+ All Categories
Home > Documents > Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell...

Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell...

Date post: 25-May-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
32
Appendix I. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma bank resource (American Type Culture Collection, ATCC, Manassas, VA; www.atcc.org). Anti-Killer Cell Immunoglobulin-Like Receptor (KIR, CD158) KIR constitutes a family of polymorphic gene products that exhibit variable inter-individual and inter-clonal expression on NK cells and some subsets of T cells. Expression is genetically determined and does not correlate with MHC class I haplotype. Antibodies to some isoforms of KIR have not been reported, and the cross-reactivities of most antibodies should be appreciated when typing receptor expression on NK cells. Some additional cross-reactivities of these antibodies have been reported on KIR transfectants, which should also be appreciated. Clone Specificity Species/Isotype Source/Reference EB6 KIR2DL1, 2DS1 Mouse IgG1 Beckman Coulter (1) GL183 KIR2DL3, 2DS2, 2DL2 Mouse IgG1 AbD Serotec, Beckman Coulter (1) DX9 KIR3DL1 Mouse IgG1 BD Pharmingen, R&D Systems, LifeSpan BioSciences, Biolegend, Abcam, ATCC (2) Z27.3.7 KIR3DL1, 3DS1 Mouse IgG1 Beckman Coulter (3, 4) 177407 KIR3DL1 Mouse IgG2a R&D Systems HP-3E4 KIR2DL1, 2DS1, 2DS4 Mouse IgM BD Pharmingen (5, 6, 7) 5.133 KIR3DL1, 3DL2, 2DS4 Mouse IgG1 M. Colonna, Washington University, St. Louis (7) 180704 KIR2DL2, 2DL3, 2DS2, 2DS4 Mouse IgG2b R&D Systems K.S. Campbell (ed.), Natural Killer Cell Protocols, Methods in Molecular Biology 612, DOI 10.1007/978-1-60761-362-6, © Humana Press, a part of Springer Science+Business Media, LLC 2010 519
Transcript
Page 1: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix

I. Antibodies to Human Natural Killer Cell Receptors

The listed sources of antibodies are original authors, company, or hybridoma bank resource (AmericanType Culture Collection, ATCC, Manassas, VA; www.atcc.org).

Anti-Killer Cell Immunoglobulin-Like Receptor (KIR, CD158)KIR constitutes a family of polymorphic gene products that exhibit variable inter-individual andinter-clonal expression on NK cells and some subsets of T cells. Expression is genetically determinedand does not correlate with MHC class I haplotype. Antibodies to some isoforms of KIR have not beenreported, and the cross-reactivities of most antibodies should be appreciated when typing receptorexpression on NK cells. Some additional cross-reactivities of these antibodies have been reported onKIR transfectants, which should also be appreciated.

Clone Specificity Species/Isotype Source/Reference

EB6 KIR2DL1, 2DS1 Mouse IgG1 Beckman Coulter (1)

GL183 KIR2DL3, 2DS2,2DL2

Mouse IgG1 AbD Serotec, Beckman Coulter (1)

DX9 KIR3DL1 Mouse IgG1 BD Pharmingen, R&D Systems, LifeSpanBioSciences, Biolegend, Abcam, ATCC (2)

Z27.3.7 KIR3DL1, 3DS1 Mouse IgG1 Beckman Coulter (3, 4)177407 KIR3DL1 Mouse IgG2a R&D Systems

HP-3E4 KIR2DL1, 2DS1,2DS4

Mouse IgM BD Pharmingen (5, 6, 7)

5.133 KIR3DL1, 3DL2,2DS4

Mouse IgG1 M. Colonna, Washington University, St.Louis (7)

180704 KIR2DL2, 2DL3,2DS2, 2DS4

Mouse IgG2b R&D Systems

K.S. Campbell (ed.), Natural Killer Cell Protocols, Methods in Molecular Biology 612,DOI 10.1007/978-1-60761-362-6, © Humana Press, a part of Springer Science+Business Media, LLC 2010

519

Page 2: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

520 Appendix

(continued)

Clone Specificity Species/Isotype Source/Reference

NKVFS1 pan KIR2D Mouse IgG1 Novus Biologicals, LifeSpan BioSciences,AbD Serotec, Accurate, Acris, GeneTex,Genway

143211 KIR2DL1 Mouse IgG1 R&D Systems2F9 KIR2DL1 Mouse IgG2a Abnova, Santa Cruz Biotechnology

3H1905 KIR2DL1 Mouse IgG1 Santa Cruz Biotechnology4j52 KIR2DL1 Mouse IgG1 LifeSpan BioSciences

180701 KIR2DL3 Mouse IgG2a R&D Systems190IIC311 KIR2DL3 Mouse IgG2a Abnova, Santa Cruz Biotechnology, AbD

Serotec, Accurate, GeneTex

DX27 KIR3DL2 Mouse IgG2a LifeSpan BioSciences, Biolegend, BDPharmingen, Biolegend (6)

179315 KIR2DS4 Mouse IgG2a R&D Systems

5F2 KIR2DS4 Mouse IgG2b Abnova, Santa Cruz Biotechnology, GenWayFES172 KIR2DS4 Mouse IgG2a Beckman Coulter (8)

181703 KIR2DL4 Mouse IgG2a R&D Systems2H6 KIR2DL4 Mouse IgG2b Abnova, Santa Cruz Biotechnology, Abcam,

GenWay

Anti-CD94/NKG2 (CD159)CD94 is expressed as a heterodimer with various isoforms of NKG2 family of polypeptides. The NKG2isoforms are expressed variably between clones within an individual on most NK cells and a subset ofT cells. NKG2A is an inhibitory receptor, while NKG2C, -E, and -F facilitate association with thetransmembrane DAP12 signaling adapter to activate cells. NKG2D is found on most NK cells and someT cells, exists as a homodimer, and transduces activating signals through physical association with eitherDAP10 or DAP12.

Clone Specificity Species/Isotype Source/Reference

HP-3B1 CD94 (KLRD1) Mouse IgG2a Beckman Coulter, AbD Serotec (9, 10)

HP-3D9 CD94 (KLRD1) Mouse IgG1 BD Pharmingen, Accurate (9)DX22 CD94 (KLRD1) Mouse IgG1 AbD Serotec, Accurate, eBiosciences,

Biolegend

Z199 NKG2A (KLRC1) Mouse IgG2b Beckman Coulter (10)131411 NKG2A (KLRC1) Mouse IgG2a R&D Systems

2C3 NKG2A (KLRC1) Mouse IgG1 Abnova14F09 NKG2A (KLRC1) Mouse IgG2a Santa Cruz Biotechnology

134522 NKG2C (KLRC2) Mouse IgG2b R&D Systems134591 NKG2C (KLRC2) Mouse IgG1 R&D Systems

L45 NKG2C (KLRC2) Mouse IgG1 Santa Cruz Biotechnology

Page 3: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 521

(continued)

Clone Specificity Species/Isotype Source/Reference

49B18 NKG2C (KLRC2) Mouse IgG2b Santa Cruz Biotechnology

3D5 NKG2E (KLRC3) Mouse IgG2a Abnova1D10 NKG2F (KLRC4) Mouse IgG2a Abnova149810 NKG2D (KLRK1) Mouse IgG1 R&D Systems

3.1.1.1 NKG2D (KLRK1) Mouse IgG1 Millipore1D11 NKG2D (KLRK1) Mouse IgG1 Santa Cruz Biotechnology,

eBiosciences, Biolegend

5C6 NKG2D (KLRK1) Mouse IgG2a Santa Cruz Biotechnology,eBiosciences

Anti-CD161 (NKR-P1A)

NKR-P1A is found on most human NK cells and a subset of T cells. The NKR-P1A gene is the onlyNKR-P1 gene identified in man.

Clone Specificity Species/Isotype Source/Reference

DX12 NKR-P1A Mouse IgG1 BD Pharmingen (11)

191B8 NKR-P1A Mouse IgG2a Beckman Coulter (12)B199.2 NKR-P1A Mouse IgG2b AbD Serotec, Accurate (13)

Anti-CD16 (Fcγ RIIIA)The transmembrane (and signaling competent) form of CD16 is expressed on human NK cells, a subsetof T cells, macrophages, and mast cells. Fc�RIIIA is an activating Fc receptor for IgG that triggersantibody-dependent cellular cytotoxicity through association with FcεRI-� and/or TCR-. Aglycosylphosphatidylinositol (GPI)-linked form of CD16 (Fc�RIIIB) has also been identified onneutrophils.

Clone Specificity Species/Isotype Source/Reference

3G8 CD16 Mouse IgG1 BD Pharmingen, Invitrogen, Accu-rate, AbD Serotec, Beckman Coulter,Biolegend (14)

B73.1 CD16 Mouse IgG1 BD Pharmingen (15)GRM1 CD16 Mouse IgG2a Southern Biotechnology

Page 4: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

522 Appendix

Anti-CD56 (N-CAM)CD56 is an isoform of the neural cell adhesion molecule (N-CAM) which is expressed in the brain. Theleukocyte isoform of CD56 is expressed on NK cells and subsets of T cells in humans (but not mice).

Clone Specificity Species/Isotype Source/Reference

MEM-188 CD56 Mouse IgG2a Invitrogen, AbD Serotec, eBiosciences,Biolegend, Southern Biotechnology

B159.5 CD56 Mouse IgG1 BD Pharmingen, Accurate (16, 17)N901 (NKH-1) CD56 Mouse IgG1 Beckman Coulter (18)

T-199 CD56 Mouse IgG1 Accurate (19)C218 CD56 Mouse IgG1 Beckman Coulter

NKI-nbl-1 CD56 Mouse IgG1 Accurate

Activating ReceptorsThese receptors contribute significantly to NK cell activation during natural cytotoxicity throughrecognition of ligands on target cells.

Clone Specificity Species/Isotype Source/Reference

C1.7 2B4 (CD244) Mouse IgG1 Beckman Coulter,eBiosciences, Biolegend (20)

BAB281 NKp46 (NCR1, CD335) Mouse IgG1 Beckman Coulter (21)195314 NKp46 (NCR1, CD335) Mouse IgG2b R&D Systems

9E2 NKp46 (NCR1, CD335) Mouse IgG1 BiolegendZ231 NKp44 (NCR2, CD336) Mouse IgG1 Beckman Coulter (22)

253415 NKp44 (NCR2, CD336) Mouse IgG2a R&D SystemsP44-8 NKp44 (NCR2, CD336) Mouse IgG1 Biolegend

210845 NKp30 (NCR3, CD337) Mouse IgG2a R&D Systems210845 NKp30 (NCR3, CD337) Mouse IgG2a R&D Systems

Z25 NKp30 (NCR3, CD337) Mouse IgG1 Beckman CoulterP30-15 NKp30 (NCR3, CD337) Mouse IgG1 Biolegend

239127 NKp80 (KLRF1) Rat IgG2a R&D Systems

References

1. Moretta, A., Vitale, M., Bottino, C., Orengo,A. M., Morelli, L., Augugliaro, R., Bar-baresi, M., Ciccone, E., and Moretta, L.(1993) p58 molecules as putative recep-tors for major histocompatibility complex(MHC) class I molecules in human natural

killer (NK) cells: anti-p58 antibodies recon-stitute lysis of MHC class I-protected cells inNK clones displaying different specificities. J.Exp. Med., 178:597–604.

2. Litwin, V., Gumpery, J., Parham, P., Phillips,J. H., and Lanier, L. L. (1994) NKB1: a nat-

Page 5: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 523

ural killer cell receptor involved in the recog-nition of polymorphic HLA-B molecules. J.Exp. Med., 180:537–543.

3. Vitale, M., Sivori, S., Pende, D., Augugliaro,R., Di Donato, C., Amoroso, A., Malnati,M., Bottino, C., Moretta, L., and Moretta,A. (1996) Physical and functional indepen-dency of p70 and p58 natural killer (NK) cellreceptors for HLA class I: their role in thedefinition of different groups of alloreactiveNK cell clones. Proc. Natl. Acad Sci. USA,93:1453–1457.

4. Albi, N., Ruggeri, L., Aversa, F., Merigi-ola, C., Tosti, A., Tognellini, R., Grossi,C. E., Martelli, M. F., and Velardi, A.(1996) Natural killer (NK)-cell function andantileukemic activity of a large population ofCD3+/CD8+ T cells expressing NK recep-tors for Major Histocompatibility Complexclass I after “three-loci” HLA-incompatiblebone marrow transplantation. Blood, 87:3993–4000.

5. Melero, I., Salmeron, A., Balboa, M.A., Aramburu, J., and Lopez-Botet, M.(1994) Tyrosine kinase-dependent activationof human NK cell functions upon stimula-tion through a 58-kDa surface antigen selec-tively expressed on discrete subsets of NKcells and T lymphocytes. J. Immunol., 152:1662–1673.

6. Soderstrom, K., Corliss, B., Lanier, L. L.,and Phillips, J. H., (1997) CD94/NKG2 isthe predominant inhibitory receptor involvedin recognition of HLA-G by decidual andperipheral blood NK cells. J. Immunol.,159:1072–1075.

7. Dohring, C., Samaridis, J., and Colonna, M.(1996) Alternatively spliced forms of humankiller inhibitory receptors. Immunogenetics,44:227–230.

8. Bottino, C., Sivori, S., Vitale, M., Can-toni, C., Falco, M., Pende, D., Morelli,L., Augugliaro, R., Semenzato, G., Biassoni,R., Moretta, L., and Moretta, A. (1996) Anovel surface molecule homologous to thep58/p50 family of receptors is selectivelyexpressed on a subset of human natural killercells and induces both triggering of cell func-tions and proliferation. Eur. J. Immunol.,26:1816–1824.

9. Aramburu, J., Balboa, M. A., Ramirez, A.,Silva, A., Acevedo, A., Sanchez-Madrid, F.,De Landazuri, M. O., and Lopez-Botet, M.(1990) A novel functional cell surface dimer(Kp43) expressed by natural killer cells and Tcell receptor–gamma/delta+ T lymphocytes.I. Inhibition of the IL-2-dependent prolifer-ation by anti-Kp43 monoclonal antibody. J.Immunol., 144:3238–3247.

10. Perez-Villar, J. J., Carretero, M., Navarro,F., Melero, I., Rodriguez, A., Bottino, C.,Moretta, A., and Lopez-Botet, M. (1996)Biochemical and serologic evidence for theexistence of functionally distinct forms ofthe CD94 NK cell receptor. J. Immunol.,157:5367–5374.

11. Lanier, L. L., Chang, C., and Phillips, J.H. (1994) Human NKR-P1A. A disulfide-linked homodimer of the C-type lectinsuperfamily expressed by a subset of NKand T lymphocytes. J. Immunol., 153:2417–2428.

12. Poggi, A., Costa, P., Morelli, L., Cantoni, C.,Pella, N., Spada, F., Biassoni, R., Nanni, L.,Revello, V., Tomasello, E., Mingari, M. C.,Moretta, A., and Moretta, L. (1996) Expres-sion of human NKRP1A by CD34+ imma-ture thymocytes:NKRP1A-mediated regula-tion of proliferation and cytolytic activity.Eur. J. Immunol., 26:1266–1272.

13. Bennett, I. M., Zatsepina, O., Zamai, L.,Azzoni, L., Mikheeva, T., and Perussia, B.(1996) Definition of a Natural Killer NKR-P1A+/CD56-/CD16- functionally imma-ture human NK cell subset that differentiatesin vitro in the presence of interleukin 12. J.Exp. Med., 184:1845–1856.

14. Fleit, H. B., Wright, S. D., and Unke-less, J. C. (1982) Human neutrophil Fcgamma receptor distribution and struc-ture. Proc. Natl. Acad. Sci. USA, 79:3275–3279.

15. Perussia, B., Starr, S., Abraham, S., Fanning,V., and Trinchieri, G. (1983) Human naturalkiller cells analyzed by B73.1, a monoclonalantibody blocking Fc receptor functions.I. Characterization of the lymphocyte sub-set reactive with B73.1. J. Immunol., 130:2133–2141.

16. Schlossman, S., Bloumsell, L., Gilks, W., etal. (1995) Leucocyte Typing V: White celldifferentiation antigens. Oxford UniversityPress, New York.

17. Wolf, S. F., Temple, P. A., Kobayashi, M.,Young, D., Dicig, M., Lowe, l. Dzialo, R.,Fitz, l., Ferenz, C., Hewick, R. M., Keleher,K., Herrmann, S. H., Clark, S. C., Azzoni,L., Chan, S. H., Trinchieri, G., and Perus-sia, B. (1991) Cloning of cDNA for Nat-ural Killer cell Stimulatory Factor, a het-erodimeric cytokine with multiple biologiceffects on T and Natural Killer cells. J.Immunol., 146:3074–3081.

18. Griffin, J. D., Hercend, T., Beveridge,R., and Schlossman, S. F. (1983) Char-acterization of an antigen expressed byhuman natural killer cells. J. Immunol., 130:2947–2951.

Page 6: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

524 Appendix

19. Feickert, H. -J., Pietsch, T., Hadam, M. R.,Mildenberger, H., and Riehm, H. (1989)Monoclonal antibody T-199 directed againsthuman medulloblastoma: Characterization ofa new antigenic system expressed on neuroec-todermal tumors and natural killer cells. Can-cer Res., 49:4338–4343.

20. Valiante, N. M., and Trinchieri, G. (1993)Identification of a novel signal transductionsurface molecule on human cytotoxic lym-phocytes. J. Exp. Med., 178:1397–1406.

21. Sivori, S., Vitale, M., Morelli, L., San-severino, L., Augugliaro, R., Bottino, C.,

Moretta, L., and Moretta, L. (1997) p46,a novel natural killer cell-specific surfacemolecule that mediates cell activation. J. Exp.Med., 186:1129–1136.

22. Vitale, M., Bottino, C., Sivori, S., Sansev-erino, L., Castriconi, R., Marcenaro, E.,Augugliaro, R., Moretta, L., and Moretta,A. (1998) NKp44, a novel triggeringsurface molecule specifically expressed byactivated natural killer cells, is involvedin non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med., 187:2065–2072.[tam]

Page 7: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 525

II. Antibodies to Mouse and Rat Natural Killer Cell Receptors

The listed sources of antibodies are original authors, company, or hybridoma bank resource, ATCC(www.atcc.org).

Anti-Mouse Ly49Mouse Ly49 receptors are expressed variably on subsets of NK cells and a small subset of T cells.Numerous separate genes have been identified in different mouse strains with distinct MHC class Ibinding specificities as designated below. It should be noted that the data summarized below have beenobtained from direct binding studies, in vitro functional assays, or in vivo depletion studies. The resultsfrom these three types of assays do not always correspond. Individual references should be consulted todetermine how a given specificity was defined. Antibodies to some isoforms have not been reported,and the cross-reactivities of most antibodies should be appreciated when typing Ly49 expression on NKcell clones.

Clone Specificity Species/Isotype Source/Reference

A1 Ly49A (Dd, Dk, inhibitory) (specificfor B6 but not BALB allele)

Mouse IgG2a BD Pharmingen (1–4)

JR9-318 Ly49A (Dd, Dk, inhibitory) Mouse IgG1 BD Pharmingen (5)YE1/48 Ly49A (Dd, Dk, inhibitory) Rat IgG2c Biolegend (6, 7)

12A8 Ly49A (Dd, Dk, inhibitory) Ly49D(Dd, Ld, DSp2, activating)

Rat IgG2a BD Pharmingen, eBio-sciences (8, 9)

4D11 Ly49A, weak (Dd, Dk, inhibitory)Ly49G2 (Dd, inhibitory)

Rat IgG2a BD Pharmingen, ATCC,eBiosciences (10, 11)

4LO3311 Ly49C (Kb, Dd, Kd, inhibitory) Mouse IgG3 S. Lemieux (12, 13)5E6 Ly49C (Kb, Dd, Kd, inhibitory)

Ly49I (Kb, H-2d, inhibitory)Mouse IgG2a BD Pharmingen (12, 14)

4E5 Ly49D (Dd, Ld, DSp2,activating)

Rat IgG2a BD Pharmingen, eBio-sciences (15, 16)

YLI-90 Ly49I (Kb, H-2d, inhibitory) Mouse IgG1 BD Pharmingen, eBio-sciences

Anti-Mouse NKR-P1C (NK1.1, CD161, KLRB1C)NKR-P1C is found on most murine NK cells and a subset of T cells (including NKT cells) only indistinct strains of mice. NKR-P1C is expressed in the following strains of mice: C57BL, FVB/N, NZB,SJL, C57BR, and C57L (not in A, AKR, BALB/c, CBA/J, C3H, C58, DBA/1, DBA/2, or 129strains).

Clone Specificity Species/Isotype Source/Reference

PK136 Mouse NKR-P1C Mouse IgG2a ATCC, BD Pharmingen, Cedarlane,AbD Serotec, Southern BiotechnologyAssociates, Accurate, Invitrogen, eBio-sciences, Santa Cruz Biotechnology,Biolegend (17, 18)

3H2788 Mouse NKR-P1C Mouse IgG2a Santa Cruz Biotechnology

Page 8: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

526 Appendix

Anti-Rat NKR-P1A (CD161)

High-level expression of NKR-P1A is found on all rat NK cells and low-level expression is seen on mostrat neutrophils, a subset of T cells, and reportedly on activated monocytes and a subset of dendritic cells.

Clone Specificity Species/Isotype Source/Reference3.2.3 Rat NKR-P1A Mouse IgG1 Thermo Scientific (19)10/78 Rat NKR-P1A Mouse IgG1 Cedarlane, BD Pharmingen, Invit-

rogen, Accurate, AbD Serotec,Biolegend (20)

Anti-Mouse CD16 (Fcγ RIII)

The transmembrane form of CD16 is expressed on mouse NK cells, macrophages, neutrophils, myeloidprecursors, and a subset of thymocytes. As opposed to humans, no glycosylphosphatidylinositol(GPI)-linked form has been identified in mouse. It is important to note that the available antibodiesalso bind CD32 (Fc�RII) on B cells and myeloid cells.

Clone Specificity Species/Isotype Source/Reference

2.4G2 Mouse CD16/CD32 Rat IgG2b BD Pharmingen, ATCC (21–23)

FCR4G8 Mouse CD16/CD32 Rat IgG2b AbD Serotec

Page 9: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 527

Anti-

CD56

(N-C

AM)

Not

e:A

sop

pose

dto

hum

an,N

-CA

Mis

not

expr

esse

don

mou

seor

rat

NK

cells

.

Mis

cella

neou

sAn

ti-M

ouse

NKCe

llAn

tibod

ies

Clon

eSp

ecifi

city

Spec

ies/

Isot

ype

Sour

ce/R

efer

ence

18d3

Mou

seC

D94

Rat

IgG

2aA

bDSe

rote

c,A

ccur

ate,

eBio

scie

nces

,So

uthe

rnB

iote

chno

logy

,Bio

lege

nd

16A

11M

ouse

NK

G2A

(KL

RC

1)M

ouse

IgG

2bSa

nta

Cru

zB

iote

chno

logy

,eB

iosc

ienc

es20

d5M

ouse

NK

G2A

/C

/E

Rat

IgG

2aA

bDSe

rote

c,A

ccur

ate,

eBio

scie

nces

1910

04M

ouse

NK

G2D

(KL

RK

1)R

atIg

G2b

R&

DSy

stem

s14

F-2

Mou

seN

KG

2D(K

LR

K1)

Rat

IgG

2bSa

nta

Cru

zB

iote

chno

logy

1D11

Mou

seN

KG

2D(K

LR

K1)

Rat

IgG

Acc

urat

e,eB

iosc

ienc

es,B

iole

gend

CX

5M

ouse

NK

G2D

(KL

RK

1,bl

ocki

ngan

tibod

y)R

atIg

G1

Invi

trog

en,e

Bio

scie

nces

,Bio

lege

nd

C7

Mou

seN

KG

2D(K

LR

K1)

Arm

enia

nha

mst

erIg

GB

iole

gend

,Bio

XC

ell,

eBio

scie

nces

2590

18M

ouse

NK

p46

(NC

R1)

Rat

IgG

2aR

&D

Syst

ems

29A

1.4

Mou

seN

Kp4

6(N

CR

1)R

atIg

G2a

eBio

scie

nces

2B4

Mou

se2B

4(C

D24

4)M

ouse

IgG

2bB

DPh

arm

inge

n,eB

iosc

ienc

es(1

7)

DX

5M

ouse

CD

49b

(VL

A-2

),pa

nN

Kce

llm

arke

rR

atIg

MB

DPh

arm

inge

n,In

vitr

ogen

,A

bDSe

rote

c,eB

iosc

ienc

es,B

iole

gend

Asi

alo

GM

1A

llm

ouse

and

rat

NK

cells

,so

me

activ

ated

Poly

clon

alra

bbit

IgG

Acc

urat

e,C

edar

lane

,Wak

o

Mac

roph

ages

and

som

eC

D8+

Tce

llsA

bDSe

rote

c,A

bcam

,Nov

us

Page 10: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

528 Appendix

References

1. Nagasawa, R., J. Gross, O. Kanagawa, K.Townsend, L.L. Lanier, J. Chiller, and J.P.Allison (1987) Identification of a novel T cellsurface disulfide-bonded dimer distinct fromthe �/� antigen receptor. J. Immunol., 138,815–824.

2. Held, W., J. Roland, and D.H. Raulet (1995)Allelic exclusion of Ly49 family genes encod-ing class I-MHC-specific receptors on NKcells. Nature, 376, 355–358.

3. Karlhofer, F.M., R.K. Ribaudo, and W.M.Yokoyama (1992) MHC class I alloanti-gen specificity of Ly-49+ IL-2 acti-vated natural killer cells. Nature, 358,66–70.

4. Karlhofer, F.M., R. Hunziker, A. Reichlin,D.H. Margulies, and W.M. Yokoyama (1994)Host MHC class I molecules modulate in vivoexpression of a NK cell receptor. J. Immunol.,153, 2407–2416.

5. Roland, J., and P.A. Cazenave (1992) Ly-49antigen defines an alpha beta TCR populationin i-IEL with an extrathymic maturation. Int.Immunol., 4, 699–706.

6. Brennan, J., G. Mahon, D.L. Mager, W.A.Jefferies, and F. Takei (1996) Recognitionof class I major histocompatibility complexmolecules by Ly49: specificities and domaininteractions. J. Exp. Med., 183, 1553–1559.

7. Brennan, J., D. Mager, W. Jefferies, and F.Takei (1994) Expression of different mem-bers of the Ly-49 gene family defines distinctnatural killer cell subsets and cell adhesionproperties. J. Exp. Med., 180, 2287–2295.

8. Mason, L.H., S.K. Anderson, W.M.Yokoyama, H.R. Smith, P.R. Winkler, andJ.R. Ortaldo (1996) The Ly-49D receptoractivates murine natural killer cells. J. Exp.Med., 184, 2119–2128.

9. Raziuddin, A., A.L. Longo, L. Mason, J.R.Ortaldo, M. Bennett, and W.J. Murphy(1998) Differential effects of the rejectionof bone marrow allografts by the depletionof activating versus inhibiting Ly-49 naturalkiller cell subsets. J. Immunol., 160, 87–94.

10. Salcedo, M., A.D. Diehl, A.M. Olsson, J.Sundback, K.L. Van, K. Karre, and H.G.Ljunggren (1997) Altered expression of Ly49inhibitory receptors on natural killer. J.Immunol., 158, 3174–3180.

11. Mason, L.H., J.R. Ortaldo, H.A. Young,V. Kumar, M. Bennett, and S.K. Anderson(1995) Cloning and functional characteristicsof murine LGL-1: a member of the Ly-49gene family (Ly-49G2). J. Exp. Med., 182,293–303.

12. Brennan, J., S. Lemieux, J.D. Freeman,D.L. Mager, and F. Takei (1996) Het-erogeneity among Ly-49C natural killer(NK) cells: Characterization of highlyrelated receptors with differing functionsand expression patterns. J. Exp. Med., 184,2085–2090.

13. Gosslin, P., Y. Lusignana, J. Brennan, F.Takei, and S. Lemieux (1997) The NK2.1receptor is encoded by Ly49C and its expres-sion is regulated by MHC class I alleles. Int.Immunol., 9, 533–540.

14. Stoneman, E.R., M. Bennett, J. An, K.A.Chesnut, E.K. Wakeland, J.B. Scheerer,M.J. Siciliano, V. Kumar, and P.A. Mathew(1995) Cloning and characterization of 5E6(Ly49C), a receptor molecule expressed ona subset of murine natural killer cells. J. Exp.Med., 182, 305–313.

15. Mason, L.H., Willette-Brown, J., Anderson,S.K., Gosselin, P., Shores, E.W., Love, P.E.,Ortaldo, J.R., and McVicar, D.W. (1998)Characterization of an associated 16-kDatyrosine phosphoprotein required for Ly-49D signal transduction. J. Immunol., 160,4148–4152.

16. Ortaldo, J.R., R. Winkler-Pickett, A.T.Mason, and L.H. Mason (1998) TheLy49 family: Regulation of cytotoxicity andcytokine production in murine CD3+ cells. J.Immunol., 160, 1158–1165.

17. Sentman, C.L., J. Hackett, Jr., T.A. Moore,M.M. Tutt, M. Bennett, and V. Kumar(1989) Pan natural killer cell antibodies andtheir relationships to the NK1.1 antigen.Hybridoma, 8, 605–614.

18. Koo, G.C., and J.R. Peppard (1984) Estab-lishment of monoclonal anti-Nk-1.1 anti-body. Hybridoma, 3, 301–303.

19. Chambers, W.H., N.L. Vujanovic, A.B.DeLeo, M.W. Olszowy, R.B. Herberman, andJ.C. Hiserodt (1989) Monoclonal antibodyto a triggering structure expressed on ratnatural killer cells and adherent lymphokine-activated killer cells. J. Exp. Med., 169,1373–1389.

20. Kraus, E., D. Lambracht, K. Wonigeit, andT. Hunig (1996) Negative regulation of ratnatural killer cell activity by major histocom-patibility complex class I recognition. Eur. J.Immunol., 26, 2582–2586.

21. Unkeless, J.C. (1979) Characteriza-tion of a monoclonal antibody directedagainst mouse macrophage and lympho-cyte Fc receptors. J. Exp. Med. 150,580–596.

Page 11: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 529

22. Kurlander, R.J., D.M. Ellison, and J. Hall,(1984) The blockade of Fc receptor-mediatedclearance of immune complexes in vivo bya monoclonal antibody (2.4G2) directedagainst Fc receptors on murine leukocytes. J.Immunol., 133, 855–862.

23. Perussia, B., M.M. Tutt, W.Q. Qiu, W.A.Kuziel, P.W. Tucker, G. Trinchieri, M. Ben-nett, J.V. Ravetch, and V. Kumar (1989)Murine natural killer cells express functionalFc� receptor II encoded by the Fc�R� gene.J. Exp. Med., 170, 73–86.

Page 12: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

530 Appendix

III. TransformedNatural Killer CellLines

Human KHYG-1 – IL-2-dependent NK-like cell line that is highlycytolytic, produces cytokines, lacks CD16 expression, and exhibitshigh spontaneous granule release, which may be due to con-stitutively polarized granules. This cell line expresses KIR3DL1and KIR3DL2 on subsets of cells. Source: Health ScienceResearch Resources Bank, Japan Health Sciences Foundation(www.jhsf.or.jp)

Yagita, M., Huang, C.L., Umehara, H., Matsuo, Y., Tabata,R., Miyake, M., Konaka, Y., and Takatsuki, K. (2000) Anovel natural killer cell line (KHYG-1) from a patient withaggressive natural killer cell leukemia carrying a p53 muta-tion. Leukemia. 14, 922–930.

Suck, G., Branch, D.R., Smyth, M.J., Miller, R.G., Vergidis, J.,Fahim, S., and Keating, A. (2005) KHYG-1, a model for thestudy of enhanced natural killer cell cytotoxicity. Exp. Hema-tol. 33, 1160–1171.

Suck, G., Branch, D.R., Aravena, P., Mathieson, M.,Helke, S., and Keating, A. (2006) Constitutively polar-ized granules prime KHYG-1 NK cells. Int. Immunol. 18,1347–1354.

NKL – An IL-2-dependent neoplastic NK-like cell line that isweakly cytolytic. Expresses ILT2, which is an inhibitory receptorthat binds HLA-A, -B, and –G. Source: original authors

Robertson, M. J., Cochran, K. J., Cameron, C., Le, J. M.,Tantravahi, R., and Ritz, J. (1996) Characterization of a cellline, NKL, derived from an aggressive human natural killercell leukemia. Exp. Hematol., 24, 406–415.

NK3.3 – IL-2-dependent NK-like cell line that exhibits naturalkilling activity. Source: original authors

Kornbluth, J., Spear, B., Raab, S.S., and Wilson, D.B. (1985)Evidence for the role of class I and class II HLA antigensin the lytic function of a cloned line of natural killer cells.J. Immunol., 134, 728–735.

Kornbluth, J., Flomenberg, N., and Dupont, B. (1982) Cellsurface phenotype of a cloned line of human natural killercells. J. Immunol.,129, 2831–2837.

NK-92 – An IL-2-dependent human NK-like cell line that ishighly cytolytic, produces cytokines, and lacks CD16 expression.Source: ATCC (www.atcc.org) and DSMZ (www.dsmz.de)

Gong, J. H., Maki, G., and Klingemann, H. G. (1994) Char-acterization of a human cell line (NK-92) with phenotypical

Page 13: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 531

and functional characteristics of natural killer cells. Leukemia,8, 652–658.

Maki, G., Klingemann, H. -G., Martinson, J. A., and Tam, Y. K.(2001) Factors regulating the cytotoxic activity of the humannatural killer cell line, NK-92. J. Hematol. Stem Cell Res., 10,369–383.

YT – An IL-2-independent human NK-like cell line that mediatesweak cytotoxicity through CD28 expression. It has come to ourattention that many variants of this line exist and some exhibitnatural cytotoxicity toward targets that are not normally killedby NK cells, while others do not express typical NK cell mark-ers. One should characterize the line to determine its phenotypebefore use in functional and biochemical studies. Source: DSMZ(www.dsmz.de)

Yodoi, J., Teshigawara, K., Nikaido, T., Fukui, K., Noma, T.,Honjo, T., Takigawa, M., Sasaki, M., Minato, N., and Tsudo,M. (1985) TCGF (IL 2)-receptor inducing factor(s). I. Reg-ulation of IL 2 receptor on a natural killer-like cell line (YTcells). J. Immunol., 134, 1623–1630.

Azuma, M., Cayabyab, M., Buck, D., Phillips, J.H., and Lanier,L.L. (1992) Involvement of CD28 in MHC-unrestrictedcytotoxicity mediated by a human natural killer leukemia cellline. J. Immunol.,149, 1115–1123.

Rat RNK-16 – An IL-2-independent spontaneous leukemic cell linefrom F344 rats which exhibits NK cell characteristics. The originalline is IL-2 dependent, but many subclones currently available areIL-2 independent.

Ward, J. M., and Reynolds, C. W. (1983) Large granular lym-phocyte leukemia. A heterogeneous lymphocytic leukemia inF344 rats. Am. J. Pathol., 111, 1–10.Source: original authors.

Page 14: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

532 Appendix

IV. Natural KillerCell Target LinesHuman 771.221 – MHC class I-deficient human EBV-transformed B

lymphoblastoid line. These cells do not express endogenousHLA-A, HLA-B, or HLA-C class I antigens due to gamma ray-induced mutations in the HLA complex. This line (and HLAtransfectants) is commonly used to measure spontaneous (natu-ral) cytotoxicity by human NK cells.

Shimizu, Y., and DeMars, R. (1989) Production of human cellsexpressing individual transferred HLA-A,-B,-C genes usingan HLA-A,-B,-C null human cell line. J. Immunol., 142,3320–3328.

Shimizu, Y., Geraghty, D.E., Koller, B.H., Orr, H.T., andDeMars, R. (1988) Transfer and expression of three clonedhuman non-HLA-A, B, C class I major histocompatibilitycomplex genes in mutant lymphoblastoid cells. Proc. Natl.Acad. Sci. USA, 85, 227–231.Source: R. DeMars and a variety of labs that have generated

HLA-A, B, C transfectants.

K562 – A human chronic myelogenous leukemia cell line. Classi-cal target cell for spontaneous (granule exocytosis-mediated, Ca2+

dependent) cytotoxicity.Lozzio, C.B., and Lozzio, B.B. (1975) Human chronic myel-

ogenous leukemia cell-line with positive Philadelphia chro-mosome. Blood, 45, 321–334.

Ortaldo, J.R., Oldham, R.K., Cannon, G.C., and Herberman,R.B. (1977) Specificity of natural cytotoxic reactivity of nor-mal human lymphocytes against a myeloid leukemia cell line.J. Natl. Cancer Inst. (Bethesda), 59, 77–83.Source: ATCC.

C1R – MHC class I-deficient �-irradiated variant of the humanEBV-transformed Licr.Lon.Hmy2 B cell line. The cells expressHLA-Cw4 and a low level of a mutant form of HLA-B35, des-ignated B∗3503. This line (and HLA transfectants) is commonlyused to measure spontaneous (natural) cytotoxicity by human NKcells.

Storkus, W.J., Howell, D.N., Salter, R.D., Dawson, J.R., andCresswell, P. (1987) NK susceptibility varies inversely withtarget cell class I HLA antigen expression. J. Immunol., 138,1657–1659.

Zemmour, J., Little, A.M., Schendel, D.J., and Parham, P.J.(1992) The HLA-A,B “negative” mutant cell line C1Rexpresses a novel HLA-B35 allele, which also has a point

Page 15: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 533

mutation in the translation initiation codon. J. Immunol.,148, 1941–1948.Source: ATCC.

Daudi – Human Burkitt’s B-cell lymphoma line. This lineexpresses the NKG2D ligand, ULBP1.

Klein, E., Klein, G., Nadkarni, J.S., Nadkarni, J.J., Wigzell, H.,and Clifford, P. (1968) Surface IgM-kappa specificity on aBurkitt lymphoma cell in vivo and in derived culture lines.Cancer Res., 28, 1300–1310.Source: ATCC.

THP-1 – An acute monocytic leukemia cell line that expressesboth Fc�RI and Fc�RII, as well as the complement (C3b) recep-tor. The cells grow in suspension but are somewhat “sticky.” Itcan be used in redirected ADCC cytotoxicity assays. Importantly,this cell line is also insensitive to spontaneous (natural) cytotoxic-ity by IL-2-activated NK cells and clones.

Tsuchiya, S., Yamabe, M., Yamaguchi, Y., Kobayashi, Y.,Konno, T., and Tada, K. (1980) Establishment and character-ization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer, 26: 171–176.Source: ATCC.

RDMC – A human rhabdomyosarcoma, which is likely to be thesame as RD. This cell line is adherent and can be used for redi-rected ADCC cytotoxicity assays using very low E:T ratios (i.e.,also sensitive to spontaneous cytotoxicity).

McAllister, R.M., Melnyk, J., Finkelstein, J.Z., Adams, E.C., Jr.,and Gardner, M.B. (1969) Cultivation in vitro of cells derivedfrom a human rhabdomyosarcoma. Cancer, 24: 520–526.Source: ATCC.

Jurkat – A human CD3+/CD4+ Fas (CD95)+ T-lymphoid cellline sensitive to spontaneous cytotoxicity by NK cells, both gran-ule exocytosis- and Fas (CD95) mediated.

Gillis, S., and Watson, J. (1980) Biochemical and biologi-cal characterization of lymphocyte regulatory molecules. V.Identification of an interleukin 2-producing human leukemiaT cell line. J. Exp. Med. 152:1709–1719.Source: ATCC.

Mouse YAC-1 – Mouse lymphoma induced by Moloney leukemia virus(MLV) in A/Sn mouse. Classical target cell for spontaneous cyto-toxicity. Evidence by Petersson et al. suggests that low MHCClass I expression by YAC-1 grown in vitro is due to high con-stitutive IL-10 production by the cell line. YAC-1 expresses theNKG2D ligand, RAE-1, and engagement of this receptor con-tributes significantly to NK cell-mediated cytotoxicity.

Cikes, M., Friberg, S., Jr., and Klein, G. (1973) Progressiveloss of H-2 antigens with concomitant increase of cell-surface

Page 16: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

534 Appendix

antigen(s) determined by Moloney leukemia virus in cul-tured murine lymphomas. J. Natl. Cancer Inst. (Bethesda),50, 347–362.

Kiessling, R., Klein, E., and Wigzell, H. (1975) “Natural” killercells in the mouse. I. Cytotoxic cells with specificity for mouseMoloney leukemia cells. Specificity and distribution accord-ing to genotype. Eur. J. Immunol.,5, 112–117.

Petersson, M., Charo, J., Salazar-Onfray, F., Noffz, G.,Mohaupt, M., Qin, Z., Klein, G., Blankenstein, T., andKiessling, R. (1998) Constitutive IL-10 Production Accountsfor the High NK Sensitivity, Low MHC Class I Expression,and Poor Transporter Associated with Antigen Processing(TAP)-1/2 Function in the Prototype NK Target YAC-1.J. Immunol., 161, 2099–2105.Source: ATCC.

P815 – DBA/2 murine mastocytoma has been used as a targetcell for cytotoxic assays. Clone P815-X2 is Fc�RII/III negative,while clone P815� is Fc�RII/III positive. P815� can be used inredirected cytotoxicity assays, provided low E:T ratios are used. Itis also sensitive to spontaneous (natural) killing by IL-2-activatedhuman NK cells. This cell line expresses H-2d.

Lundak, R.L., and Raidt, D.J. (1973) Cellular immuneresponse against tumor cells. I. In vitro immunization of allo-geneic and syngeneic mouse spleen cell suspensions againstDBA mastocytoma cells. Cell. Immunol., 9, 60–66.

Plaut, M., Lichtenstein, L.M., Gillespie, E., and Henney, C.S.(1973) Studies on the mechanism of lymphocyte-mediatedcytolysis. IV. Specificity of the histamine receptor on T cells.J. Immunol., 111, 389–394.

Ralph, P., and Nakoinz, I. (1977) Antibody-dependent killingof erythrocyte and tumor targets by macrophage-related celllines: enhancement by PPD and LPS. J. Immunol., 119,950–954.Source: ATCC.

RMA-S – A mutant of the murine RMA lymphoma line whichhas a defect in the TAP-2 transporter, resulting in the expressionof only 5–10% of the wild-type H-2Db, Kb, and �2-microglobulinmolecules. The RMA line expresses higher levels of these MHCclass I molecules.

Ohlen, C., Bastin, J., Ljunggren, H.-G., Foster, L., Wolpert,E., Klein, G., Townsend, A.R., and Karre, K. (1990) Resis-tance to H-2-restricted but not to allo-H2-specific graft andcytotoxic T lymphocyte responses in lymphoma mutant. J.Immunol. 145, 52–58.

Franksson, L., George, E., Powis, S., Butcher, G., Howard,J., and Karre, K. (1993) Tumorigenicity conferred

Page 17: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 535

to lymphoma mutant by major histocompatibilitycomplex-encoded transporter gene. J. Exp. Med. 177,201–205.

L1210 – A murine lymphocytic leukemia of DBA/2 origin thatgrows in suspension. It can be used, like P815, for redirectedADCC by human NK cells.

Moore, G.E., Sandberg, A.A., and Ulrich, K. (1967) Suspen-sion cell culture and in vivo and in vitro chromosome consti-tution of mouse leukemia L1210. J. Natl. Cancer Inst., 36:405–421.Source: ATCC.

L4 – Mouse T lymphoma induced in a C57BL/6 N mouse by9,10-dimethyl-1,2-benzanthracene. This cell line expresses H-2b.It is important to note that this line also expresses Ly49A.

Herberman, R.B. (1972) Serological analysis of cell surfaceantigens of tumors induced by murine leukemia virus. J. Natl.Cancer Inst. (Bethesda), 48, 265–271.

Shevach, E.M., Stobo, J.D., and Green, I. (1972)Immunoglobulin and theta-bearing murine leukemiasand lymphomas. J. Immunol., 108, 1146–1151.Source: ATCC.

Rat YB2/0 – Rat myeloma clone derived from the hybrid myelomaYB2/3HL as selected for the absence of Ig secretion.

Kilmartin, J.V., Wright, B., and Milstein, C. (1982)Rat monoclonal antitubulin antibodies derived by usinga new nonsecreting rat cell line. J. Cell Biol., 93,576–582.Source: ATCC.

Page 18: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

536 Appendix

V. Killer Cell Immunoglobulin-Like Receptor (KIR) Nomenclaturea,b

Receptor HLA Specificity Mass (kDa) CD designationAlternative names (andclosely related sequences)c

KIR2DL1 Cw2, Cw4, Cw5, Cw6 58 CD158a NKAT1, cl-47-11, cl-42,KAR-K6e, p58.1

KIR2DL2 Cw1, Cw3, Cw7, Cw8 58 CD158b1 NKAT6, cl-43KIR2DL3 Cw1, Cw3, Cw7, Cw8 58 CD158b2 NKAT2, cl-6, KIR-023 GB,

KAR-K7e, p58.2

KIR2DL4 Soluble G 49 CD158d KIR-103AS, KIR-103LP,15.212, NK3.3#27

KIR2DL5 Unknown 60 CD158f

KIR3DL1 Bw4 70 CD158e1 NKAT3, NKB1, AMB11, cl-11, cl-2

KIR3DL2 A3, A11 70/140 CD158k cl-5, AMC5, NKAT4, cl-1.1,171c, 8-11c

KIR3DL3 Unknown 65 CD158z KIR3DL7, KIR44, KIRC1KIR2DS1 Cw2, Cw4, Cw5, Cw6 50 CD158h EB6act1, EB6act2, p50.1

KIR2DS2 Cw1, Cw3, Cw7, Cw8 50 CD158j NKAT5, cl-49, GL183act1,p50.2

KIR2DS3 Unknown 50 NKAT7, 59C/K3

KIR2DS4 Cw3 50 CD158i NKAT8, cl-39, cl-17, KAR-K1e, KKA3, p50.3

KIR2DS5 Unknown 50 CD158g NKAT9

KIR3DS1 Unknown 60 CD158e2 NKAT10, KIR-123FM,C97.12#5, KIR-G1

aKIR was originally adopted as an acronym for “killer cell inhibitory receptors, but subsequent studies confirmedthat truncated forms of this receptor family were not inhibitory in function. In some reports, these truncatedreceptors have also been termed “KAR” for killer cell activating receptors. To avoid renaming the receptors entirely,the acronym KIR was adopted to denote killer cell immunoglobulin-like receptors by several investigators in the field.This nomenclature has become a standard. The nomenclature for individual receptors within the KIR familyhave been designated as “2D” or “3D” according to their number of extracellular immunoglobulin-like domains,which is followed by the letter “L” or “S” for long or short (truncated) cytoplasmic domain, respectively, and adefinitive number for that specific receptor within each subgroup.bIt should be noted that the diversity of KIR sequences may be much more complex than that presented in this table,due to numerous minor sequence polymorphisms that have been identified in cDNAs from individuals withinthe population. For an excellent alignment of many of these sequences, see www.ebi.ac.uk/ipd/kir/cAlternative names are those originally designated by different investigators that separately cloned the receptors.

Page 19: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 537

VI. Inhibitory KIR Ligands

Each inhibitory KIR recognizes a subset of HLA-A, -B, or -C molecules as ligands. KIR2DL1recognizes group 1 HLA-C (possessing Ser at position 77 and Asn at position 80), while KIR2DL2 andKIR2DL3 recognize group 2 HLA-C (Asn at position 77 and Lys at position 80). KIR3DL1 engageswith HLA-Bw4 alleles (Thr or Ile at position 80) and some HLA-A alleles that share the Bw4characteristics but does not recognize HLA-Bw6 alleles (Asn at position 80). KIR3DL2 binds toHLA-A3 and HLA-A11 alleles. The following table lists the alleles within the HLA-B and HLA-Csubgroups and some amino acid (AA) variations at position 80 for HLA-B. This table was generouslyprovided by Dr. Mary Carrington (NCI-Frederick, Frederick, MD).

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B0727 T B0702 N 0102 0202

B0802 T B0703 N 0103 0203B0803 I B0704 N 0104 0204

B1301 T B0705 N 0105 0205B1302 T B0706 N 0302 0307

B1303 T B0707 N 0303 0401B1304 T B0708 N 0304 0402

B1306 T B0709 N 0305 0403B1308 T B0710 N 0306 0404

B1513 I B0711 N 0308 0405B1516 I B0712 N 0309 0406

B1517 I B0713 N 0311 0407B1523 I B0714 N 0312 0408

B1524 I B0715 N 0313 0409B1536 T B0716 N 0314 0501

B1543 T B0717 N 0701 0502B1567 I B0718 N 0702 0503

B1809 T B0719 N 0703 0504B2701 T B0720 N 0704 0602

B2702 I B0721 N 0705 0603B2703 T B0722 N 0706 0604

B2704 T B0723 N 0708 0605B2705 T B0724 N 0710 0606

B2706 T B0725 N 0711 0607B2707 T B0726 N 0712 0707

B2709 T B0728 N 0713 0709B2710 T B0801 N 0714 1204

B2711 T B0804 N 0715 1205B2713 T B0805 N 0801 1502

Page 20: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

538 Appendix

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B2714 T B0806 N 0802 1503

B2715 T B0807 N 0803 1504B2716 T B0808 N 0804 1505

B2717 T B0809 N 0805 1506B2719 T B0810 N 0806 1508

B2720 T B0811 N 0807 1509B2721 T B0812 N 0808 1510

B2722 T B0813 N 0809 1511B2723 T B0814 N 1202 1602

B2724 T B1309 N 1203 1701B2725 T B1401 N 1206 1702

B3701 T B1402 N 1208 1703B3702 T B1403 N 1301 1801

B3703 T B1404 N 1402 1802B3704 T B1405 N 1403

B3801 I B1406 N 1405B3802 T B1501 N 1507

B3803 T B1502 N 1601B3804 T B1503 N 1604

B3805 I B1504 NB3806 I B1505 N

B3807 I B1506 NB3808 T B1507 N

B4013 I B1508 NB4019 I B1509 N

B4402 T B1510 NB4403 T B1511 N

B4404 T B1512 NB4405 T B1514 N

B4406 I B1515 NB4407 T B1518 N

B4408 T B1519 NB4410 T B1520 N

B4411 T B1521 NB4412 T B1522 N

B4413 T B1525 NB4414 T B1526 N

Page 21: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 539

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B4415 T B1527 N

B4416 T B1528 NB4417 T B1529 N

B4418 I B1530 NB4420 T B1531 N

B4421 T B1532 NB4422 T B1533 N

B4423 T B1534 NB4424 T B1535 N

B4425 I B1537 NB4426 T B1538 N

B4427 T B1539 NB4428 T B1540 N

B4429 T B1542 NB4430 T B1544 N

B4701 T B1545 NB4704 T B1546 N

B4901 I B1547 NB4902 T B1548 N

B4903 I B1549 NB5101 I B1550 N

B5102 I B1551 NB5103 I B1552 N

B5104 I B1553 NB5105 I B1554 N

B5106 I B1555 NB5107 I B1556 N

B5108 I B1557 NB5109 I B1558 N

B5110 I B1559 NB5111 I B1560 N

B5112 I B1561 NB5113 I B1562 N

B5114 I B1563 NB5115 I B1564 N

B5116 I B1565 NB5117 I B1566 N

Page 22: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

540 Appendix

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B5118 I B1568 N

B5119 I B1569 NB5120 I B1801 N

B5121 I B1802 NB5122 I B1803 N

B5123 I B1804 NB5124 I B1805 N

B5126 I B1806 NB5127 I B1807 N

B5201 I B1808 NB5202 I B1810 N

B5203 I B1811 NB5301 I B1812 N

B5302 I B1813 NB5303 T B1814 N

B5304 I B1815 NB5305 I B2708 N

B5306 I B2712 NB5307 I B2718 N

B5308 I B3501 NB5309 T B3502 N

B5607 T B3503 NB5701 I B3504 N

B5702 I B3505 NB5703 I B3506 N

B5704 I B3507 NB5705 I B3508 N

B5706 I B3509 NB5707 I B3510 N

B5708 I B3511 NB5709 I B3512 N

B5801 I B3513 NB5802 I B3514 N

B5804 I B3515 NB5805 I B3516 N

B5806 I B3517 NB5901 I B3518 N

Page 23: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 541

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

A2301 I B3519 N

A2302 I B3520 NA2303 I B3521 N

A2304 I B3522 NA2305 I B3523 N

A2306 I B3524 NA2307 I B3525 N

A2308 I B3526 NA2402 I B3527 N

A2403 I B3528 NA2405 I B3529 N

A2406 I B3530 NA2407 I B3531 N

A2408 I B3532 NA2409 I B3533 N

A2410 I B3534 NA2411 I B3535 N

A2413 I B3536 NA2414 I B3537 N

A2415 I B3538 NA2416 I B3539 N

A2417 I B3705 NA2418 I B3901 N

A2420 I B3902 NA2421 I B3903 N

A2422 I B3904 NA2423 I B3905 N

A2424 I B3906 NA2425 I B3907 N

A2426 I B3908 NA2427 I B3909 N

A2429 I B3910 NA2430 I B3911 N

A2431 I B3912 NA2432 I B3913 N

A2433 I B3914 NA2501 I B3915 N

Page 24: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

542 Appendix

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

A2502 I B3916 N

A2503 I B3917 NA2504 I B3918 N

A3201 I B3919 NA3202 I B3920 N

A3203 I B3922 NA3204 I B3923 N

A3205 I B3924 NA3206 I B3925 N

A3207 I B3926 NB4001 N

B4002 NB4003 N

B4004 NB4005 N

B4006 NB4007 N

B4008 NB4009 N

B4010 NB4011 N

B4012 NB4014 N

B4015 NB4016 N

B4018 NB4020 N

B4021 NB4023 N

B4024 NB4025 N

B4026 NB4027 N

B4028 NB4029 N

B4030 NB4031 N

Page 25: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

Appendix 543

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B4032 N

B4033 NB4034 N

B4035 NB4036 N

B4037 NB4038 N

B4039 NB4040 N

B4042 NB4101 N

B4102 NB4103 N

B4104 NB4105 K

B4106 NB4201 N

B4202 NB4204 N

B4409 NB4501 N

B4502 NB4503 N

B4504 NB4505 N

B4601 NB4602 N

B4702 NB4801 N

B4802 NB4803 N

B4804 NB4805 N

B4806 NB4807 N

B5001 NB5002 N

Page 26: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

544 Appendix

(continued)

Bw4(KIR3DL1) AA80 Bw6 AA80

GROUP 1 HLA-C(KIR2DL2/KIR2DL3)

GROUP 2 HLA-C(KIR2DL1)

B5004 N

B5401 NB5402 N

B5501 NB5502 N

B5503 NB5504 N

B5505 NB5507 N

B5508 NB5509 N

B5510 NB5511 N

B5601 NB5602 N

B5603 NB5604 N

B5605 NB5606 N

B6701 NB6702 N

B7301 NB7801 N

B7802 NB7803 N

B7804 NB7805 N

B8101 NB8201 N

B8202 NB8301 N

Page 27: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

INDEX

2B4 (CD244) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 522, 527721.221 cells (target cell line, human) . . . . . . . . . . . . . . . . . 92293FT cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214, 2183’-RACE (rapid amplification of cDNA ends) . . . . 383, 3895’-RACE (rapid amplification of cDNA ends) . . . 378, 382,

384–3853T3 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215, 293293T cells (or HEK-293T or HEK293) . . . . 219, 235–239,

243, 275–282, 295–296

A

A9 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414–415Acid stripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320–322Actin . . . . . . . . . . . . . . . . . . . . . . . . . 71, 73, 131, 133, 139–142Activation marker . . . . . . . . . . . . . . . . . . . . 115–116, 430–431Adenovirus (adenoviral) . . . . . . . . . . . . . . . 201, 206, 210, 293Adhesion . . . . . 68–69, 89–90, 220, 317–319, 322, 339, 522Adoptive transfer (of lymphocytes) . . . . . 114–115, 420–421Altered self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366Amphotropic retrovirus . . . . . . . . . . . . . . . . . . . . . . . . 129, 200Analysis of variance (ANOVA) . . . . . . . . . . . . . . . . . . . . . . 403Antibody-dependent cellular cytotoxicity (ADCC). . . . .68,

78, 309, 533, 535Antibody titration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144Antisense transcripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 381–383Apoptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 245, 394Automated magnetic cell sorter (AutoMACS) . . . 244, 251,

254, 270

B

Backcrossing mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269Bacterial artificial chromosome (BAC). .108, 110, 268, 502Bactrim (Trimethoprim-Sulfoxaxole) . . . . . . . . . . . . . . . . . . 53B cells . . . . . . . . . . . . . . . . . . 3–7, 30, 101, 137, 326, 458, 526Bicistronic expression vector . . . . . . . . . . . . . . . . . . . . . . . . 200Bi-directional promoters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378Blasticidin . . 71, 84, 145, 180, 183, 191, 194, 219, 287, 293Blastocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269β2m (β2 microglobulin) . . . . . . . . . . . . . . . . . . . . . . . . . 74, 534Bone marrow (BM) . . . . . . . . . . . . . . . . . . . . . . 52, 54, 98, 103Bone marrow chimeras (bone marrow chimeric mice) . . 115Bone marrow-derived DC . . . . . . . . . . . . . . . . . . . . . . 103–104Bone marrow-derived macrophages . . . . . . . . . 103–104, 249Boolean analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345, 359BOSC cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265–266Brefeldin A. . . . . . . . . . .41, 43, 47, 100, 116, 162, 168–169,

339, 349, 418, 437Bromodeoxyuridine (BrdU). . . . . . . . . . . . . . . . . . . . .418–419BSC-1 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414, 416–417BSL2 (biological safety level 2) . . . . 111–112, 200, 205, 230BSL3 (biological safety level 3) . . . . . . . . . . . . . . . . . 414, 435BW cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252, 260–261, 271BW zeta assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252, 258–262

C

C1498 (NKT-like cell line, mouse) . . . . . 314, 316–320, 322Calcein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81Calcium signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149–157CD3ζ (CD3zeta) . . . . . . . . . . . . 258–260, 286, 288–289, 292CD7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16CD11b (Mac-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28CD11c . . . . . . . . . . . . . 99, 101, 108–110, 114–115, 121–122CD16 (FcγRIII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526CD25 (IL-2Rα) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430CD27 . . . . . . . . . . . . . . . 28–29, 33–34, 36–37, 419, 477, 507CD28 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 138, 178, 275, 531CD34 . . . . . . . . . . . . . . . . . 1–3, 8–10, 14, 16–19, 20–25, 244CD40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103, 106–107, 111CD45. . . . . . . . . . . .1–2, 53, 57, 61–62, 64–65, 99, 101, 420CD48 . . . . . . . . . . . . . . . 68, 84, 178, 181–182, 187–190, 195CD56bright, CD56high . . . . . . . . 17, 27, 344, 431, 448, 467CD56dim, CD56low . . . . . . . . . . . 17, 27, 34, 343–345, 351,

357–360, 431, 456CD56 (NCAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 337, 354CD63 (LAMP-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336CD69 . . . . . . . . 102, 115–116, 430–431, 433, 438, 440–441CD94 . . . . . . . . . . . . . . . . . . . 2–3, 9–10, 14, 16, 68, 199, 419,

430–431, 520, 527CD94/NKG2 receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431CD107a (LAMP-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336CD107b (LAMP-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336CD117 (c-kit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506CD122 (IL-2Rβ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506CD127 (IL-7Rα) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506–507CD161 (NKR-P1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521cDNA library . . . . . . . . . . . . . . . 286–287, 289–292, 294–295CellQuest software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343CellTracker . . . . . . . . . . . . . . . . . . . 72, 79–81, 85–86, 93, 327CFSE, Carboxyfluorescein diacetate succinimidyl

ester . . . . . . . . . . . . .139, 315, 318–319, 326–329,331–332, 413, 420, 424, 426

Chemokines . . . . . . . . . 28, 89, 209, 335–336, 339, 360, 365Chimera

chimera founder mice . . . . . . . . . . . . . . . . . . . . . . . . . . . 269chimeric receptor. . . . . . . . . . . . . . . . . . . . . . . . . . .286, 292

Chloramphenicol acetyltransferase (CAT) reporter . . . . 378Chlorophenol red galactoside (CPRG) . . . . . . . . . . 288–289Chloroquine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235, 238, 442Chorionic villi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448Chromium-51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Chromium release assay . . . . . . . . . . . . . . . . . . . . . . . . . 94, 119Cis interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313Collagenase . . . . . . 29–31, 36, 101, 105, 450, 453, 459, 511Colocalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141–144, 147Commensal bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506Compensation for flow cytometry . . . . . . . . . . . . . . . 350, 358Congenic mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, 61, 99

545

Page 28: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

546NATURAL KILLER CELL PROTOCOLSIndex

Conjugation (conjugates) . . . . . . . . . . . . . . 78–80, 89, 90–94,130–131, 139, 146, 318, 322, 350, 355

COS-7 cells . . . . . . . . . . . . . . . . . . . . . . . . . 251, 255, 256–258CpG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103, 111Cre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107–110, 268Cryptopatches (CP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506Crystal violet solution . . . . . . . . . . . . . . . . . . . . . 215, 413, 417C-type lectin . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 299, 313, 394Cytomegalovirus (CMV) . . . . 193, 244, 300, 393, 411, 430Cytotoxicity assay (killing assay)

spontaneous release . . . . . . . . . . . . . 81–82, 119, 423, 470total release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

D

DAP12 . . . . . . . . . . . 177–178, 394, 398, 400, 405, 407, 520DAPI . . . . . . . . 142–143, 496–497, 501, 509, 512–513, 515Dead cell exclusion markers . . . . . . . . . . . . . . . . . . . . 350, 354Decidua . . . . . . . . . . 448–449, 452–453, 458, 466–467, 469,

491–493, 501Decidualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467, 498Decidual stromal cells . . . . . . . . . . . . . . . . . 449, 454, 456, 460Degranulation . . . . . . 69, 72, 78, 86, 89, 336–337, 339–340,

343–345, 346–349Dendritic cells (DC) . . . . . . . . 4, 28, 98, 103, 106, 108–114,

121–122, 335, 429, 506, 526DERL7 (NK-like and T-like cell line, human) . . . 211–212,

216–217, 220Diphtheria toxin (DT) . . . . . . . 98, 101, 107–111, 113, 115,

121–122, 383, 389, 489Diphtheria toxin receptor (DTR) . . . . . . . . 98–99, 107–110,

114–115, 122DNAM-1 (CD226). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67–68DNA quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373Dolichos biflorus (DBA) lectin . . . . . . . . . . . . . . . . . . . . . . . . 469Drosophila melanogaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69DX5 (CD49b) . . . 37, 42, 48, 102, 106, 151, 164–165, 244,

419, 477, 496–497, 501–502, 527

E

Ecotropic retrovirus . . . . . . . . . . . . . . . . . . . . . . . 129, 200, 266Ectromelia virus (ECTV)

footpad infection . . . . . . . . . . . . . . . . . . . . . . 412, 417–418preparation of stocks . . . . . . . . . . . . . . . . . . . . . . . 415–416purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416–417resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Effector cell . . . 78–80, 82, 91, 94, 119–120, 130, 178–179,181, 185, 187, 190, 195, 261–262, 271,306–308, 339, 422, 340–343, 470, 505,533–534

Enhanced green fluorescent protein (EGFPor GFP) . . 25, 93, 108, 200, 204, 218–219, 235,239, 242, 300, 304–306, 308

EL4 (target cells, mouse) . . . . . 178–183, 185–190, 193–195Endocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348Endometrial (endometrium) . . . . . . . . . . . 467, 469, 498–499Endothelial cells . . . . . . . . . . . . . . . . . . . . 4, 12, 448, 454, 486Enhanced yellow fluorescent protein (EYFP or YFP) . 217,

314, 318–320, 322env (envelope) . . . . . . . . . . . . . . 201, 210, 230, 234–235, 296Enzyme-linked immunosorbent assay (ELISA) . . 179–181,

184–187, 194, 239, 271, 456Erythrocyte (red blood cell; RBC) lysis . . . . . . . . . . 433, 436

ES (embryonic stem) cells . . . . . . . . . . . . . . . . . . . . . . 267–269Estradiol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451, 456Europium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81Exocytosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 345, 347, 532–533Expression cloning . . . . . . . . . . 285–287, 291–292, 294, 405Extravillous trophoblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

F

False positive/negative amplification . . . . . . . . 229–230, 373Fas ligand (CD178) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336Fcγ receptor blockade (2.4G2 antibody), Fc receptor

blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166Fc . . . 3, 7, 29, 32, 42, 44, 68, 101, 116–118, 163, 166, 263,

275–282, 347, 431, 509, 533–534Fc receptors. . . . . . . . .32, 116–118, 166, 169, 263, 340, 420Feeder cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253–255Femur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30–31, 103Fetus . . . . . . . . . . . . . . . . . . . . . . . . . . . 466–467, 479, 491, 497Fibronectin . . . . . 18, 64, 220, 452, 457, 459, 461–462, 476,

494–495Ficoll (Ficoll-Paque), Histopaque . . . . . . . . . . . . . . 2, 28, 30,

250, 253Fixation of cells

formaldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 354glutaraldehyde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471methanol . . . . . . . . . . . . . . . . . . . . . . . . . 161, 167, 172–173paraformaldehyde . . . . . . . . . . . . . 90, 173, 337, 413, 478

Flow cytometrycell sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160, 242FACS (fluorescence-activated cell sorting) . . . . . . 10, 33,

41, 44, 63, 77, 167, 169, 421flow cytometer . . . . . . . . . . . . . 10, 33, 36, 44, 48, 80, 83,

90, 119, 315, 339, 343, 421, 496, 514recombinant receptor . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

FlowJo software . . . . . . . . . . . . . . . . . . . . . . 54, 151, 153, 338,344, 355, 496

Flt3-ligand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Fluorescent proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 137–138,

145, 217–219Forward genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394F(ab’)2 fragment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302Framework genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374F344 rat strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

G

gag . . . . . . . . . . . . 53, 55, 201, 210, 214, 219, 287, 289, 291,293–294, 296, 405

Gene targeting. . . . . . . . . . . . . . . . . . . . . . . . . . . .114, 267–269Gene therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233Genetic background (mice) . . . . . . . . . . . . . . . . . . . . . . . . . 269Geneticin (G418, neomycin) . . . . . . . . . . . 71, 213, 252, 301Genomic DNA . . . . . . . . . . . . . . . . . 211, 268, 356, 381–383,

385–386, 402–403Germ line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Germline chimeric mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269Giemsa stain . . . . . . . . . . . . . . . . . . . . . . . . . 432, 434, 442–443Glycoprotein. . . . . . . . . . . . . . . .276, 281–282, 314, 467, 469Glycosylation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275–282Granule polarization . . . . . . 69, 72, 78, 80–81, 86, 140–143Granulocyte-macrophage colony stimulating factor

(GM-CSF) . . . . . . . . . . . . . . . . . . . . 101, 104, 448Granzyme . . . . . . . . . . . . . 102, 346, 348, 412, 419–420, 507Gut associated lymphoid tissue (GALT). . . . . . . . . . . . . .506

Page 29: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

NATURAL KILLER CELL PROTOCOLSIndex 547

H

H2 (histocompatibility 2 locus, mouse MHC class I) . . 394H60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99, 117, 119HeLa cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219Hemacytometer or hemocytometer or

Haemocytometer . . . . . . . . 1, 5, 7, 16–17, 19, 21,23, 25, 75, 278, 307, 328, 435, 436

Hematopoietic progenitor (or precursor) cells(HPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1, 16

Hematoxylin and eosin (H&E) staining . . . . . . . . . 470, 475,486–487

Heparin . . . . . . 250, 253, 336, 340, 346, 373, 419, 434, 471,478–479

Hepatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439, 449, 452Heterotypic interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Histology. . . . . . . . . . . . . . . . . . .471, 473–474, 479, 481–482HLA (human leukocyte antigen locus, human

MHC) . . . . . . . 68, 356, 362, 367, 448, 457, 461,532, 537–544

Hofbauer cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457Homologous recombination . . . . . . . . . . . . . . . . . . . . 268, 366Homotypic interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Human immunodeficiency virus (HIV) . . . . . . . . . 210, 234,

236, 239, 244, 315, 439, 452Hydrocortisone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17, 20Hygromycin . . . . . . . . . . . . . . . . . . . .71, 84–85, 200, 217–218

I

ICAM-1 (CD54) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68ICAM-2 (CD102) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68ICAM-3 (CD50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Ig (immunoglobulin) fusion (or fusion Ig) . . . . . . . . 256, 271IL-2 . . . . . . . . . . . 90, 98, 101, 178, 181, 184–190, 202, 211,

216, 229, 236, 240, 251, 261, 418, 506, 534IL-2 secretion assay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260–261IL-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 19, 24IL-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16, 18–19, 24, 62, 236IL-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 216, 430, 437IL-15 . . . . . . . . . . . . 16–17, 19, 98, 114, 122, 236, 241, 327,

461, 476, 507IL-18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 430, 432, 437, 439–440IL-22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507–508, 515Image quantitation . . . . . . . . . . . . . . . 128, 133–134, 139, 144Immunofluorescence (immunofluorescent) . . . 3, 9, 44, 115,

118, 121Immunological synapse . . . . . . . . . . . . . . . . . . . . 127–147, 149Immunophenotyping . . . . . . . . . . . . . . . . . . . . . . . . . . 335, 353Immunoreceptor tyrosine-based activating motif

(ITAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178, 394Immunoreceptor tyrosine-based inhibitory motif

(ITIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, 394Immunotherapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210Indo-1 AM dye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150Indomethacin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Induced self . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 366Inhibitory synapse . . . . . . . . . . . . . . . . . . . . . . . . . .78, 139–143Insect cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74Interferon

(IFN)-α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 163, 430(IFN)-β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 159, 170(IFN)-γ . . . 27, 42, 44–46, 48, 160–161, 164, 167–169,

173, 211, 342, 351, 419, 437, 515type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Internal ribosomal entry site (IRES) . . . . . 54–55, 108, 110,145, 200–201, 204, 287, 293

Intracellular cytokine (interferon-γ) staining . . . . . . . . . . . 39Ionomycin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 43IRBC (Plasmodium falciparum schizont infected red blood

cells) . . . . . . . . . . . . . . . . . . . . . . 430–437, 441–444Irradiation

gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251lethal . . . . . . . . . . . . . . . . . . . . 52, 59, 60–62, 64, 109, 114

Isolated lymphoid follicles (ILF). . . . . . . . . . . . . . . . . . . . .506Isotype control . . . . . . 18, 23, 111, 118, 132, 164–166, 171,

186, 495

J

Jurkat cell line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

K

KHYG-1 (NK-like cell line, human) . . . . . . . . . . . . 207, 226Killer cell immunoglobulin (Ig)-like receptors (KIR) . . 313,

366, 377–391, 519, 536KIR genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . 356, 365–374KIR Haplotype, Group A or Group B . . . . . . 354, 357, 361KIR locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366KIR promoter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378KLRG1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116, 506–507Knockdown . . . . . . . . 17, 209, 217–218, 220, 223–224, 229,

246, 346Knock-in mouse . . . . . . . . . . . . . . . . . . . . . . . . . . 107, 110, 267Knockout (KO) mouse . . . . . . . . . . . . . . . . . . . . . . . . . 250, 269Kozak initiation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 193K562 (target cell line, human) . . . . . . . . . . . . . . 129, 337, 347

L

LacZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286LAK (lymphokine-activated killer) cells . . . . . . . . . 239–243Lamina propria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505–544Lamina propria lymphocytes (LPL) . . . . . . . . 506, 508, 510,

513–515Langerhans cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Langerin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 110Lavage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326–331Lentivirus . . . . . . . . . 210, 218–220, 223, 233–246, 291, 293Leukocyte receptor complex (LRC) . . . . 366, 520–521, 527LFA-1 (CD11a/CD18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Ligand. . . . . . . . .54, 110–111, 290–292, 299–309, 313–322Ligand capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318Listeria monocytogenes . . . . . . . . . . . . . . . . . . . . . . . . . . 103, 111Liver, hepatocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36, 105LNK (NK-like cell line, mouse) . . . . . . . 211–212, 218, 220Locus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267–268, 393–409Long-terminal repeat (LTR) elements . . 15, 17, 19, 23–24,

110, 200, 203, 224, 233, 440, 499LOU rat strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309LoxP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107, 108LPS (lipopolysaccharide) . . . . . . . . . . . . . . 102, 111, 121, 290Luciferase reporter

firefly (Photinus pyralis) . . . . . . . . . . . . . . . . . . . . . . . . . . 378Renilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380, 387–388

Lung . . . . . . . . . . . . . . . . . . . . . . . 30–32, 35–37, 101, 105, 327Ly49 . . . . . . . . . . . . . 40, 44–49, 62, 178, 269, 299–309, 320,

377, 394–399, 402–403, 405Lymph nodes . . . . . . . . . . . . . . . . . . . .1–14, 36, 424, 496, 514Lymphocyte differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . 15Lymphocytic choriomeningitis virus (LCMV). . . . . . . . . 99,

102–103, 112–114, 122, 162–163, 171

Page 30: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

548NATURAL KILLER CELL PROTOCOLSIndex

Lymphoid tissue inducer cells (LTi) . . . . 506–508, 512–515Lympholyte-M . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 106, 492Lymphoma. . . . . . . . . . . . . .99, 211, 253, 258, 326, 332, 533Lymphopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Lymphoprep . . . . . . . 336, 340, 450, 452–455, 457, 459–460Lytic granules . . . . . . . . . . . . . . . . 80, 131, 137–138, 140–143Lytic synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131, 140–141

M

m157. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300, 394Macrophages . . . . . . . 98, 101, 103–104, 106–110, 429, 448,

454, 461, 521, 526–527MACS columns/beads (magnetic cell sorting) . . . . . . . . 314Major histocompatibility complex (MHC) class I

(MHC-I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Malaria (Plasmodium parasites) . . . . . . . . . . . . . . . . . . 429–445Mapping genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400Marginal zone macrophages . . . . . . . . . . . . . . . . . . . . 108–109Masking . . . . . . . . . . . . . . . . . . . . . 68, 314, 316–317, 321–322Mast cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 521Maternal-fetal interface . . . . . . . . . . . . . . . . . . . . . . . . 365, 466MC57G cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412MCMV (mouse cytomegalovirus) resistance . . . . . 393–409M-CSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 104Mean fluorescence intensity (MFI) . . . . . . . . . 139, 147, 290,

294, 317, 319–322Medroxyprogesterone 17-acetate (MPA) . . . . . . . . . 451, 456Melanoma . . . . . . . . . . . . . . . . . . . . . . . 98, 326–327, 329, 332Menstrual cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456, 467Mesenteric lymph nodes (MLN) . . . . . . . . . . . . . . . . . . . . 506Mesometrial deciduas . . . . . . . . . . . . . . . . . . . . . . . . . . 466, 491Metallophilic Macrophages . . . . . . . . . . . . . . . . . . . . . . . . . 109[35S]-methionine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262MHC class I-deficient mice (β2m−/− or KbDb−/−) . . . 46Microsatellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402Microscopy

confocal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128, 320electron . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 471–472, 478laser capture microscopy (LCM). . . . . . . .469, 474–475,

482–483live cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138total internal reflection fluorescence (TIRF)

microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138Microspot culture of uterine NK cells . . .476–477, 494–495Microtubular organizing center (MTOC) . . . 131, 140–143Microtubules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 149, 420–421, 426MIP-1β . . . . . . . . . . . . . . . . . . . . . . . . 336–339, 342, 345, 349“Missing self ” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41Moloney murine leukemia virus (MMLV) . . . . . . . . . . . 200,

287–289, 291Monensin . . . . . . . . . . . . . . . . . . . . . . . . 47, 100, 116, 339, 348Mouse embryonic fibroblasts (MEF) . . . 398, 400, 407, 410Multi-color flow cytometry . . . . . . . 342, 350, 353–355, 361Multiplex PCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365–374Multiplicity of infection (MOI). . .112, 216, 218, 240–242,

244, 287, 294, 407, 414Mutagenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300–303, 308Mycoplasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440Myeloid cells . . . . . . . . . . 4, 98, 102–103, 106, 107–110, 526

N

Natural cytotoxicity receptors (NCR) . . . . . 67–68, 276, 282Natural killer cell complex locus (NKC) . . . . . . . . . . . . . . 394

Negative selection . . . . . . . . . . 236, 240, 244, 254, 268, 340,421, 461

NFAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286, 400, 405, 407Nick-A retroviral packaging cell line . . . . . . . . . . . . . . . . . 289NIH 3T3 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287NK1.1 (NKR-P1C). . . . . . . . . . . . . . . . . . . . . . . . . . . . .41, 515NK3.3 (NK-like cell line, human) . . . . . . . . . . 201, 207, 530NK-92 (NK-like cell line, human) . . . . . . . . . 200, 207, 212,

220, 227NK cell

activation . . . . . . . . . . . 39, 67–86, 98–99, 115–116, 140,314, 346, 349, 418, 522

alloreactivity . . . . . . . . . . . . . . . . . . . . . . 469, 497, 499, 532antibody depletion/blockade . . . . . . . . . . . . . . . . . . . . . 412cloning . . . . . . 16, 17, 206, 224, 235, 242, 285–286, 378decidual . . . . . . . . . . . . . . . . . 448–451, 455–456, 461, 467development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330, 378differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39endometrial (eNK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467immature (iNK) . . . . . . . . . . . . . . . . . . . . . . . 314, 468, 486immunological synapse . . . . . . . . . . . . . . . . . . . . . 127–147licensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39–49maturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 16, 24, 394mucosal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505, 512–514polyclonal NK cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254precursor (pre-NK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16primary NK cells . . . . . . . . . . . 69, 94, 210, 233–246, 346progenitor (pro-NK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467purification of NK cells . . . . . . . . . . . . . . . . 1–14, 69, 200,

279–280, 416, 450–451, 459self tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 41uterine NK (uNK) . . . . . . . . . . . . . . . . . . . . . . . . . 497, 502

NKG2D . . . . . 41, 67–68, 99, 116, 397, 412, 419, 426, 507,515, 521, 533

NKL (NK-like cell line, human). . . . . . . . . . . .129, 211, 346NKp46 . . . . . . 42, 46, 48, 68, 116, 123, 254, 282, 506–509,

512–515, 527Nkrp1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 286, 292, 295NKT cells . . . . . . . . . . . . . . . . . . . . . . . . . 30, 37, 244, 419, 525Non-allelic homologous recombination (NAHR). . . . . .366

O

Orthopoxvirus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

P

P815 cells (target cell line, mouse) . . . . . . . . . . . . . . . . . . . 263PCR-SSP (sequence-specific priming) . . . . . . . . . . . 365–374Percoll . . . . . . . . . . . . 29, 31–32, 36, 101, 413, 509, 511–512Perforin . . . . . . . . . . 72, 78, 80–81, 117–119, 131, 209, 335,

348, 412, 467, 507Pericentrin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131, 140Periodic Acid Schiff ’s (PAS) reagent . . . . . . . . 469–470, 500Peripheral blood mononuclear cells (PBMC) . . 28, 30, 250,

253–254, 339–340, 344, 346, 356, 358, 430,432, 434–435, 440, 444

Peritoneal exudate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325Permeabilization . . . . 42, 100, 129, 161, 167, 171–173, 342,

413, 509, 514Peyer’s patches (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506Phalloidin . . . . . . . . . . . . . . . . . . . . . . . 129, 131–132, 139–140Phenotype . . . . . . . . 13–14, 24, 28, 210, 234, 254, 255, 267,

394–396, 400, 457, 461, 506, 531Phoenix cells . . . . . . . . . . . . . . . . . . . . . . . . . 201, 203–204, 230

Page 31: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

NATURAL KILLER CELL PROTOCOLSIndex 549

Phorbol ester (PMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41, 43Phospho-STAT (pSTAT). . . . . . . . .161–167, 169–171, 173Phytohemagglutinin (PHA) . . . . . . . . . . . . . . . . . . . . 251, 253PKH26. . . . . . . . . . . . . . . . . . . . . .72, 79, 85, 90–93, 327, 329Placenta . . . . . . . . . . . 365, 448–449, 466, 469, 481, 492, 497Plaque Assay . . . . . . . . . . . . . . . . . . . . . . . . . 102, 401, 416–417Plaque forming units (PFU) . . . . . . . . . . 113, 163, 395, 402,

408, 412, 415, 417, 425Plasmodium falciparum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429PlatE cells . . . . . . . . . . 19, 53, 55–56, 64, 191, 292, 304, 357Pluronic F-127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 150–151, 156Point mutation . . . . . . . . . . . . . . . . . . . . . . . . 52, 264, 303, 532Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294pol (viral polymerase) . . . . . . . . 55, 201, 210, 214, 235, 289,

293–294, 405Polybrene (hexadimethrine bromide) . . . . . . . . 59, 129, 202,

235, 252Polychromatic flow cytometry . . . . . . . . . . . . . . . . . . . . . . . 359Poly-D-lysine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 80Poly I:C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 111Poly-L-lysine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129, 131–132Polymerase chain reaction (PCR) . . . . . . . . 52, 55, 179, 182,

192–193, 216, 219, 229, 250, 258, 264, 379,397, 400, 489–490, 495

Positive selection . . . . . . . . . . . 2, 7, 217–218, 244, 414, 421,455, 461

Pregnancy. . . . . . . . . . . . . . . . . .365, 447–462, 466, 469, 478,480, 492, 498

Priming . . . . . . . . . . . . . . . . . . . . . . 97–98, 106–107, 114–115,122, 385

Proliferation . . . . . . . . . . . . . . . . . . . 16–17, 26, 149, 160, 241,294, 418–421, 495

Protein purification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258Puromycin . . . . . . . . . . . 53, 56, 84, 180, 191, 194, 202, 215,

219, 225, 228, 231, 238, 241, 246, 266, 293,314, 405

Q

qRT-PCR (quantitative real-time PCR), qPCR(quantitative PCR). . . . . . . . . . . . . .216, 219, 246

Quantitative imaging . . . . . . . . . . . . . . 90, 128, 133–134, 144Quantum-dot (Qdot) nanoparticles . . . . . . . . 337–338, 342,

355–356, 361–362

R

Radioresistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 122Rag2−/−Il2rg−/− mice . . . . . . . . . . 326–327, 329–330, 332Rag2−/− mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326, 330Recombinant glycoprotein . . . . . . . . . . . . . . . . . 276, 281–282Recombinant receptor-Fc chimera (receptor-Ig fusion

protein) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275Recombinase . . . . . . . . . . . . . . . . . . . . 107, 211, 267–268, 330Red blood cells (RBC; erythrocytes) . . . . . . . . . . . . . . . . . 436Redirected killing (reverse ADCC) . . . . . . . . . . . . . . . . . . 262Reporter assay . . . . . . . . . . . . . . 285–286, 291, 380, 387–388,

390, 398, 408Reporter cell . . . . . . . . . . . . . . . . 285–296, 395, 400, 407–408Restriction f ragment length polymorphisms

(RFLPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . .402–403Retroviral transduction. . . . . . . . . . .17–18, 20–23, 179, 182,

191–192, 194, 199–208, 265–267Retrovirus . . . . . . . . . . . 16, 53, 129, 200, 204, 207, 223–231,

265–266, 285, 292, 295, 398, 405

Retrovirus rescue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285, 293Reverse genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393R837 (imiquimod) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 111RMA-S . . . . . . . . . . . . . . . . . . . . . 99, 117, 119, 326, 329, 534RNAi (RNA interference) . . . . . . . . . . . . 223–224, 241–242,

245–246RNase protection assay (RPA) . . . . . . . . . . . . . . . . . . 383–384RNK-16 (NK-like cell line, rat) (also RNK) . . . . . 300, 302,

305, 309, 531RORγt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506–509, 512–515Rosa26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107–108RPMI-8866 (target cell line, human) . . . . . . . . . . . . 250, 253RT-PCR (real-time polymerase chain reaction) . . . . . . . 179,

182, 192–193, 229, 269, 378–379, 382,489–490, 495

S

S2 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67–86Saponin . . . . . . . . . . . . . . . . . . . . . . . . . 42, 100, 117–119, 131,

337, 445Schizont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431–432, 434,

436, 442Scintillation counter . . . . . . . . . . . . . . . . . . 252, 263, 307, 423Secondary lymphoid tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2Secretory lysosomes . . . . . . . . . . . . . . . . . . 335–336, 339, 347Shipping of blood samples . . . . . . . . . . . . . . . . . . . . . . . . . . 346Short hairpin RNA (shRNA). . . . .211, 217–218, 223–231,

233–246Sialic acid binding immunoglobulin-like lectin

(Siglec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314, 320Signal Transducer and Activation of Transcription

(STAT) . . . . . . . . . . . . . . . . . . . 162, 164, 167, 171Signal transduction . . . . . . . . . . . . . . . . . . . . . . . . . 89, 199, 249Simple Sequence Repeats (SSRs) . . . . . . . . . . . . . . . . . . . . 402SIN (self-inactivating) vector . . . . . . . . . . . . . . .210, 235, 293Small interfering RNA (siRNA) . . . . . . . . . . . 135, 145, 209,

224, 245, 346Spectral overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 342–343, 350,

357, 362SPICE (Simplified Presentation of Incredibly Complex

Evaluations) software . . . . . . . . . . . 338, 345, 355,359–360

Spiral arteries . . . . . . . . . . . . . . . . . . . . . . . . 448–449, 469, 486Spleen . . .30–31, 35, 60, 104, 111, 113, 165, 172, 395, 403,

415, 418, 422, 496, 514, 534Stem cell . . . . . . . 16–17, 24, 51–65, 236, 240–241, 336, 531Stem cell factor (SCF) . . . . . . . . . . 54, 60, 62, 212, 220, 236,

240, 244, 461‘Stepdown’ thermal cycling . . . . . . . . . . . . . . . . . . . . . . . . . . 386Streptavidin . . . . . . . . . . 42, 44, 47, 132, 150–154, 156, 166,

187, 261, 315, 319, 342, 500Stroma, stromal cells . . . . 4, 16, 19, 24, 236, 448, 450–451,

453–454, 460, 467, 470

T

TA cloning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55, 379Target cells . . . . . . . . . 67, 69, 75, 78, 81, 130, 178, 184–186,

230, 250, 261–263, 288, 300, 337, 344, 366,422, 522

T cells . . . . . . . . . .2, 30, 37, 69, 97, 117, 161, 163, 177, 242,254, 331, 347, 454, 467, 506–508, 521, 525, 534

T cell antigen receptor (TCR) . . . . . . . . . . . 28, 69, 173, 178,181, 184, 187, 193, 196, 290, 477, 521

Tetramer . . . . . . . . . . . . . . . . . . . . . . . . . 37, 156, 316–317, 321

Page 32: Appendix - link.springer.com978-1-60761-362-6/1.pdfI. Antibodies to Human Natural Killer Cell Receptors The listed sources of antibodies are original authors, company, or hybridoma

550NATURAL KILLER CELL PROTOCOLSIndex

Th17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506TNF-α (tumor necrosis factor) . . . . . . . . . . . . 336–339, 342,

345, 349, 430Tonsil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 10, 12TRAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Transcriptional control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378Transduction . . . . . . 17–18, 20–23, 55, 61, 63–64, 135–137,

199–207, 216, 223, 229, 233, 235, 239–240,242, 245, 265–267, 288, 406

Transfectioncalcium phosphate transfection . . . . . . . . . 70–71, 75–76,

84, 214electroporation . . . . . . . . . . . . . . 224, 252, 258, 260, 301,

304, 314, 380, 388, 390lipofection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224nucleofection . . . . . . . . . . . . . . . . . . . . . . . . . .133–134, 210stable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69, 183, 260transient transfection . . . . . . . . . . . 73–74, 178, 191, 276,

277–279, 288, 291, 405Transgenic mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99, 108Trans interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314Trimester of pregnancy . . . . . . . . . . . . . . . . . . . . . . . . . 448, 456Trophoblast cells . . . . . . . . . . . . . . . . . 448, 451–453, 456–459Trophozoites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436, 442Trypsin . . . . . . . . . . . . . . . . . . . 17, 19, 53, 100, 182, 212, 237,

278, 399–400, 407, 451, 456, 461Tubulin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129, 131, 140Tumor immunotherapy . . . . . . . . . . . . . . . . . . . . . . . . 210, 347Tumor necrosis factor (TNF)-α . . . . . . . . 27, 209, 336–339,

342, 349, 351, 430Toll-like Receptors (TLR) . . . . . . . . 98, 106–107, 110–111,

121–122

U

U6 promoter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235, 242, 245ULBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Umbilical cord blood (UCB). . . . . . . . . . . .16–18, 20, 22, 25Uninfected red blood cells (URBC) . . . . . . . . . . . . . 436–437Uterine stromal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466Uterus . . . . . . . . 448, 466, 479–480, 490–491, 497–498, 501

V

Vaccinia virus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210Vesicular stomatitis virus (VSV) . . . 210, 233–238, 242, 293Viability tests

7AAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33, 156propidium iodide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156trypan blue. . . . . . . . . . . . . . . . . . . . . . . . . . . .432, 476, 494

Villous trophoblasts . . . . . . . . . . . . . . . . . . . . . . . . . . . .448, 457Virus packaging cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53VSV-G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237–238, 242, 293

W

Western blotting . . . . . . . . . . . . . . . . . . . . . . . . . . . 60, 161, 229

X

YAC-1 (target cell line, mouse) . . . . . . . . . . . . . . . . . . 41, 533YB2/0 (target cell line, rat) . . . . . . . . . . . . 300, 304–306, 309YT-Indy (NK-like cell line, human) . . . . . . . . . . . . . . . . . 378YT (NK-like cell line, human) . . . . . . . . . . . . . 211, 378, 531YTS-Eco (NK-like cell line, human) . . . . . . . . . . . . . . . . .252YTS (NK-like cell line, human) . . . . . . . . . 90, 94, 129, 200,

250, 252, 264, 346


Recommended