Predicted in-stream concentrations were evaluated along two mixing zone boundaries that were established based on relevant protocols from Alberta Environment (AEP 1995). A near-field mixing zone measuring one-half of the stream width and 10 times stream width for length was established immediately downstream of the Firebag River - Athabasca River confluence. A far-field mixing zone boundary was established across the width of the Athabasca River just upstream of the Embarras River. The maximum concentration predicted along each mixing zone boundary for all the modelled parameters is summarized in Tables 6 to 9.

4.1 ATHABASCA RIVER AT THE FIREBAG RIVER

Little or no change to in-stream water quality in Athabasca River downstream of the Firebag River is predicted to occur during both maximum dewatering and maximum closed-circuit operations (snapshots 2024 and 2038), with parameter concentrations remaining virtually unchanged from the Baseline Case (Table 6). Some minor changes are predicted to occur when the pit lakes begin to discharge and in the far-future. For example, median and peak boron concentrations are predicted to increase from 0.05 and 0.11 mg/L under the Baseline Case to 0.07 and 0.16 mg/L, respectively, under the Application Case. Median and peak molybdenum concentrations are similarly projected to increase from 0.004 and 0.014 mg/L under baseline conditions to 0.011 and 0.036 mg/L, respectively, under the Application Case. Concentrations of most other parameters are predicted to remain virtually unchanged from those observed under the Baseline Case. Levels of acute and chronic whole effluent toxicity are also predicted to remain below in-stream thresholds through the life of the Project and beyond (i.e., < 0.3 TUa and < 1 TUc).

Predicted changes to water quality in the Athabasca River downstream of the Firebag River under the CEA Case are virtually identical to those predicted for the Application Case, as shown in Table 7. The results of the updated assessment are also generally similar to those outlined in Volume 7, Section 4.4.5.1 of the Application for Node A1, in so far that Project activities are still expected to have little effect on water quality in the Athabasca River.

4.2 ATHABASCA RIVER AT EMBARRAS

Project activities are expected to have a negligible effect on water quality in the Athabasca River at Embarras. As shown in Table 8, predicted parameter concentrations are virtually unchanged between the Baseline and Application

Page 27: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 24 -

Cases. Similar trends were observed for the CEA Case (see Table 9). Predictions for the Athabasca River at Embarras were not developed as part of the Application. As a result, comparisons between the current predictions and those outlined in the Application cannot be developed for this location.

Page 28: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 25 -

Table 6A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application Case

Baseline (e) Application (e) Modelled Background 2024 2038 2024 2038 Parameter Units

Natural Variation Observed

in the Athabasca Rivernear the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

aluminum mg/L 0.57 (0.04 - 6.1) n = 14 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6

ammonia mg/L - N <0.05 (<0.01 - 0.35) n = 37 0.054 0.49 0.061 0.5 0.056 0.5 0.062 0.51 0.057 0.51

antimony mg/L 0.0001 (0.000045 - 0.001) n = 9 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013

arsenic mg/L 0.0008 (0.0003 - 0.01) n = 46 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.061 (0.0002 - 0.09) n = 40 0.067 0.18 0.069 0.18 0.068 0.18 0.069 0.18 0.068 0.18

beryllium mg/L 0.0005 (0.000016 - 0.01) n = 14 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.024 (0.015 – 0.04) n = 12 0.04 0.1 0.051 0.11 0.049 0.11 0.051 0.11 0.049 0.11

cadmium mg/L <0.001 (<0.00002 - 0.002) n = 46 0.00049 0.0083 0.00048 0.0082 0.00049 0.0081 0.00048 0.0082 0.00049 0.0081

calcium mg/L 32 (21 - 52) n = 57 33 71 35 72 33 70 35 71 33 69 chloride mg/L 14 (1.3 - 49) n = 58 12 41 12 41 12 41 12 41 12 41

chromium mg/L 0.003 (0.00037 - 0.027) n = 45 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0032 0.014 0.0031 0.014

cobalt mg/L <0.001 (<0.001 - 0.01) n = 44 0.0011 0.0055 0.0011 0.0055 0.0012 0.0055 0.0011 0.0055 0.0012 0.0055

copper mg/L 0.002 (<0.001 - 0.014) n = 45 0.0026 0.011 0.0027 0.01 0.0026 0.01 0.0027 0.01 0.0026 0.01

dissolved organic carbon

mg/L 7.6 (3 - 21) n = 63 12 23 12 23 12 23 13 23 12 23

iron mg/L 0.48 (0.17 - 16) n = 22 1.2 8.9 1.7 8.8 1.2 8.8 1.7 8.8 1.2 8.8

lead mg/L 0.001 (0.00019 - 0.0114) n = 14 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.1 (5 - 16) n = 57 10 25 11 27 10 25 11 27 10 24

manganese mg/L 0.042 (0.0045 - 0.46) n = 46 0.1 0.45 0.14 0.5 0.1 0.38 0.14 0.49 0.1 0.39

mercury mg/L <0.0001 (0.0000003 - 0.0013) n = 47 0.000014 0.00012 0.000015 0.0001

2 0.000015 0.00012 0.000015 0.00012 0.000015 0.00012

molybdenum mg/L 0.0007 (<0.0005 - 0.015) n

= 46 0.0014 0.011 0.0022 0.011 0.0035 0.014 0.0022 0.011 0.0035 0.014

Page 29: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application Case (continued)

- 26 -

Baseline (e) Application (e) Modelled Background 2024 2038 2024 2038 Parameter Units

Natural Variation Observed

in the Athabasca Rivernear the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

naphthenic acids - refractory

mg/L - 0.6 2.1 0.7 2.2 0.7 2.2 0.7 2.2 0.7 2.2

nickel mg/L 0.004 (<0.0005 - 0.044) n = 46 0.005 0.016 0.0052 0.017 0.0051 0.016 0.0052 0.017 0.0051 0.016

potassium mg/L 1.2 (0.7 - 2.3) n = 57 1.5 3.7 1.6 3.9 1.5 3.7 1.6 3.9 1.5 3.6

selenium mg/L <0.0002 (<0.0001 - 0.0007) n = 41 0.00024 0.00075 0.00024 0.0007

6 0.00024 0.00076 0.00025 0.00075 0.00025 0.00075

silver mg/L <0.0001 (0.00000025 - <0.001) n = 13 0.000037 0.00026 0.000037 0.0002

2 0.000039 0.00018 0.00004 0.00023 0.00004 0.00018

sodium mg/L 14.5 (7 - 43) n = 58 16 40 17 40 17 43 17 40 17 42 strontium mg/L 0.19 (0.142 - 0.29) n = 13 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 sulphate mg/L 22.8 (7.7 - 44) n = 59 24 52 25 53 25 53 25 53 25 53

sulphide mg/L <0.05 (<0.001 - 0.025) n = 26 0.005 0.011 0.005 0.013 0.005 0.011 0.005 0.013 0.005 0.011

total dissolved solids

mg/L 170 (86 - 304) n = 58 184 296 190 299 189 301 191 299 189 301

total nitrogen mg/L 0.38 (0.08 - 2.89) n = 59 0.9 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2

total phenolics mg/L - 0.0066 0.026 0.0065 0.025 0.0065 0.025 0.0066 0.026 0.0065 0.026

total phosphorus mg/L 0.037 (0.015 - 0.9) n = 66 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34

toxicity - acute TUa - <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01

toxicity - chronic TUc - <0.01 <0.01 0.02 0.08 0.01 0.03 0.02 0.08 0.01 0.03

vanadium mg/L 0.003 (0.0002 - 0.028) n = 48 0.0023 0.016 0.0026 0.016 0.0026 0.016 0.0026 0.016 0.0026 0.016

zinc mg/L 0.006 (<0.001 - 0.081) n = 42 0.015 0.092 0.017 0.093 0.015 0.093 0.017 0.082 0.015 0.082

PAH group 1 (carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 0.001

Page 30: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 6A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application Case (continued)

- 27 -

Baseline (e) Application (e) Modelled Background 2024 2038 2024 2038 Parameter Units

Natural Variation Observed

in the Athabasca Rivernear the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

PAH group 2 (carc) µg/L <5 (<5 - <5) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 <0.001 0.001

PAH group 3 (carc) µg/L - <0.001 <0.001 0.001 0.002 <0.001 0.001 0.001 0.002 <0.001 0.001

PAH group 4 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.005 <0.001 0.002 0.001 0.005 <0.001 0.002

PAH group 5 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.003 <0.001 0.001 0.001 0.034 <0.001 0.004

PAH group 6 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.002 <0.001 0.001 0.001 0.003 <0.001 0.001

PAH group 8 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.005 <0.001 0.003 0.002 0.011 <0.001 0.003

PAH group 9 (non-carc) µg/L <1 (<1 - <1) n = 6 0.002 0.024 0.002 0.023 0.002 0.022 0.003 0.022 0.002 0.022

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 polymer mg/L - <0.001 <0.001 0.002 0.009 0.002 0.01 0.002 0.009 0.002 0.01

(a) - = No guideline / no data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0850\0860\0870\0970\0980 (AENV 2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute toxicity,

which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 31: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 28 -

Table 6B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application Case

Modelled Background Baseline(e) Application(e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

aluminum mg/L 0.57 (0.04 - 6.1) n = 14 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6

ammonia mg/L - N <0.05 (<0.01 - 0.35) n = 37 0.054 0.49 0.057 0.5 0.056 0.5 0.057 0.46 0.057 0.46

antimony mg/L 0.0001 (0.000045 - 0.001) n = 9 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013

arsenic mg/L 0.0008 (0.0003 - 0.01) n = 46 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.061 (0.0002 - 0.09) n = 40 0.067 0.18 0.068 0.18 0.068 0.18 0.068 0.18 0.068 0.18

beryllium mg/L 0.0005 (0.000016 - 0.01) n = 14 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.024 (0.015 – 0.04) n = 12 0.04 0.1 0.05 0.11 0.049 0.11 0.068 0.16 0.064 0.13

cadmium mg/L <0.001 (<0.00002 - 0.002) n = 46 0.00049 0.0083 0.0005 0.0081 0.0005 0.0081 0.0005 0.0082 0.0005 0.0081

calcium mg/L 32 (21 - 52) n = 57 33 71 33 70 33 69 33 70 33 68

chloride mg/L 14 (1.3 - 49) n = 58 12 41 12 41 12 41 12 41 12 41

chromium mg/L 0.003 (0.00037 - 0.027) n = 45 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0031 0.014

cobalt mg/L <0.001 (<0.001 - 0.01) n = 44 0.0011 0.0055 0.0012 0.0055 0.0012 0.0055 0.0012 0.0055 0.0012 0.0055

copper mg/L 0.002 (<0.001 - 0.014) n = 45 0.0026 0.011 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 7.6 (3 - 21) n = 63 12 23 12 23 12 23 13 22 13 22

iron mg/L 0.48 (0.17 - 16) n = 22 1.2 8.9 1.2 8.8 1.2 8.8 1.2 8.8 1.2 8.8

lead mg/L 0.001 (0.00019 - 0.0114) n = 14 0.0011 0.0067 0.0012 0.0067 0.0011 0.0067 0.0012 0.0067 0.0011 0.0067

magnesium mg/L 8.1 (5 - 16) n = 57 10 25 10 25 10 24 10 24 10 24

manganese mg/L 0.042 (0.0045 - 0.46) n = 46 0.1 0.45 0.1 0.38 0.09 0.37 0.1 0.38 0.09 0.37

mercury mg/L <0.0001 (0.0000003 - 0.0013) n = 47 0.000014 0.0001

2 0.000015 0.00012 0.000015 0.00012 0.000015 0.00012 0.000015 0.00012

molybdenum mg/L 0.0007 (<0.0005 - 0.015) n = 46 0.0014 0.011 0.0037 0.014 0.0031 0.011 0.011 0.036 0.0085 0.024

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1

Page 32: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 Table 6B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application

Case (continued)

- 29 -

Modelled Background Baseline(e) Application(e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

naphthenic acids - refractory

mg/L - 0.6 2.1 0.7 2.2 0.7 2.2 0.8 2.5 0.8 2.4

nickel mg/L 0.004 (<0.0005 - 0.044) n = 46 0.005 0.016 0.0051 0.016 0.005 0.016 0.0051 0.016 0.0051 0.016

potassium mg/L 1.2 (0.7 - 2.3) n = 57 1.5 3.7 1.6 3.7 1.6 3.7 1.6 3.9 1.6 3.8

selenium mg/L <0.0002 (<0.0001 - 0.0007) n = 41 0.00024 0.0007

5 0.00024 0.00076 0.00024 0.00076 0.00026 0.00075 0.00025 0.00075

silver mg/L <0.0001 (0.00000025 - <0.001) n = 13 0.000037 0.0002

6 0.000039 0.00018 0.000039 0.00018 0.00004 0.00018 0.00004 0.00018

sodium mg/L 14.5 (7 - 43) n = 58 16 40 17 43 17 43 18 43 17 43

strontium mg/L 0.19 (0.142 - 0.29) n = 13 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48

sulphate mg/L 22.8 (7.7 - 44) n = 59 24 52 25 54 25 53 26 54 25 54

sulphide mg/L <0.05 (<0.001 - 0.025) n = 26 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.011

total dissolved solids mg/L 170 (86 - 304) n = 58 184 296 189 302 188 300 192 303 190 300

total nitrogen mg/L 0.38 (0.08 - 2.89) n = 59 0.9 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2

total phenolics mg/L - 0.0066 0.026 0.0065 0.025 0.0064 0.025 0.0065 0.026 0.0063 0.026

total phosphorus mg/L 0.037 (0.015 - 0.9) n = 66 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34

toxicity - acute TUa - <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.02 <0.01 0.02

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 <0.01 0.02 0.01 0.04 0.01 0.03

vanadium mg/L 0.003 (0.0002 - 0.028) n = 48 0.0023 0.016 0.0026 0.016 0.0023 0.016 0.0027 0.017 0.0025 0.016

zinc mg/L 0.006 (<0.001 - 0.081) n = 42 0.015 0.092 0.015 0.093 0.015 0.093 0.015 0.082 0.015 0.082

PAH group 1 (carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001

PAH group 2 (carc) µg/L <5 (<5 - <5) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001 0.002 0.001 0.002

PAH group 3 (carc) µg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Page 33: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007 Table 6B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the Application

Case (continued)

- 30 -

Modelled Background Baseline(e) Application(e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

PAH group 5 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 6 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 0.001 0.001 0.002 0.001 0.002

PAH group 7 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.002

PAH group 8 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.004 <0.001 0.002 0.001 0.006 0.002 0.006

PAH group 9 (non-carc) µg/L <1 (<1 - <1) n = 6 0.002 0.024 0.002 0.022 0.002 0.022 0.002 0.023 0.002 0.021

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.003 0.014 0.002 0.008 0.3 0.93 0.22 0.71 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), from Alberta Environment WDS stations: AB07DA0850\0860\0870\0970\0980 (AENV 2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute toxicity, which

is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 34: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 31 -

Table 7A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case

Modelled Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Units Natural Variation Observed in the Athabasca River near

the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

aluminum mg/L 0.57 (0.04 - 6.1) n = 14 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6

ammonia mg/L - N <0.05 (<0.01 - 0.35) n = 37 0.054 0.49 0.061 0.5 0.056 0.5 0.062 0.51 0.057 0.51

antimony mg/L 0.0001 (0.000045 - 0.001) n = 9 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013

arsenic mg/L 0.0008 (0.0003 - 0.01) n = 46 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.061 (0.0002 - 0.09) n = 40 0.067 0.18 0.069 0.18 0.068 0.18 0.069 0.18 0.068 0.18

beryllium mg/L 0.0005 (0.000016 - 0.01) n = 14 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.024 (0.015 – 0.04) n = 12 0.04 0.1 0.051 0.11 0.049 0.11 0.051 0.11 0.049 0.11

cadmium mg/L <0.001 (<0.00002 - 0.002) n = 46 0.00049 0.0083 0.00048 0.0082 0.00049 0.0081 0.00048 0.0082 0.00049 0.0081

calcium mg/L 32 (21 - 52) n = 57 33 71 35 72 33 70 35 71 33 69

chloride mg/L 14 (1.3 - 49) n = 58 12 41 12 41 12 41 12 41 12 41

chromium mg/L 0.003 (0.00037 - 0.027) n = 45 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0032 0.014 0.0031 0.014

cobalt mg/L <0.001 (<0.001 - 0.01) n = 44 0.0011 0.0055 0.0011 0.0055 0.0012 0.0055 0.0011 0.0055 0.0012 0.0055

copper mg/L 0.002 (<0.001 - 0.014) n = 45 0.0026 0.011 0.0027 0.01 0.0026 0.01 0.0027 0.01 0.0026 0.01

dissolved organic carbon mg/L 7.6 (3 - 21) n = 63 12 23 12 23 12 23 13 23 12 23

iron mg/L 0.48 (0.17 - 16) n = 22 1.2 8.9 1.7 8.8 1.2 8.8 1.7 8.8 1.2 8.8

lead mg/L 0.001 (0.00019 - 0.0114) n = 14 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.1 (5 - 16) n = 57 10 25 11 27 10 25 11 27 10 24

manganese mg/L 0.042 (0.0045 - 0.46) n = 46 0.1 0.45 0.14 0.5 0.1 0.38 0.14 0.49 0.1 0.39

mercury mg/L <0.0001 (0.0000003 - 0.0013) n = 47

0.000014

0.00012

0.000015

0.00012

0.000015

0.00012

0.000015

0.00012

0.000015

0.00012

molybdenum mg/L 0.0007 (<0.0005 - 0.015) n = 46 0.0014 0.011 0.0022 0.011 0.0035 0.014 0.0023 0.011 0.0035 0.014

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Page 35: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case (continued)

- 32 -

Modelled Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Units Natural Variation Observed in the Athabasca River near

the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

naphthenic acids - refractory mg/L - 0.6 2.1 0.7 2.2 0.7 2.2 0.7 2.2 0.7 2.2

nickel mg/L 0.004 (<0.0005 - 0.044) n = 46 0.005 0.016 0.0052 0.017 0.0051 0.016 0.0052 0.017 0.0051 0.016

potassium mg/L 1.2 (0.7 - 2.3) n = 57 1.5 3.7 1.6 3.9 1.5 3.7 1.6 3.9 1.5 3.7

selenium mg/L <0.0002 (<0.0001 - 0.0007) n = 41 0.00024 0.0007

5 0.00024 0.00076 0.00024 0.0007

6 0.00025 0.00075 0.00025 0.0007

5

silver mg/L <0.0001 (0.00000025 - <0.001) n = 13

0.000037

0.00026

0.000037

0.00022

0.000039

0.00018 0.00004 0.0002

3 0.00004 0.00018

sodium mg/L 14.5 (7 - 43) n = 58 16 40 17 40 17 43 17 40 17 42

strontium mg/L 0.19 (0.142 - 0.29) n = 13 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48

sulphate mg/L 22.8 (7.7 - 44) n = 59 24 52 25 53 25 53 25 53 25 53

sulphide mg/L <0.05 (<0.001 - 0.025) n = 26 0.005 0.011 0.005 0.013 0.005 0.011 0.005 0.013 0.005 0.011

total dissolved solids mg/L 170 (86 - 304) n = 58 184 296 190 299 189 301 191 300 189 301

total nitrogen mg/L 0.38 (0.08 - 2.89) n = 59 0.9 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2

total phenolics mg/L - 0.0066 0.026 0.0065 0.025 0.0065 0.025 0.0066 0.026 0.0065 0.026

total phosphorus mg/L 0.037 (0.015 - 0.9) n = 66 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34

toxicity - acute TUa - <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01

toxicity - chronic TUc - <0.01 <0.01 0.02 0.08 0.01 0.03 0.02 0.08 0.01 0.03

vanadium mg/L 0.003 (0.0002 - 0.028) n = 48 0.0023 0.016 0.0026 0.016 0.0026 0.016 0.0026 0.016 0.0026 0.016

zinc mg/L 0.006 (<0.001 - 0.081) n = 42 0.015 0.092 0.017 0.093 0.015 0.093 0.017 0.082 0.015 0.082

PAH group 1 (carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 <0.001 0.001

PAH group 2 (carc) µg/L <5 (<5 - <5) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 <0.001 0.001

PAH group 3 (carc) µg/L - <0.001 <0.001 0.001 0.002 <0.001 0.001 0.001 0.002 <0.001 0.001

PAH group 4 µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.005 <0.001 0.002 0.001 0.005 <0.001 0.002

Page 36: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7A Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case (continued)

- 33 -

Modelled Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Units Natural Variation Observed in the Athabasca River near

the Firebag River(c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

(non-carc)

PAH group 5 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.003 <0.001 0.001 0.001 0.034 <0.001 0.004

PAH group 6 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.002 <0.001 0.001 0.001 0.003 <0.001 0.001

PAH group 8 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.005 <0.001 0.003 0.002 0.011 <0.001 0.003

PAH group 9 (non-carc) µg/L <1 (<1 - <1) n = 6 0.002 0.024 0.002 0.023 0.002 0.022 0.003 0.022 0.002 0.022

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.002 0.009 0.002 0.01 0.002 0.009 0.002 0.01 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0850\0860\0870\0970\0980 (AENV 2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute toxicity,

which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 37: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 34 -

Table 7B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case Modelled

Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c)

median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

aluminum mg/L 0.57 (0.04 - 6.1) n = 14 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6 0.38 3.6

ammonia mg/L - N <0.05 (<0.01 - 0.35) n = 37 0.054 0.49 0.057 0.5 0.056 0.5 0.058 0.47 0.058 0.46

antimony mg/L 0.0001 (0.000045 - 0.001) n = 9 0.0004 0.0013 0.0004 0.0013 0.0004 0.0013 0.0004 0.0014 0.0004 0.0013

arsenic mg/L 0.0008 (0.0003 - 0.01) n = 46 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.061 (0.0002 - 0.09) n = 40 0.067 0.18 0.068 0.18 0.068 0.18 0.068 0.18 0.068 0.18

beryllium mg/L 0.0005 (0.000016 - 0.01) n = 14 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.024 (0.015 – 0.04) n = 12 0.04 0.1 0.05 0.11 0.049 0.11 0.069 0.17 0.064 0.13

cadmium mg/L <0.001 (<0.00002 - 0.002) n = 46 0.00049 0.0083 0.0005 0.0081 0.0005 0.0081 0.00051 0.0081 0.0005 0.0081

calcium mg/L 32 (21 - 52) n = 57 33 71 33 70 33 69 33 70 33 68

chloride mg/L 14 (1.3 - 49) n = 58 12 41 12 41 12 41 12 42 12 41

chromium mg/L 0.003 (0.00037 - 0.027) n = 45 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0031 0.014 0.0031 0.014

cobalt mg/L <0.001 (<0.001 - 0.01) n = 44 0.0011 0.0055 0.0012 0.0055 0.0012 0.0055 0.0012 0.0055 0.0012 0.0055

copper mg/L 0.002 (<0.001 - 0.014) n = 45 0.0026 0.011 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 7.6 (3 - 21) n = 63 12 23 12 23 12 23 13 22 13 22

iron mg/L 0.48 (0.17 - 16) n = 22 1.2 8.9 1.2 8.8 1.2 8.8 1.2 8.8 1.2 8.8

lead mg/L 0.001 (0.00019 - 0.0114) n = 14 0.0011 0.0067 0.0012 0.0067 0.0011 0.0067 0.0012 0.0067 0.0011 0.0067

magnesium mg/L 8.1 (5 - 16) n = 57 10 25 10 25 10 24 10 24 10 24

manganese mg/L 0.042 (0.0045 - 0.46) n = 46 0.1 0.45 0.1 0.38 0.09 0.37 0.1 0.38 0.09 0.37

mercury mg/L <0.0001 (0.0000003 - 0.0013) n = 47 0.000014 0.00012 0.00001

5 0.00012

0.000015 0.00012 0.00001

5 0.00012

0.000015

0.00012

molybdenum mg/L 0.0007 (<0.0005 - 0.015) n = 46 0.0014 0.011 0.0037 0.014 0.0031 0.011 0.011 0.037 0.0085 0.024

Page 38: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case (continued)

- 35 -

Modelled Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c)

median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.1

naphthenic acids - refractory mg/L - 0.6 2.1 0.7 2.2 0.7 2.2 0.9 2.5 0.8 2.4

nickel mg/L 0.004 (<0.0005 - 0.044) n = 46 0.005 0.016 0.0051 0.016 0.005 0.016 0.0051 0.016 0.0051 0.016

potassium mg/L 1.2 (0.7 - 2.3) n = 57 1.5 3.7 1.6 3.7 1.6 3.7 1.6 3.9 1.6 3.8

selenium mg/L <0.0002 (<0.0001 - 0.0007) n = 41 0.00024 0.00075 0.00024 0.0007

6 0.00024 0.00076 0.00026 0.00075 0.00025 0.0007

5

silver mg/L <0.0001 (0.00000025 - <0.001) n = 13 0.000037 0.00026 0.00003

9 0.00018

0.000039 0.00018 0.00004 0.0001

8 0.00004 0.00018

sodium mg/L 14.5 (7 - 43) n = 58 16 40 17 43 17 43 18 43 17 43

strontium mg/L 0.19 (0.142 - 0.29) n = 13 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48

sulphate mg/L 22.8 (7.7 - 44) n = 59 24 52 25 54 25 53 26 54 25 54

sulphide mg/L <0.05 (<0.001 - 0.025) n = 26 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.011 0.005 0.011

total dissolved solids mg/L 170 (86 - 304) n = 58 184 296 189 302 188 300 193 303 191 300

total nitrogen mg/L 0.38 (0.08 - 2.89) n = 59 0.9 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2

total phenolics mg/L - 0.0066 0.026 0.0065 0.025 0.0064 0.025 0.0065 0.026 0.0063 0.026

total phosphorus mg/L 0.037 (0.015 - 0.9) n = 66 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34 0.07 0.34

toxicity - acute TUa - <0.01 <0.01 <0.01 0.01 <0.01 0.01 0.01 0.02 0.01 0.02

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 <0.01 0.02 0.01 0.04 0.01 0.03

vanadium mg/L 0.003 (0.0002 - 0.028) n = 48 0.0023 0.016 0.0026 0.016 0.0023 0.016 0.0028 0.017 0.0025 0.016

zinc mg/L 0.006 (<0.001 - 0.081) n = 42 0.015 0.092 0.015 0.093 0.015 0.093 0.015 0.082 0.015 0.082

PAH group 1 (carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001

PAH group 2 (carc) µg/L <5 (<5 - <5) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 0.001 0.002 0.001 0.002

Page 39: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 7B Predicted Water Quality of the Athabasca River in the Firebag River Mixing Zone for the CEA Case (continued)

- 36 -

Modelled Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the

Athabasca River near the Firebag River(c)

median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

PAH group 3 (carc) µg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 5 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 6 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 0.001 0.001 0.001 0.001 0.001

PAH group 7 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.002

PAH group 8 (non-carc) µg/L <1 (<1 - <1) n = 6 <0.001 <0.001 0.001 0.004 <0.001 0.002 0.001 0.006 0.002 0.006

PAH group 9 (non-carc) µg/L <1 (<1 - <1) n = 6 0.002 0.024 0.002 0.022 0.002 0.022 0.002 0.023 0.002 0.021

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.003 0.014 0.002 0.008 0.3 0.93 0.22 0.71 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0850\0860\0870\0970\0980 (AENV 2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute toxicity,

which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 40: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 37 -

Table 8A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case

Modelled Background Baseline (e) Application (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed

in the Athabasca River Upstream of Embarras (c)

median peak(d) median peak(d) median peak(d) median peak median peak(d)

aluminum mg/L 0.34 (<0.01 - 4.7) n = 52 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6

ammonia mg/L - N 0.03 (<0.01 - 1) n = 168 0.032 0.19 0.037 0.19 0.036 0.18 0.037 0.19 0.036 0.18

antimony mg/L <0.0002 (0.00005 - <0.005) n = 21 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009

arsenic mg/L 0.0006 (<0.0001 - 0.018) n = 68 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.065 (<0.001 - 0.26) n = 59 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.16 0.07 0.15

beryllium mg/L <0.0002 (<0.00004 - 0.0012) n = 66 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.03 (<0.01 - 0.13) n = 26 0.036 0.083 0.041 0.088 0.045 0.098 0.041 0.088 0.045 0.098

cadmium mg/L <0.001 (<0.00002 - <0.003) n = 64 0.0004 0.0086 0.0004 0.0085 0.00041 0.0084 0.0004 0.0085 0.0004

1 0.0084

calcium mg/L 33 (<1 - 106) n = 229 31 54 32 54 32 54 32 54 32 54

chloride mg/L 15 (<0.5 - 150) n = 229 10 34 10 34 11 35 10 34 11 35

chromium mg/L 0.002 (0.00061 - 0.016) n = 87 0.0029 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013

cobalt mg/L 0.001 (0.00015 - 0.006) n = 62 0.001 0.0054 0.001 0.0054 0.0011 0.0054 0.001 0.0054 0.0011 0.0054

copper mg/L 0.002 (<0.0002 - 0.012) n = 90 0.0025 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 8.3 (0.3 - 30) n = 214 10 20 10 20 10 20 10 20 10 20

iron mg/L 0.74 (<0.001 - 12) n = 78 0.9 8.8 0.96 8.8 0.9 8.8 0.96 8.8 0.9 8.8

lead mg/L 0.0012 (<0.0001 - 0.026) n = 53 0.0011 0.0068 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.8 (<1 - 27) n = 228 9.0 16 9.0 16 9.0 16 9.0 16 9.0 16

manganese mg/L 0.043 (<0.001 - 0.59) n = 88 0.05 0.27 0.07 0.25 0.05 0.22 0.07 0.25 0.05 0.22

mercury mg/L 0.0000071 (<0.0000006 - <0.0002) n = 14 0.000014 0.00013 0.000015 0.00013 0.000015 0.00013 0.00001

5 0.00013 0.000015 0.00013

molybdenum mg/L 0.001 (0.0004 - 0.007) n = 61 0.0013 0.011 0.0024 0.011 0.0033 0.012 0.0024 0.011 0.0033 0.012

Page 41: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case (continued)

- 38 -

Modelled Background Baseline (e) Application (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed

in the Athabasca River Upstream of Embarras (c)

median peak(d) median peak(d) median peak(d) median peak median peak(d)

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

naphthenic acids - refractory

mg/L <1 (<1 - <1) n = 4 0.2 0.8 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9

nickel mg/L 0.003 (<0.0002 - 0.04) n = 63 0.0049 0.016 0.0051 0.016 0.005 0.016 0.0051 0.016 0.005 0.016

potassium mg/L 1.2 (<0.1 - 7.1) n = 229 1.4 2.5 1.4 2.7 1.4 2.6 1.5 2.7 1.4 2.6

selenium mg/L <0.0002 (<0.0001 - 0.0009) n = 62 0.0002 0.00073 0.00021 0.00073 0.00021 0.00073 0.00021 0.00073 0.0002

1 0.00074

silver mg/L <0.0001 (<0.000005 - 0.0007) n = 15 0.000022 0.00017 0.000022 0.00015 0.000024 0.00012 0.00002

3 0.00015 0.000024 0.00012

sodium mg/L 16 (<1 - 121) n = 229 15 35 15 36 16 38 15 36 16 38

strontium mg/L 0.19 (0.14 - 0.3) n = 21 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48

sulphate mg/L 24 (<3 - 186) n = 230 24 55 25 56 25 57 25 56 25 57

sulphide mg/L <0.005 (<0.001 - 0.02) n = 89 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008

total dissolved solids mg/L 178 (16 - 722) n = 227 176 298 179 302 180 306 179 302 180 306

total nitrogen mg/L 0.48 (<0.01 - 2.9) n = 220 0.7 2.2 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2

total phenolics mg/L <0.001 (<0.001 - 0.042) n = 186 0.0038 0.018 0.0038 0.018 0.0037 0.018 0.0038 0.018 0.0037 0.018

total phosphorus mg/L 0.043 (0.004 - 0.75) n = 220 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35

toxicity - acute TUa - <0.01 <0.01 <0.01 0.008 <0.01 0.01 <0.01 0.01 <0.01 0.01

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04

vanadium mg/L 0.002 (0.0007 - 0.02) n = 113 0.0021 0.017 0.0025 0.017 0.0026 0.017 0.0025 0.017 0.0026 0.017

zinc mg/L 0.0088 (0.0007 - 0.046) n = 81 0.013 0.042 0.013 0.042 0.013 0.042 0.013 0.041 0.013 0.041

PAH group 1 (carc) µg/L <5 (<0.02 - <5) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

Page 42: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case (continued)

- 39 -

Modelled Background Baseline (e) Application (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed

in the Athabasca River Upstream of Embarras (c)

median peak(d) median peak(d) median peak(d) median peak median peak(d)

PAH group 2 (carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 3 (carc) µg/L <2 (<0.02 - <2) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 5 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.007 <0.001 0.001

PAH group 6 (non-carc) µg/L <0.04 (<0.04 - <0.04) n = 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 8 (non-carc) µg/L <1 (<0.02 - <1) n = 24 <0.001 <0.001 <0.001 0.001 <0.001 0.002 <0.001 0.002 <0.001 0.002

PAH group 9 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 0.006 <0.001 0.005 <0.001 0.005 <0.001 0.006 <0.001 0.005

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.001 0.003 0.001 0.004 0.001 0.003 0.001 0.004 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0010\0040\0060\0080\0250 (AENV

2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute

toxicity, which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 43: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 40 -

Table 8B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case

Modelled Background Baseline (e) Application (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

aluminum mg/L 0.344 (<0.01 - 4.791) n = 52 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6

ammonia mg/L - N 0.03 (<0.01 - 1) n = 168 0.032 0.19 0.036 0.19 0.035 0.18 0.037 0.19 0.036 0.19

antimony mg/L <0.0002 (0.00005 - <0.005) n = 21 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.001 0.0003 0.001

arsenic mg/L 0.0006 (<0.0001 - 0.018) n = 68 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.065 (<0.001 - 0.269) n = 59 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15

beryllium mg/L <0.0002 (<0.00004 - 0.0012) n = 66 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.03 (<0.01 - 0.137) n = 26 0.036 0.083 0.046 0.1 0.045 0.095 0.05 0.12 0.048 0.1

cadmium mg/L <0.001 (<0.00002 - <0.003) n = 64 0.0004 0.0086 0.00041 0.0084 0.00041 0.0084 0.00041 0.0084 0.00041 0.0084

calcium mg/L 33 (<1 - 106) n = 229 31 54 32 54 31 54 32 54 31 54

chloride mg/L 15.5 (<0.5 - 150) n = 229 10 34 11 35 11 35 11 35 11 35

chromium mg/L 0.002 (0.00061 - 0.016) n = 87 0.0029 0.013 0.003 0.013 0.0029 0.013 0.003 0.013 0.003 0.013

cobalt mg/L 0.001 (0.000155 - 0.006) n = 62 0.001 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054

copper mg/L 0.002 (<0.0002 - 0.0122) n = 90 0.0025 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 8.35 (0.3 - 30.3) n = 214 10 20 10 20 10 20 10 20 10 20

iron mg/L 0.74 (<0.001 - 11.8) n = 78 0.9 8.8 0.9 8.8 0.9 8.8 0.9 8.8 0.89 8.8

lead mg/L 0.0012 (<0.0001 - 0.026) n = 53 0.0011 0.0068 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.8 (<1 - 27.3) n = 228 9.0 16 9.0 16 9.0 16 9.0 16 9.0 16

manganese mg/L 0.043 (<0.001 - 0.592) n = 88 0.05 0.27 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22

Page 44: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case (continued)

- 41 -

Modelled Background Baseline (e) Application (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

mercury mg/L 0.00000715 (<0.0000006 - <0.0002) n = 14

0.000014 0.00013 0.000015 0.00013 0.000015 0.00013 0.000015 0.00013 0.000015 0.00013

molybdenum mg/L 0.001 (0.0004 - 0.007) n = 61 0.0013 0.011 0.0035 0.012 0.0029 0.011 0.005 0.019 0.0042 0.011

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

naphthenic acids - refractory

mg/L <1 (<1 - <1) n = 4 0.21 0.8 0.3 0.9 0.3 0.9 0.3 1.0 0.3 1.0

nickel mg/L 0.003 (<0.0002 - 0.04) n = 63 0.0049 0.016 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

potassium mg/L 1.2 (<0.1 - 7.1) n = 229 1.4 2.5 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6

selenium mg/L <0.0002 (<0.0001 - 0.0009) n = 62 0.0002 0.00073 0.00021 0.00074 0.00021 0.00073 0.00021 0.00074 0.00021 0.00074

silver mg/L <0.0001 (<0.000005 - 0.0007) n = 15

0.000022 0.00017 0.000024 0.00012 0.000024 0.00012 0.000024 0.00012 0.000024 0.00012

sodium mg/L 16.5 (<1 - 121) n = 229 15 35 16 39 16 38 16 40 16 39

strontium mg/L 0.193 (0.136 - 0.3) n = 21 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.48

sulphate mg/L 23.6 (<3 - 186) n = 230 24 55 25 57 25 57 26 57 25 57

sulphide mg/L <0.005 (<0.001 - 0.02) n = 89 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.003 0.008

total dissolved solids mg/L 178 (16 - 722) n = 227 176 298 180 307 180 306 182 308 181 307

total nitrogen mg/L 0.48 (<0.01 - 2.96) n = 220 0.7 2.2 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2

total phenolics mg/L <0.001 (<0.001 - 0.042) n = 186 0.0038 0.018 0.0037 0.018 0.0037 0.018 0.0037 0.018 0.0037 0.018

total phosphorus mg/L 0.043 (0.004 - 0.75) n = 220 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35

toxicity - acute TUa - <0.01 <0.01 <0.01 0.02 <0.01 0.01 <0.01 0.02 <0.01 0.02

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 <0.01 0.03 0.01 0.04 0.01 0.03

Page 45: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 8 Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the Application Case (continued)

- 42 -

Modelled Background Baseline (e) Application (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

vanadium mg/L 0.002 (0.0007 - 0.02) n = 113 0.0021 0.017 0.0026 0.017 0.0022 0.017 0.0026 0.017 0.0022 0.017

zinc mg/L 0.0088 (0.0007 - 0.046) n = 81 0.013 0.042 0.013 0.042 0.013 0.042 0.013 0.04 0.013 0.04

PAH group 1 (carc) µg/L <5 (<0.02 - <5) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 2 (carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001

PAH group 3 (carc) µg/L <2 (<0.02 - <2) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 5 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001

PAH group 6 (non-carc) µg/L <0.04 (<0.04 - <0.04) n =

1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 8 (non-carc) µg/L <1 (<0.02 - <1) n = 24 <0.001 <0.001 <0.001 0.002 <0.001 0.001 <0.001 0.003 <0.001 0.002

PAH group 9 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 0.006 <0.001 0.005 <0.001 0.005 <0.001 0.005 <0.001 0.005

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.001 0.005 0.001 0.003 0.054 0.27 0.041 0.21 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0010\0040\0060\0080\0250 (AENV

2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute

toxicity, which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 46: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 43 -

Table 9A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case Modelled

Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

aluminum mg/L 0.344 (<0.01 - 4.791) n = 52 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6

ammonia mg/L - N 0.03 (<0.01 - 1) n = 168 0.032 0.19 0.037 0.19 0.036 0.18 0.037 0.19 0.036 0.19

antimony mg/L <0.0002 (0.00005 - <0.005) n = 21 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009

arsenic mg/L 0.0006 (<0.0001 - 0.018) n = 68 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.065 (<0.001 - 0.269) n = 59 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15

beryllium mg/L <0.0002 (<0.00004 - 0.0012) n = 66 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.03 (<0.01 - 0.137) n = 26 0.036 0.083 0.041 0.088 0.045 0.098 0.041 0.088 0.045 0.098

cadmium mg/L <0.001 (<0.00002 - <0.003) n = 64 0.0004 0.0086 0.0004 0.0085 0.00041 0.0084 0.0004 0.0085 0.00041 0.0084

calcium mg/L 33 (<1 - 106) n = 229 31 54 32 54 32 54 32 54 32 54

chloride mg/L 15.5 (<0.5 - 150) n = 229 10 34 10 34 11 35 10 34 11 35

chromium mg/L 0.002 (0.00061 - 0.016) n = 87 0.0029 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013

cobalt mg/L 0.001 (0.000155 - 0.006) n = 62 0.001 0.0054 0.001 0.0054 0.0011 0.0054 0.001 0.0053 0.0011 0.0054

copper mg/L 0.002 (<0.0002 - 0.0122) n = 90 0.0025 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 8.35 (0.3 - 30.3) n = 214 10 20 10 20 10 20 10 20 10 20

iron mg/L 0.74 (<0.001 - 11.8) n = 78 0.9 8.8 0.96 8.8 0.9 8.8 0.96 8.8 0.9 8.8

lead mg/L 0.0012 (<0.0001 - 0.026) n = 53 0.0011 0.0068 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.8 (<1 - 27.3) n = 228 9.0 16 9.0 16 9.0 16 9.0 16 9.0 16

manganese mg/L 0.043 (<0.001 - 0.592) n = 88 0.05 0.27 0.07 0.25 0.05 0.22 0.07 0.25 0.05 0.23

mercury mg/L 0.00000715 (<0.0000006 - 0.000014 0.00013 0.000015 0.00013 0.00001 0.00013 0.000015 0.00013 0.000015 0.00013

Page 47: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case (continued)

- 44 -

Modelled Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

<0.0002) n = 14 5

molybdenum mg/L 0.001 (0.0004 - 0.007) n = 61 0.0013 0.011 0.0024 0.011 0.0033 0.012 0.0025 0.011 0.0033 0.012

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

naphthenic acids - refractory mg/L <1 (<1 - <1) n = 4 0.2 0.8 0.3 0.9 0.3 0.9 0.3 0.9 0.3 0.9

nickel mg/L 0.003 (<0.0002 - 0.04) n = 63 0.0049 0.016 0.0051 0.016 0.005 0.016 0.0051 0.016 0.005 0.016

potassium mg/L 1.2 (<0.1 - 7.1) n = 229 1.4 2.5 1.4 2.7 1.4 2.6 1.5 2.7 1.4 2.6

selenium mg/L <0.0002 (<0.0001 - 0.0009) n = 62 0.0002 0.00073 0.00021 0.00073 0.00021 0.00073 0.00021 0.00073 0.00021 0.00073

silver mg/L <0.0001 (<0.000005 - 0.0007) n = 15 0.000022 0.00017 0.000022 0.00015 0.00002

4 0.00012 0.000023 0.00015 0.000024 0.00012

sodium mg/L 16.5 (<1 - 121) n = 229 15 35 15 36 16 38 15 36 16 38

strontium mg/L 0.193 (0.136 - 0.3) n = 21 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.49 0.27 0.49

sulphate mg/L 23.6 (<3 - 186) n = 230 24 55 25 56 25 57 25 56 25 57

sulphide mg/L <0.005 (<0.001 - 0.02) n = 89 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008

total dissolved solids mg/L 178 (16 - 722) n = 227 176 298 179 302 180 306 180 303 180 306

total nitrogen mg/L 0.48 (<0.01 - 2.96) n = 220 0.7 2.2 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2

total phenolics mg/L <0.001 (<0.001 - 0.042) n = 186 0.0038 0.018 0.0038 0.018 0.0037 0.018 0.0038 0.018 0.0037 0.018

total phosphorus mg/L 0.043 (0.004 - 0.75) n = 220 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35

toxicity - acute TUa - <0.01 <0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01 <0.01 0.01

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 0.01 0.04 0.01 0.04 0.01 0.04

vanadium mg/L 0.002 (0.0007 - 0.02) n = 113 0.0021 0.017 0.0025 0.017 0.0026 0.017 0.0025 0.017 0.0026 0.017

zinc mg/L 0.0088 (0.0007 - 0.046) n 0.013 0.042 0.013 0.042 0.013 0.042 0.013 0.041 0.013 0.041

Page 48: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9A Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case (continued)

- 45 -

Modelled Background Baseline (e) CEA Case (e)

2024 2038 2024 2038 Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak median peak(d)

= 81

PAH group 1 (carc) µg/L <5 (<0.02 - <5) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 2 (carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 3 (carc) µg/L <2 (<0.02 - <2) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 5 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.007 <0.001 0.001

PAH group 6 (non-carc) µg/L <0.04 (<0.04 - <0.04) n =

1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 8 (non-carc) µg/L <1 (<0.02 - <1) n = 24 <0.001 <0.001 <0.001 0.001 <0.001 0.002 <0.001 0.002 <0.001 0.002

PAH group 9 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 0.006 <0.001 0.005 <0.001 0.005 <0.001 0.006 <0.001 0.005

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.001 0.003 0.001 0.004 0.001 0.003 0.001 0.004 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0010\0040\0060\0080\0250 (AENV

2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute

toxicity, which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 49: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 46 -

Table 9B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case Modelled

Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

aluminum mg/L 0.344 (<0.01 - 4.791) n = 52 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6 0.36 3.6

ammonia mg/L - N 0.03 (<0.01 - 1) n = 168 0.032 0.19 0.036 0.19 0.035 0.18 0.037 0.19 0.036 0.19

antimony mg/L <0.0002 (0.00005 - <0.005) n = 21 0.0003 0.0009 0.0003 0.0009 0.0003 0.0009 0.0003 0.001 0.0003 0.001

arsenic mg/L 0.0006 (<0.0001 - 0.018) n = 68 0.001 0.0092 0.001 0.0091 0.001 0.0091 0.001 0.0091 0.001 0.0091

barium mg/L 0.065 (<0.001 - 0.269) n = 59 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15 0.07 0.15

beryllium mg/L <0.0002 (<0.00004 - 0.0012) n = 66 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044 0.0003 0.0044

boron mg/L 0.03 (<0.01 - 0.137) n = 26 0.036 0.083 0.046 0.1 0.045 0.095 0.051 0.12 0.048 0.1

cadmium mg/L <0.001 (<0.00002 - <0.003) n = 64 0.0004 0.0086 0.00041 0.0084 0.00041 0.0084 0.00042 0.0084 0.00041 0.0084

calcium mg/L 33 (<1 - 106) n = 229 31 54 32 54 31 54 32 54 31 54

chloride mg/L 15.5 (<0.5 - 150) n = 229 10 34 11 35 11 35 11 35 11 35

chromium mg/L 0.002 (0.00061 - 0.016) n = 87 0.0029 0.013 0.003 0.013 0.0029 0.013 0.003 0.013 0.003 0.013

cobalt mg/L 0.001 (0.000155 - 0.006) n = 62 0.001 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054 0.0011 0.0054

copper mg/L 0.002 (<0.0002 - 0.0122) n = 90 0.0025 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01 0.0026 0.01

dissolved organic carbon mg/L 8.35 (0.3 - 30.3) n = 214 10 20 10 20 10 20 10 20 10 20

iron mg/L 0.74 (<0.001 - 11.8) n = 78 0.9 8.8 0.9 8.8 0.9 8.8 0.9 8.8 0.9 8.8

lead mg/L 0.0012 (<0.0001 - 0.026) n = 53 0.0011 0.0068 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067 0.0011 0.0067

magnesium mg/L 8.8 (<1 - 27.3) n = 228 9.0 16 9.0 16 9.0 16 9.0 16 9.0 16

manganese mg/L 0.043 (<0.001 - 0.592) n = 88 0.05 0.27 0.05 0.22 0.05 0.22 0.05 0.22 0.05 0.22

mercury mg/L 0.00000715 (<0.0000006 - <0.0002) n = 14 0.000014 0.00013 0.000015 0.00013 0.000015 0.00013 0.000015 0.00013 0.000015 0.00013

Page 50: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case (continued)

- 47 -

Modelled Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

molybdenum mg/L 0.001 (0.0004 - 0.007) n = 61 0.0013 0.011 0.0035 0.012 0.0029 0.011 0.0052 0.02 0.0043 0.012

naphthenic acids - labile mg/L - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

naphthenic acids - refractory

mg/L <1 (<1 - <1) n = 4 0.2 0.8 0.3 0.9 0.3 0.9 0.3 1.0 0.3 1.0

nickel mg/L 0.003 (<0.0002 - 0.04) n = 63 0.0049 0.016 0.005 0.016 0.005 0.016 0.0051 0.016 0.005 0.016

potassium mg/L 1.2 (<0.1 - 7.1) n = 229 1.4 2.5 1.5 2.6 1.5 2.6 1.5 2.6 1.5 2.6

selenium mg/L <0.0002 (<0.0001 - 0.0009) n = 62 0.0002 0.00073 0.00021 0.00074 0.00021 0.00073 0.00021 0.00074 0.00021 0.00074

silver mg/L <0.0001 (<0.000005 - 0.0007) n = 15 0.000022 0.00017 0.000024 0.00012 0.000024 0.00012 0.000024 0.00012 0.000024 0.00012

sodium mg/L 16.5 (<1 - 121) n = 229 15 35 16 39 16 38 17 40 16 39

strontium mg/L 0.193 (0.136 - 0.3) n = 21 0.27 0.48 0.27 0.48 0.27 0.48 0.27 0.49 0.27 0.49

sulphate mg/L 23.6 (<3 - 186) n = 230 24 55 25 57 25 57 26 57 26 57

sulphide mg/L <0.005 (<0.001 - 0.02) n = 89 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.003 0.008

total dissolved solids mg/L 178 (16 - 722) n = 227 176 298 180 307 180 306 183 308 181 306

total nitrogen mg/L 0.48 (<0.01 - 2.96) n = 220 0.7 2.2 0.8 2.2 0.8 2.2 0.8 2.2 0.8 2.2

total phenolics mg/L <0.001 (<0.001 - 0.042) n = 186 0.0038 0.018 0.0037 0.018 0.0037 0.018 0.0037 0.018 0.0037 0.018

total phosphorus mg/L 0.043 (0.004 - 0.75) n =

220 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35 0.06 0.35

toxicity - acute TUa - <0.01 <0.01 <0.01 0.02 <0.01 0.01 <0.01 0.02 <0.01 0.01

toxicity - chronic TUc - <0.01 <0.01 0.01 0.04 <0.01 0.03 <0.01 0.05 <0.01 0.03

vanadium mg/L 0.002 (0.0007 - 0.02) n = 113 0.0021 0.017 0.0026 0.017 0.0022 0.017 0.0026 0.017 0.0022 0.017

zinc mg/L 0.0088 (0.0007 - 0.046) n = 81 0.013 0.042 0.013 0.042 0.013 0.042 0.013 0.04 0.013 0.04

Page 51: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

Table 9B Predicted Water Quality of the Athabasca River Upstream of the Embarras River for the CEA Case (continued)

- 48 -

Modelled Background Baseline (e) CEA Case (e)

Initial Discharge Far-future Initial Discharge Far-future Parameter Units Natural Variation Observed in the Athabasca River

Upstream of Embarras (c) median peak(d) median peak(d) median peak(d) median peak(d) median peak(d)

PAH group 1 (carc) µg/L <5 (<0.02 - <5) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 2 (carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 0.001

PAH group 3 (carc) µg/L <2 (<0.02 - <2) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 4 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 5 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001 <0.001 0.001

PAH group 6 (non-carc) µg/L <0.04 (<0.04 - <0.04) n = 1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

PAH group 7 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 <0.001 <0.001

PAH group 8 (non-carc) µg/L <1 (<0.02 - <1) n = 24 <0.001 <0.001 <0.001 0.002 <0.001 0.001 <0.001 0.003 <0.001 0.002

PAH group 9 (non-carc) µg/L <1 (<0.02 - <1) n = 23 <0.001 0.006 <0.001 0.005 <0.001 0.005 <0.001 0.005 <0.001 0.005

monomer mg/L - <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

polymer mg/L - <0.001 <0.001 0.001 0.005 0.001 0.003 0.054 0.27 0.041 0.21 (a) - = No data. (c) Based on information from Golder (2000, 2001, 2002), RAMP (2006), and from Alberta Environment WDS stations: AB07DA0010\0040\0060\0080\0250 (AENV 2006). (d) Peak concentrations represent 99.91 percentile values calculated from a model dataset containing more than 14,000 datapoints; with the exception of acute toxicity, which is a daily peak, concentrations are shown as four-day average concentrations. (e) If predicted concentrations were so low they became negligible, model results were listed as below detection.

Page 52: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 49 -

5 REFERENCES

AENV (Alberta Environment). 2006. Data obtained from AENV Water Data System. Environmental Service, Environmental Sciences Division, Edmonton, AB.

AEP (Alberta Environmental Protection). 1995. Water Quality Based Effluent Limits Procedures Manual. Environmental Protection. Edmonton, AB.

CNRL (Canadian Natural Resources Limited). 2002. Horizon Oil Sands Project – Application for Approval. Volume 1 Prepared by Canadian Natural Resources Limited. Volumes 2, 3, 4, 5, 6, 7 and 8 Prepared by Golder Associates Ltd. for Canadian Natural Resources Limited. Submitted to Alberta Energy and Utilities Board and Alberta Environment. June 2002. Calgary, AB.

Environment Canada. 2006. Hydrological Database (HYDAT) Version 2000-2001. Station 07DA001 (Athabasca River below Fort McMurray).

Fischer, H.B., E.J. List, R.C.Y Koh, J. Imberger and N.H. Brooks. 1979. Mixing in Inland and Coastal Waters. Academic Press, Inc. San Diego, CA.

Golder and Cantox (Golder Associates Ltd. and Cantox Environmental Inc.). 2002. Surface Water Quality and Human, Aquatic Biota and Wildlife Health for Jackpine Mine - Phase 1. Prepared for Shell Canada Limited. June 2002.

Golder (Golder Associates Ltd.). 2000. Oil Sands Regional Aquatics Monitoring Program (RAMP) 1999. Final Report for the RAMP Steering Committee.

Golder. 2001. Oil Sands Regional Aquatics Monitoring Program (RAMP) 2000. Volume II: Climate and Hydrologic Monitoring. Prepared for the RAMP Steering Committee.

Golder. 2002. Oil Sands Regional Aquatics Monitoring Program (RAMP) 2001. Volume I: Chemical and Biological Monitoring. Volume II: Climatic and Hydrologic Monitoring. Submitted to RAMP Steering Committee

Golder. 2004. Athabasca River Model Update and Reach Segmentation. Submitted to the Cumulative Environmental Management Association. March 2004.

Page 53: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 50 -

Golder. 2005. North Saskatchewan River Impact Study: Development of Total Loading Management Objectives for the City of Edmonton. Submitted to the City of Edmonton. June 2005.

Golder. 2006. Athabasca River Model Interface for Instream Flow Needs Assessment. Submitted to Alberta Environment. April 2006.

Imperial (Imperial Oil Resources Ventures Limited). 2005. Kearl Oil Sands Project. Mine Development. Volume 1 to 9. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Prepared by Imperial Oil Resources Ventures Limited in Association with Golder Associates Ltd. Axys Environmental Consulting Ltd. Komex International Inc. and Nichols Applied Management. July 2005. Calgary, Alberta.

NAM (Nichols Applied Management). 2005. Urban Population Model Update. Submitted to the Regional Issues Working Group.

RAMP (RAMP 2005 Implementation Team). 2006. Regional Aquatics Monitoring Program (RAMP) 2005 Annual Report. Prepared for: RAMP Steering Committee. Submitted by the RAMP 2005 Implementation Team consisting of: Hatfield Consultants Ltd., Jacques Whitford Environment Ltd., Mack, Slack & Associates Inc., and Western Resource Solution. March 2006.

Shaw, R.D. and E.E. Prepas. 1990. Groundwater-Lake Interactions, 2: Nearshore Seepage Pattern and the Contribution of Groundwater to Lakes in Central Alberta. J. Hydrol. 119:121- 139.

Shell (Shell Canada Limited). 1997. Muskeg River Mine Project EIA. Volumes 2, 3 and 5. Prepared by Golder Associates Ltd.

Shell. 2005. Muskeg River Mine Expansion Project Application and Environmental Impact Assessment. Volume 1,2, 3 and 4. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Prepared by Shell Canada Limited in Association with Golder Associates Ltd. And Nichols Applied Management. April 2005. Fort McMurray, AB.

Suncor (Suncor Energy Inc.). 1998. Project Millennium Application. Volumes 1 and 2. Prepared by Golder Associates Ltd., Calgary AB.

Suncor. 2003. Suncor South Tailings Pond Project. Volumes 1 and 2. Prepared by Suncor Energy Inc., Oil Sands in association with Golder Associates Ltd.,

Page 54: APPENDIX H-5 WATER QUALITY IN THE ATHABASCA RIVER · BK r j r j r j r j C C x C 1 / 1 2erf 2 2 erf 2 erf e 2 ( , ) ξ η η ξ η η ξ η η ξ η η η (4) where: Ns = the number

Northern Lights Mining and Extraction Project Appendices Supplemental Submission December 2007

- 51 -

Nichols Applied Management and Millennium EMS Solutions. December 19, 2003. Fort McMurray, AB.

Suncor. 2005. Voyageur Project Application and Environmental Impact Assessment. Volumes 1A, 1B, 2, 3, 4, 5 and 6. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Prepared by Suncor Energy Inc. Oil Sands in Association with Golder Associates Ltd. And Nichols Applied Management. March 2005. Fort McMurray, AB.

Suncor (Suncor Energy Inc.). 2007. Voyageur South Project Application and Environmental Impact Assessment. Volumes 1, 2, 3 and 4. Submitted to Alberta Energy and Utilities Board and Alberta Environment. Fort McMurray, AB. Submitted July, 2007.

Syncrude (Syncrude Canada Ltd.). 2006. Application for Renewal of Syncrude Canada Ltds.'s Approvals Under the Alberta Environmental Protection and Enhancement Act, Volumes I and II. Submitted March, 2006.

Trillium and Hydrographics (Trillium Engineering & Hydrographics Inc.). 2003. Measurement of Transverse Mixing Coefficients in the lower Athabasca River. In Preparation for CEMA Surface Water Working Group (SWWG).

TrueNorth (TrueNorth Energy L.P.). 2001. Fort Hills Oil Sands Project. Volume 3. Environmental Impact Assessment. Prepared by Golder Associates Ltd. Submitted to Alberta Energy and Utilities Board and Alberta Environmental Protection.


Recommended