+ All Categories
Home > Documents > Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L...

Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L...

Date post: 19-Mar-2018
Category:
Upload: vankhanh
View: 229 times
Download: 3 times
Share this document with a friend
16
Page 1 of 16 2401 Research Blvd. Ste. 108 Fort Collins, CO 80526 (970) 493-1901 www.ixysrf.com Application Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier Abstract: The following application note describes an evaluation circuit highlighting the IXYSRF IXZ210N50L, IXZ2210N50L, and IXZH10N50L Ultra Linear RF MOSFETs. These devices are available in our low- inductance RF package as a single or dual die, and in the industry-standard TO-247 package. The circuit operates in the ISM and HF bands from 2 to 30 MHz utilizing class AB topology, producing 250 to 400 watts CW. The operating efficiency is greater than 50% for the frequency coverage, with a minimum power gain of 18.5 dB ±1 dB. This evaluation board and application note are to assist engineers in evaluating our components and to serve as a reference design for industrial, commercial, scientific, and HF RF amplifier applications. Martin Jones and Gilbert Bates R&D/Application Engineering
Transcript
Page 1: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 1 of 16

2401 Research Blvd. Ste. 108 Fort Collins, CO 80526

(970) 493-1901 www.ixysrf.com

Application Note

Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L

In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier

Abstract: The following application note describes an evaluation circuit highlighting the IXYSRF IXZ210N50L, IXZ2210N50L, and IXZH10N50L Ultra Linear RF MOSFETs. These devices are available in our low- inductance RF package as a single or dual die, and in the industry-standard TO-247 package. The circuit operates in the ISM and HF bands from 2 to 30 MHz utilizing class AB topology, producing 250 to 400 watts CW. The operating efficiency is greater than 50% for the frequency coverage, with a minimum power gain of 18.5 dB ±1 dB. This evaluation board and application note are to assist engineers in evaluating our components and to serve as a reference design for industrial, commercial, scientific, and HF RF amplifier applications.

Martin Jones and Gilbert Bates

R&D/Application Engineering

Page 2: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 2 of 16

Purpose  Building  and  testing  high  frequency  circuits  is  often  complicated  and  difficult.  Getting  

suitable  performance  while  minimizing  development  failures  usually  means  that  the  designer  is  well  versed  on  RF  engineering  principles,  has  more  than  a  few  years  of  hands-­‐on  experience,  and  the  ability  to  sort  out  problems  as  they  arise  when  testing  RF  circuits.  It  must  also  be  noted  that  RF  MOSFETs  are  expensive,  RF  circuit  board  layouts  can  be  difficult  to  optimize  the  first  time  and  high  frequency  good  quality  test  equipment  is  a  luxury.  By  offering  a  completely  tested  and  operational  RF  circuit  by  way  of  this  evaluation  board,  we  are  able  to  jump  start  the  end  user  by  eliminating  the  above  mentioned  items  and  place  them  in  a  position  to  simply  connect  and  power  up  the  circuit.  A  designer  can  then  immediately  evaluate  the  performance  of  the  board  and  components  to  see  if  it  is  suitable  for  their  application.    

This  application  note  will  demonstrate  the  advantages  of  using  the  IXZ210N50L  or  IXZ2210N50L  in  the  DE  Series  surface  mount  plastic  package,  and  the  IXFH10N50L  in  the  standard  TO-­‐247  style  package.    Advantages  include  a  500V  maximum  rating  which  allows  for  a  high  100V-­‐150V  operating  voltage  and  lower  DC  currents,  less  complicated  50Ω  or75Ω  load  matching  networks,  and  very  low  thermal  impedance.  The  evaluation  board  uses  these  advantages  to  provide  a  starting  point  for  RF  power  amplification  in  the  Industrial,  Scientific,  Medical  (ISM)  and  HF  bands.        DE-­‐Series  Package         DE-­‐Series    MOSFETs  are  a  class  of  unique,  high-­‐power  devices  designed  from  the  ground  up  as  a  circuit  element  for  high-­‐speed,  high-­‐frequency,  and  high-­‐power  applications.  DE  Series  MOSFETs  features  low  insertion  inductance  (≅1.5  nH)  in  a  low  cost,  low  profile  plastic  package  with  a  very  low  thermal  resistance  that  provides  exceptional  switching  speeds  and  power  handling  capabilities.    

For  high  power  applications,  the  DE-­‐Series  incorporates  several  design  features  that  provide  excellent  thermal  dissipation  and  high  power  handling  capability  while  offering  a  less  cumbersome  mounting  technique  than  conventional  devices.  By  minimizing  substrate  thickness,  and  selecting  substrate  materials  with  a  low  thermal  impedance,  a  multi-­‐layer  configuration  is  assembled  that  not  only  provides  low  thermal  impedance  and  low  die  stress  but  also  allows  for  electrically-­‐isolated  elements  (gate,  drain,  and  source).        An  additional  electrical  advantage  of  the  DE-­‐Series  mechanical  assembly  is  that  the  case  (drain)-­‐to-­‐ground  capacitance  is  approximately  10  pF,  much  lower  than  the  100  pF  capacitance  common  with  a  TO-­‐247  case  isolated  from  its  heat  sink  with  a  2-­‐mil-­‐thick  kapton  insulator.  In  high-­‐frequency,  high-­‐power  applications,  a  large  capacitance  can  cause  large  ground  currents  and  EMI  problems.  Furthermore,  the  capacitance  appears  directly  across  the  drain  and  contributes  to  COSS  losses.  [3]            

Page 3: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 3 of 16

Support       The  following  documentation  is  available  for  download  from  IXYSRF  or  by  email  from  our  customer  service  team.    

• Bill  of  materials  • Schematic  • Gerber  files  • Test  procedure  • Proper  mounting  procedures[4]  • The  bare  printed  circuit  board  is  available  for  purchase  from  our  sales  department  

 Testing  was  done  at  IXYSRF  with  a  Wakefield  Thermal  Solutions  XX6274  heatsink  and  an  air  

flow  of  120  CFM  across  the  fins.  Gerber  files  are  provided  for  those  who  wish  to  arrange  for  PCB  fabrication.  In  addition,  PC  boards  can  be  purchased  from  IXYSRF.      

The  basic  equipment  needed  to  conduct  the  tests  in  this  application  note  are  listed  below.  Any  differences  in  equipment  used  at  IXYSRF  are  discussed  later  in  this  paper.    

• RF  signal  generator  (2  MHz  to  30  MHz)  • RF  power  meters  capable  of  measuring  both  forward  and  reflected  power  • RF  50Ω  power  load  capable  of  handling  a  minimum  of  500W  • 15  V  DC  power  supply  for  bias  voltage  • 150  V  12  A  adjustable  DC  power  supply  for  the  drain  voltage  • Voltage  meter  • 100  MHz  Oscilloscope  

 Description       Class  AB  amplifier  topology  is  defined  as  having  a  conduction  angle  that  is  greater  than  180°  but  less  than  360°.  In  other  words,  DC  bias  and  drive  level  are  adjusted  so  device  output  current  flows  during  appreciably  more  than  half  the  drive  cycle  but  less  than  the  whole  drive  cycle.  This  is  done  by  setting  VGS  to  a  value  greater  than  VGS(th).  Efficiency  is  much  better  than  Class  A,  typically  reaching  50-­‐65%  or  greater  at  maximum  output  power  levels,  with  a  theoretical  maximum  of  78.5%  in  an  ideal  situation.  [1  ,  2]      MOSFET  Capacitance       The  following  chart  plots  the  value  of  the  parasitic  capacitance  with  the  top  curve  representing  input  capacitance  (CISS),  the  middle  curve  representing  output  capacitance  (COSS),  and  lower  curve  representing  reverse  transfer  or  Miller  capacitance  (Crss).    

Page 4: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 4 of 16

Figure 1- Parasitic Capacitance    Input  Capacitance       Figure  1  shows  that  the  input  capacitance  is  approximately  660  pF  for  a  drain  voltage  of  100  V.  The  desired  frequency  range  of  2MHz  to  30MHz  requires  a  bandwidth  of  28MHz.  Using  the  formula  for  capacitive  reactance,  𝑋𝑐 = !

!"  [1];  we  find  that  the  input  impedance  ranges  from  

approximately  125  ohms  at  2  MHz  to  8  ohms  at  30  MHz.      

A  relatively  large  input  capacitance  results  in  a  large  range  of  input  impedances  at  these  frequencies.  Thus,  for  wideband  performance,  a  small  input  capacitance  is  preferred  to  reduce  design  complications.  The  parasitic  capacitance  values  can  also  be  measured  using  a  Vector  Network  Analyzer,  or  calculated  using  the  S-­‐Parameters  provided  on  the  data  sheet,  but  both  methods  are  time-­‐consuming  and  complicated.  Additionally,  the  input  capacitance  is  large  with  respect  to  the  gate  inductance  and  resistance,  dominating  the  gate  circuit,  and  can  be  used  as  the  approximate  input  impedance,  ignoring  the  residual  parasitic  resistance  and  inductance  in  the  gate  circuit.      Amplifier  Input  Section    

In  order  to  achieve  a  good  match  and  to  keep  the  VSWR  at  the  input  to  a  minimum,  the  input  impedance  to  the  gates  of  the  MOSFETs  must  be  kept  relatively  constant.  We  also  want  the  evaluation  board  input  to  be  the  standard  50  ohms.  So  now  we  will  consider  the  gate  impedance  range  over  2MHz  to  30MHz  while  matching  that  to  the  50-­‐ohm  input  using  an  impedance  matching  transformer.  

 A  brief  review  of  transformer  characteristics  yields    

!"!"= !"

!"= !"

!"  𝑎𝑛𝑑  𝑍𝑖𝑛 = !"

!!,[1]

VDS vs. Capacitance

1

10

100

1000

10000

0 50 100 150 200 250 300 350 400

VDS, Drain-to-Source Voltage (V)

Cap

acita

nce

(pF

)

Page 5: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 5 of 16

where:    NS  =  Number  of  secondary  turns    NP  =  Number  of  primary  turns    VS  =  Secondary  voltage    VP  =  Primary  voltage    IP  =  Primary  current    IS  =  Secondary  current  ZIN  =  Reflected  secondary  impedance  looking  into  the  primary  ZS  =  Secondary  impedance  n  =  NS/NP  Turns  ratio    

 As  discussed  earlier,  the  gate  impedance  range  is  very  large,  so  we  will  use  the  lowest  value  

of  ZIN  as  the  value  to  transform.    To  do  this  we  just  divide  50Ω  by  the  lowest  ZIN  value,  which  in  this  case  is  8Ω  as  shown  in  table  1.  Now  we  have  a  value  that  would  be  a  perfect  impedance  transform  of  6.25  to  1.  But  referring  back  to  the  above  characteristic  formula,  this  6.25  is  the  turn’s  ratio  value  of  n2.  Finding  the  square  root  of  6.25  results  in  a  turn’s  ratio  of  2.5:1.  Since  this  type  of  transformer  would  be  impractical  and  difficult  to  use  we  will  have  to  chose  a  more  practical  value.  Also,  when  we  lower  the  input  impedance  at  2MHz,  this  will  also  lower  the  impedance  at  30MHz  to  less  than  8Ω.    Noting  that  the  input  impedance  at  the  higher  frequencies  is  8Ω  and  the  reflected  impedance  is  smaller  than  a  4:1  transform  to  the  desired  50Ω  input  impedance,  we  select  a  3:1  ratio  which  is  a  9:1  impedance  transform,  as  it  is  more  practical  to  lower  the  input  impedance  5.55Ω  rather  than  to  raise  it  across  the  entire  bandwidth.  In  other  words,  it  is  more  desirable  to  place  an  impedance  in  parallel  to  the  gate  impedance  to  lower  it,  routing  more  signal  voltage  to  the  gate,  than  inserting  series  resistance  and  consuming  more  signal  power  in  the  series  resistance.  

 The  transformer  is  constructed  using  binocular  ferrite  core  #BN43-­‐6802  from  Amidon  with  3  

turns  of  #26  insulated  wire  on  the  primary  and  1  turn  of  copper  braid  or  16AWG  insulated  wire  on  the  secondary.  See  figure  2.  

Figure 2

The  next  task  is  to  stabilize  the  input  impedance  of  the  MOSFETs  over  the  28MHz  bandwidth  

to  a  value  that  would  be  close  to  a  9:1  impedance  transformation  to  50Ω.  The  ideal  value  would  be  5.55Ω,  or  50  divided  by  9,  but  it  is  impractical  to  maintain  this  exact  value  of  input  impedance  over  the  entire  28  MHz  bandwidth.  Therefore  we  will  need  to  place  a  shunt  resistor  across  each  MOSFET  gate  to  decrease  the  effective  input  impedance  the  transformer  will  reflect.  To  achieve  a  2:1  VSWR  

Page 6: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 6 of 16

or  less  at  the  input  with  respect  to  the  5.55Ω  ideal  value,  the  effective  input  Z  needs  to  be  3Ω  to  8Ω  across  the  entire  bandwidth.    

Let’s  first  take  a  look  at  the  data  sheet  and  spice  model.  The  values  of  interest  are  the  Rg  (ac  gate  resistance),  Lg  and  Ls  (gate  and  source  inductors),  and  the  Ciss  at  the  chosen  operating  voltage,  which  is  100  V  in  this  case.  We  find  that  the  Rg  is  0.2Ω,  Lg  and  Ls  combined  is  1.5  nH,  and  the  Ciss  is  660  pF.  The  following  chart  will  show  the  calculated  values  of  XC,  XL,  R,  and  ZIN.  ZIN  is  calculated  using  formula  1  and  is  listed  in  table  1.  

Freq. MHz Rg Ω XL Ω XC Ω XTotal Ω ZIN Gate Ω 2 0.2 +0.025133 -120.57193 -120.5468 120.54663 16 0.2 +0.201062 -15.071491 -14.870429 14.869084 30 0.2 +0.376991 -8.038128 -7.661137 7.658526

Table 1

Formula 1 𝑍 = 𝑅𝑔! + 𝑋𝑇𝑜𝑡𝑎𝑙! [1] We  see  that  the  difference  between  XC  and  ZIN  is  very  small,  and  that  XL  and  RG  play  a  small  

role  in  the  overall  input  impedance  of  the  MOSFET.  Therefore  we  can  ignore  the  gate  resistance  and  inductive  reactance  for  this  frequency  range  and  use  just  the  capacitive  reactance  for  simplicity.  

    Now  we  need  to  match  the  input  impedance  of  the  MOSFET  to  the  5.55Ω  of  the  input  source  impedance  (Zsource).  In  order  to  accomplish  this  we  will  be  inserting  a  shunt  resistance  across  the  gate  of  the  MOSFET  to  ground.  To  choose  the  best  possible  value  we  will  use  the  center  frequency  16MHz  value  of  XC.  Formula  2  is  used  to  calculate  this  value  of  shunt  resistance.   Formula 2 𝑅𝑠ℎ𝑢𝑛𝑡 = !"∗!"#$%&'

!!!!!"#$%&!!

This  formula  was  derived  from  Formula  3  for  calculating  Z  from  R  and  X  in  a  parallel  circuit.   Formula 3 𝑍𝑖𝑛 = !∗!

!!!!! [1]

Table  2  is  a  list  of  the  results  from  the  calculations  using  formula  2  with  XC  and  ZIN  of  the  gate.      

Frequency MHz RShunt Ω using XC RShunt Ω using ZIN Gate 2 5.558 5.558 16 5.969 5.982 30 7.672 8.054

Table 2

Again,  we  can  see  a  small  difference  between  the  two  values  of  RShunt  using  just  the  capacitive  reactance  and  the  input  impedance  of  the  MOSFET  in  the  calculations.  The  value  for  RShunt  will  be  5.969Ω  or  the  closet  possible  value.  Any  one  of  the  calculated  values  will  work  for  a  desired  2:1  or  less  VSWR;  but  for  a  better  overall  match  through  the  entire  bandwidth,  the  center  frequency  

Page 7: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 7 of 16

value  should  be  used.  The  value  of  6.7Ω  was  selected  for  this  design.  Table  3  is  a  list  of  effective  ZIN  with  RShunt  using  formula  3.    

Frequency MHz ZIN with RShunt = 6Ω ZIN with RShunt = 6.7Ω 2 5.99Ω 6.69Ω 16 5.57Ω 6.12Ω 30 4.81Ω 5.13Ω

Table 3 Additionally,  there  are  three  resistors  across  the  secondary  of  the  input  matching  transformer,  150Ω  each,  giving  a  total  resistance  of  50Ω.  The  purpose  of  this  resistance  is  to  provide  balance  and  stability  to  the  secondary  winding    Amplifier  Output  Section    

Now  that  the  input  of  the  amplifier  is  completed,  we  need  to  focus  on  the  output  matching  for  the  amplifier  and  using  Formula  4  we  will  determine  the  proper  load  impedance  for  the  amplifier.    

Formula 4                                    𝑅𝐿 = (!""×!.!")!

!×!"#$            [1, 2]  

 This  amplifier  has  been  designed  to  operate  at  100V  with  300W  CW  or  continuous  output  power  into  a  50Ω  load.  The  POUT  is  the  power  out  of  a  single  MOSFET  or  150W.  When  we  use  these  design  values  in  Formula  4,  a  value  of  24.1Ω  is  calculated  for  each  MOSFET.  Since  RL  is  in  series  in  a  push-­‐pull  configuration,  we  have  48.2Ω  for  our  output  load  resistance.  The  output  matching  section  is  then  a  1:1  impedance  transformer  matching  the  48.2Ω  to  the  50Ω  output  load.  The  output  matching  transformer  is  wound  on  two  BN-­‐61-­‐002  binocular  cores  with  3  windings  of  #18  AWG  magnetic  wires  on  both  the  primary  and  secondary,  see  Figure  3.  

  Output  Section  Drain  Supply:    

An  RF  choke  inductor  is  now  added  to  supply  the  drains  of  the  MOSFETs  and  to  isolate  the  supply  voltage  from  the  RF  energy.    The  inductance  value  for  the  choke  is  large  enough  for  the  XL  of  the  choke  to  block  the  RF  energy  and  to  create  a  constant  current  source  to  feed  the  output  stage.  The  choke  is  wound  on  a  single  toriodal  Amidon  T-­‐106-­‐2  core  with  15  bifilar  turns  of  #18  AWG  magnetic  wire.  To  prevent  DC  heating  of  the  core,  the  chokes  are  supplied  voltage  in  opposite  directions  to  cancel  flux  in  the  core.    See  Figures  4,  5  for  choke  picture  and  winding  diagram.  

       

Page 8: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 8 of 16

 

Figure 3

Figure 4

Figure 5

     Input  Section  Bias  Supply    

Class  AB  operation  implies  that  some  amount  of  DC  biasing  exists.  Each  MOSFET  is  DC  biased  at  a  quiescent  (idle)  level  of  500  mA  drain  current  when  cold  and  600  mA  after  warming  for  a  combined  value  of  1  A  cold  to  1.2  A  warmed  up.  Both  gate  circuits  have  multi-­‐stage  resistive  “pi”  filter  networks  that  feed  shunt  resistor  banks  R3-­‐R10.  

Page 9: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 9 of 16

Operating  Conditions    NOTE:  MOSFET  packages  must  be  properly  cooled  on  a  suitable  heatsink.  Water  cooling  is  preferred,  but  a  heat  sink  with  a  very  low  thermal  resistance  and  forced  air  cooled  will  be  adequate.  A  heatsink  is  not  supplied.  The  heatsink  used  for  testing  is  a  WakeField  Thermal  Solutions  model  #XX6274  Flat  Back  Aluminum  extrusion.    Drain  Supply  Voltage:  VDD  =  100  V  ±5  V      Quiescent  Idle  Current:  IDQ  =  1.2  A  ±100  mA  after  warm-­‐up  (cold  startup  set  to  1  A  or  500  mA  per  MOSFET).  Note  that  the  bias  has  been  preset  during  testing  using  12  V  to  establish  1.2  A  of  bias  current  after  warm-­‐up.      Input  Power  Requirements:  2.5  W  to  7  W  depending  on  frequency.  This  is  due  to  the  input  matching  requirements  for  the  broadband  2-­‐30  MHz  frequency  range.      Output  Load:  50Ω  ±1Ω  capable  of  dissipating  500  W.    Equipment  used  at  IXYSRF  for  Testing  Rhode  &  Schwarz  model  SML01  9  KHz  to  1.1  GHz  signal  generator  ENI  model  5100L-­‐NMR  RF  power  amplifier  used  at  input  for  drive  power.  Bird  model  4421  RF  power  meter  with  model  4024  power  sensor  to  measure  input  power  Bird  43  RF  power  meter  with  2  to  30  MHz  1000  W  slug  to  measure  output  power  Xantrek  XFR150-­‐18  DC  power  supply,  0-­‐150  V,  0-­‐18  A  Bird  Termaline  Coaxial  Resistor  Model  8201  500  W,  50Ω  Agilent  Model  54641A  Oscilloscope  Vizatek  DC  power  supply  used  as  bias  supply  Fluke  87V  DMM  digital  voltmeter    Operation  Instructions    

1. Ensure  the  circuit  board  is  mounted  to  a  water-­‐cooled  cold  plate  or  a  heat  sink  with  a  low  thermal  impedance  that  is  capable  of  sinking  500  W  of  power  with  forced  air.  

2. Ensure  that  the  RF  load  resistor  is  capable  of  dissipating  500  W  and  measures  50Ω  ±5%.  3. Connect  a  power  supply  set  to  12  V  to  the  Vbias  input  connectors.  4. Connect  a  power  supply  set  to  100  V  to  the  Vdrain  connectors.  The  supply  should  be  rated  

at  125  V,  10  A  minimum.  5. Connect  a  20  W  (minimum)  power  meter  that  is  capable  of  reading  both  forward  and  

reflected  power  to  the  RF  input.  The  RF  input  connecter  is  centered  at  one  end  of  board.  6. Connect  a  500  W  (minimum)  power  meter  that  is  capable  of  reading  both  forward  and  

reflected  power  to  the  RF  output.  The  RF  output  connector  is  positioned  at  one  corner  of  board.  

7. Connect  the  50Ω,  500  W  RF  load  to  the  output  of  the  500  W  power  meter.  8. Connect  an  adjustable  2  to  30  MHz  low  power  RF  amplifier  to  the  input  of  the  20  W  power  

meter.  Input  drive  power  was  produced  by  the  ENI  model  5100L  amplifier  and  driven  by  the  Rohde  &  Schwarz  signal  generator  at  IXYSRF.  

Page 10: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 10 of 16

9. Turn  on  Vbias,  measure  and  note  the  voltage  on  each  gate  of  the  MOSFETs.  This  voltage  was  preset  at  IXYSRF  during  testing.  

10. Turn  off  Vbias.  11. Ensure  the  evaluation  board  is  adequately  heat  sunk.    12. Turn  on  the  Vdrain  supply  and  ensure  the  voltage  is  100  V.  13. Turn  on  Vbias  and  monitor  the  100  V  supply  (drain)  current.  This  current  should  be  between  1  

and  1.2  A.  The  drain  current  will  initially  go  to  1  A  and  gradually  increase  to  ≤1.2  A  as  the  components  warm  up.  If  the  Idrain  is  too  low  or  high  adjust  the  Vgs  at  R1  and  R2  equally  to  ensure  the  Idrain  on  both  MOSFETs  remains  equal.    If  the  drain  current  continues  to  rise  the  component  is  not  adequately  cooled  or  is  mounted  improperly.  

14. Adjust  signal  generator  at  the  input  of  driving  RF  amp  for  the  desired  frequency  and  2  W  of  drive  power.  

15. Apply  the  RF  signal  at  the  input  and  adjust  input  power  level  until  desired  output  power  is  achieved.  Do  not  exceed  400  W  output  power  for  the  IXZ  components  (DE  series  package)  and  340  W  output  power  for  the  IXZH10N50L  components.  

16. To  calculate  the  efficiency  use  formula  5.    

Formula 5                            𝑒𝑓𝑓% = !"#$!"#

∗ 100        [1]    

17. To  calculate  gain  use  formula  6,  with  RF  Pin  =  RF  input  forward  power  –  RF  input  reflected  power.    

Formula 6       𝑑𝐵 = 10 ∗ log !"#$!"#

         [1]    

To  power  down,  turn  off  RF  signal  generator,  100  V  drain  supply  voltage,  and  bias  voltage.    Conclusion       The  evaluation  circuit  demonstrates  the  advantages  the  IXYSRF  components  have  with  higher  operating  voltages  and  simplistic  design.  These  advantages  lead  to  simple  output  matching  to  the  load,  less  DC  current,  higher  gain,  lower  component  count,  and  lower  thermal  resistance.  This  circuit  is  to  be  used  as  a  starting  point  for  applications  in  the  ISM  and  HF  bands.    By  providing  a  complete  and  fully  tested  board,  engineers  can  save  time  and  money  in  determining  if  IXYSRF  components  fit  their  application  needs.                  

Page 11: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 11 of 16

Chart 1  

Chart 2

10  

20  

30  

40  

50  

60  

70  

80  

0  

5  

10  

15  

20  

25  

0   5   10   15   20   25   30  

Effi

cien

cy %

Gai

n dB

Frequency MHz

Frequency  vs.  Gain  vs.  Efficiency  Power  Out  =  300W  

Efficiency

Gain

16.5  

17  

17.5  

18  

18.5  

19  

19.5  

100  120  140  160  180  200  220  240  260  280  300  320  340  

1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6   6.5   7   7.5  

Gain  dB

 

Pout    W

acs  

Pin  Wacs  

Pin  vs.  Pout  vs.  Gain    Freq.  =  2MHz,  Idq=1.2A,  Vds=  100Vdc  

Page 12: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 12 of 16

Chart 3

Chart 4

17  

17.5  

18  

18.5  

19  

19.5  

20  

20.5  

100  120  140  160  180  200  220  240  260  280  300  320  340  

1   1.5   2   2.5   3   3.5   4   4.5   5   5.5   6   6.5   7  

Gain  dB

 

Pout  W

acs  

Pin  Wacs  

Pin  vs.  Pout  vs.Gain    Freq.  =  15MHz,  Idq=1.2A,  Vds=100Vdc  

18  

18.5  

19  

19.5  

20  

20.5  

21  

100  120  140  160  180  200  220  240  260  280  300  320  340  

1   1.5   2   2.5   3   3.5   4   4.5   5   5.5  

Gain  dB

 

Pout  W

acs  

Pin  Wacs  

Pin  vs.  Pout  vs.  Gain    Freq.  =  30MHz,  Idq=1.2A,  Vds=100Vdc  

Page 13: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 13 of 16

Schematic

Page 14: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 14 of 16

Bill of Materials Item   Qty   Reference   Part   Vendor   Vendor  Part  #  

1   16   C3  thru  C17   0.1µF  50V  X7R   Kemet   C1206C104K5RACTU      2   14   C2  thru  C32  

0.056µF  1KV  X7R  C1,  C18  Not  Installed   Vishay/Vitramon   VJ1825Y563KXGAT  

3   3  

 C33  thru  C35   0.47µF  200V  X7R   Vishay/Vitramon   VJ2225Y474KXCAT  

4   1    

C36   16pF  thru  100pF     Sprague-­‐Goodman   GMC70300  

5   1   C37   100pF  (optional)   ATC   ATC700C101JTN2500X    6   1   CONN1   BNC  Jack,  Right  Angle  PCB   Tyco  Electronics   5413631-­‐1    7   1   CONN2   BNC  Jack,  Right  Angle  PCB   Tyco  Electronics   5413631-­‐2      8   2  

CONN3,    CONN4   4  pos.  Terminal  Block     ON-­‐Shore  Technology   OSTTA04161  

9   2   L1,  L2   Ferrite  bead   Fair-­‐Rite   26430008010    

10   1   Q1   IXZ2210N50L  MOSFET   IXYSRF   IXZ2210N50L    

11   2   R1,  R2   10KΩ  11  turn   Bourns   3224W-­‐1-­‐103E      

12   12   R3  thru  R10   40.2Ω  1W  2512   Panasonic-­‐ECG   ERJ-­‐1TNF40R2U      

13   3  R11,  R12,  

R13   750Ω  1W  2512   Panasonic-­‐ECG   ERJ-­‐1TNF7500U      

14   4  R14  thru  R17   1KΩ  1/4W  1206   Panasonic-­‐ECG   ERJ-­‐8ENF1001V  

   

15   3  R18,  R19,  

R20   150Ω  1W  2512   Panasonic-­‐ECG   ERJ-­‐1TYJ151U      

16   1   T1  

3:1  Transformer  on  BN43-­‐6802  Core  Primary  3  turns  #24AWG,  

 Secondary  1  Turn  copper  braid   Amidon   BN-­‐43-­‐6802      

17   1   T2  15  turns  Bifilar  #20  AWG  on  T106-­‐2  

Toriod   Amidon   T106-­‐2      

18   2   T3  1:1  600Ω  3  Turns  of  #18AWG  on  Two  BN-­‐

61-­‐002  Cores     Amidon   BN-­‐61-­‐202  

 19   1   PCB   5045-­‐0044   IXYSRF   5045-­‐0044  

Page 15: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 15 of 16

Appendix   CISS  –  The  input  gate  capacitance  of  the  MOSFET,  consisting  of  the  gate-­‐to-­‐source  and  gate-­‐to-­‐drain  capacitance.    COSS  –  The  output  capacitance  of  the  MOSFET    CRSS  –  The  Miller  or  gate-­‐to-­‐drain  capacitance,  sometimes  referred  as  the  feedback  capacitance  of  the  MOSFET.    dB  –  A  logarithmic  unit  that  indicates  the  ratio  of  a  physical  quantity  (usually  power  or  intensity)  relative  to  a  specified  or  implied  reference  level.  A  ratio  in  decibels  is  ten  times  the  logarithm  to  base  10  of  the  ratio  of  two  power  quantities.  [1]    IDQ  –  Quiescent  drain  current  or  static  drain  current    Impedance  (Z)  –  The  combined  opposition  to  current  when  a  circuit  contains  both  resistance  and  reactance.  Symbolized  by  the  letter  Z,  impedance  is  a  more  general  term  than  either  resistance  or  reactance.  The  term  is  frequently  used  even  for  circuits  containing  only  resistance  or  reactance.  [1]    VDD  –  Drain  supply  voltage    VGS(th)  -­‐  Gate  Threshold  voltage.  It  is  the  gate-­‐source  voltage  at  which  drain  current  starts  to  flow  and  the  device  is  considered  ON.  It  has  a  negative  temperature  coefficient.    VSWR  -­‐  Voltage  Standing  Wave  Ratio,  a  measure  of  how  well  the  components  of  the  RF  network  are  matched  in  impedance.  When  impedances  are  improperly  matched,  signal  power  is  lost,  resulting  in  weak  transmissions,  poor  reception,  or  both.  [1]                                    

Page 16: Application Note Demonstrating the … Note Demonstrating the IXZH10N50LA/B, IXZ210N50L, IXZ2210N50L In a Class AB 2 to 30 MHz CW 250 to 400 Watt Amplifier ... Amplifier(Input ...

Page 16 of 16

References   [1] The ARRL Handbook for Radio Communications 2008 Copyright 2007 The American Radio Relay League, Inc. ISBN: 0-87259-101-8 [2] RF Circuit Design Second Edition Chris Bowick Elsevier, LTD. 2008 ISBN: 9780750685184 [3] DE-Series Fast Power MOSFET An Introduction Directed Energy Inc. 2002 George J. Krausse Document #9300-0002 Revision 3 [4] De-Series MOSFET, DEIC420 & SOP-28 Gate Driver Mooring and Installation Directed Energy Inc. George J. Krausse Document #9300-0005 Revision 3


Recommended