+ All Categories
Home > Documents > Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons...

Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons...

Date post: 17-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
54
George Kaptay Professor, corresponding member of the Hungarian Academy of Sciences Application of the nano-Calphad method to select stable binary nano-crystalline alloys
Transcript
Page 1: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

George Kaptay Professor, corresponding member of the Hungarian Academy of Sciences

Application of the nano-Calphad method to select stable binary

nano-crystalline alloys

Page 2: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Outlines

Calphad

Nano-Calphad

Stabilization of nano-grains in polycrystals

Page 3: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Part 1. The essence of Calphad

happy customer unhappy customer

The subject of this talk

State parameters Equilibrium state

The subject of another talks

The subject of another talks

CALPHAD = CAlculation of PHAse Diagrams / equilibrium

Page 4: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

What we define and what Nature (God) defines

Number and nature of components, their

average concentration + temperature + pressure (+ size, if below 100 nm)

Number of phases Nature of phases

Phase fraction of phases Composition of phases

(shape, if below 100 nm)

Empirical way

Number of experiments needed for 84 stable elements: 10085 = 10170

Years needed if each hs performes 1 experiment per day: 10158 Mission Impossible

Gibbs energy

Calphad step 1 Databank collection

and modelling

Calphad step 2 Calculation of equilibrium

(phase diagrams)

The Calphad way

Calphad

Page 5: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Materials balance System: your selection of a 3-D part of a Universe, including some matter n (mole), containing C (= 1, 2, …) components, each denoted as i = A, B, etc… (component = element)

𝑛𝑛 = 𝑛𝑛𝐴𝐴 + 𝑛𝑛𝐡𝐡 π‘₯π‘₯𝐡𝐡 ≑𝑛𝑛𝐡𝐡𝑛𝑛

π‘₯π‘₯𝐴𝐴 = 1 βˆ’ π‘₯π‘₯𝐡𝐡

Phase: a homogenous 3-D part of the system, formed spontaneously (not by us): Ξ¦ = Ξ±, β… (their number: P = 1, 2, …)

𝑛𝑛 = �𝑛𝑛ΦΦ

𝑦𝑦Φ ≑𝑛𝑛Φ𝑛𝑛

𝑦𝑦𝛼𝛼 = 1 βˆ’ 𝑦𝑦𝛽𝛽

Each phase is composed of the same components as the system:

𝑛𝑛Φ = 𝑛𝑛𝐴𝐴(Ξ¦) + 𝑛𝑛𝐡𝐡(Ξ¦) π‘₯π‘₯𝐡𝐡(Ξ¦) ≑𝑛𝑛𝐡𝐡(Ξ¦)

𝑛𝑛Φ π‘₯π‘₯𝐴𝐴(Ξ¦) = 1 βˆ’ π‘₯π‘₯𝐡𝐡(Ξ¦)

Materials balance equation: π‘₯π‘₯𝐡𝐡 = �𝑦𝑦Φ βˆ™ π‘₯π‘₯𝐡𝐡(Ξ¦)Ξ¦

Page 6: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

g

l

s(Ξ±)

s(Ξ²)

An example of a 4-phase system

Page 7: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Calphad

C, i, T, p

π‘₯π‘₯𝑖𝑖 P, Ξ¦

𝑦𝑦Φ

π‘₯π‘₯𝑖𝑖(Ξ¦)

𝐺𝐺𝑖𝑖(Ξ¦)

𝐺𝐺 = �𝑦𝑦Φ βˆ™ 𝐺𝐺ΦΦ

𝐺𝐺Φ = οΏ½π‘₯π‘₯i(Ξ¦) βˆ™ 𝐺𝐺i(Ξ¦)i

𝐺𝐺𝑖𝑖(Ξ¦) = 𝑓𝑓(𝐢𝐢, 𝑖𝑖,𝑝𝑝,𝑇𝑇, π‘₯π‘₯i Ξ¦ ) 𝐺𝐺 β†’ π‘šπ‘šπ‘–π‘–π‘›π‘›

𝐺𝐺𝑖𝑖(Ξ±) = 𝐺𝐺𝑖𝑖(Ξ²)

π‘ƒπ‘ƒπ‘šπ‘šπ‘šπ‘šπ‘šπ‘š = 𝐢𝐢 + 2

π‘₯π‘₯𝑖𝑖 = �𝑦𝑦Φ βˆ™ π‘₯π‘₯𝑖𝑖(Ξ¦)Ξ¦

1.Calculation 2. Selection

Page 8: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Does the solution exist?

Un-knowns for equilibrium state: 𝑦𝑦Φ and π‘₯π‘₯𝑖𝑖(Ξ¦)

Their number: (P-1) + P(C-1) = PC -1

Equations: 𝐺𝐺𝑖𝑖(Ξ±) = 𝐺𝐺𝑖𝑖(Ξ²) and π‘₯π‘₯𝑖𝑖 = �𝑦𝑦Φ βˆ™ π‘₯π‘₯𝑖𝑖(Ξ¦)Ξ¦

Their number: C(P-1) + C-1 = PC -1

As the number of un-knowns equals the number of equations,

the solution always exists

Page 9: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Why?? 𝐺𝐺 β†’ π‘šπ‘šπ‘–π‘–π‘›π‘›

The upper layer of the Earth

Towards equilibrium

Towards higher energy

There are at least two explanations….

Page 10: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Why?

A-B phase Ξ²A-B phase Ξ±

𝐺𝐺𝑖𝑖(Ξ±) = 𝐺𝐺𝑖𝑖(Ξ²)

Page 11: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Algorithm for 2-phase, 2-component macro-equilibria

1. Fix values for p, T, xA

Ξ²Ξ± ,, AA GG = Ξ²Ξ± ,, BB GG =

2. Solve the system of equations for xA,Ξ± and xA,Ξ²

In the two-phase Ξ±-Ξ² region the solution is not xA-dependent

3. Find the phase ratio yΞ±:

Ξ²Ξ±

Ξ²Ξ±

,,

,

AA

AA

xxxx

yβˆ’

βˆ’=

This is a true tie-line

Page 12: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Calphad needs supercomputers

0

10

20

30

0 21 42 63 84

LG(c

ombi

natio

ns)

Components

Page 13: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Part 2. The essence of nano-Calphad

Nano-Calphad ≑ Calphad applied to nano-materials

Nano-materials ≑ materials with at least 1 phase with at least one of its dimensions below 100 nm

Page 14: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Nano came last

kmfm nm Β΅m mm mpm

logLTΒ΅-Tn-Tp-Tf-T

Page 15: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Why nano-materials are so special?

0

20

40

60

80

100

0 10 20 30 40 50

% o

f ato

ms a

long

surf

ace

r, nm

π‘₯π‘₯𝑠𝑠 = 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™π‘‰π‘‰π‘šπ‘šπœ”πœ”

𝐴𝐴𝑠𝑠𝑠𝑠 ≑𝐴𝐴𝑉𝑉

More than 1 % of atoms are along the surface, and so all

properties are size-dependent

Page 16: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Size dependence of properties

80

100

120

140

160

180

200

220

0 20 40 60 80 100

Any

prop

erty

% of surface atoms

π‘Œπ‘Œ = π‘Œπ‘Œπ‘π‘ + π‘₯π‘₯𝑠𝑠 βˆ™ π‘Œπ‘Œπ‘ π‘  βˆ’ π‘Œπ‘Œπ‘π‘

80

100

120

140

160

180

200

220

0 10 20 30 40 50

Any

prop

errt

y

r, nm

π‘Œπ‘Œ = π‘Œπ‘Œπ‘π‘ + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™π‘‰π‘‰π‘šπ‘šπœ”πœ”βˆ™ π‘Œπ‘Œπ‘ π‘  βˆ’ π‘Œπ‘Œπ‘π‘

Page 17: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Size dependence of molar Gibbs energy 1

π‘Œπ‘Œ = π‘Œπ‘Œπ‘π‘ + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™π‘‰π‘‰π‘šπ‘šπœ”πœ”βˆ™ π‘Œπ‘Œπ‘ π‘  βˆ’ π‘Œπ‘Œπ‘π‘

π‘Œπ‘Œ ≑ πΊπΊπ‘šπ‘š πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™π‘‰π‘‰π‘šπ‘šπœ”πœ”βˆ™ πΊπΊπ‘šπ‘š,𝑠𝑠 βˆ’ πΊπΊπ‘šπ‘š,𝑏𝑏

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

𝜎𝜎 =πΊπΊπ‘šπ‘š,𝑠𝑠 βˆ’ πΊπΊπ‘šπ‘š,𝑏𝑏

πœ”πœ”

Page 18: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Size dependence of molar Gibbs energy 2

Gibbs, 1878: 𝐺𝐺 = πΊπΊπ‘šπ‘š + 𝐴𝐴 βˆ™ 𝜎𝜎

Divide by n:

𝑛𝑛 =π‘‰π‘‰π‘‰π‘‰π‘šπ‘š

𝐴𝐴𝑠𝑠𝑠𝑠 ≑𝐴𝐴𝑉𝑉

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

πΊπΊπ‘šπ‘š ≑𝐺𝐺𝑛𝑛

πΊπΊπ‘šπ‘š,𝑏𝑏 ≑𝐺𝐺𝑏𝑏𝑛𝑛

Page 19: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Size dependence of chemical potential

πœ‡πœ‡π‘–π‘– = πœ‡πœ‡π‘–π‘–,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘–π‘–

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

πΊπΊπ‘šπ‘š = οΏ½ π‘₯π‘₯𝑖𝑖 βˆ™ πœ‡πœ‡π‘–π‘–π‘–π‘–

πΊπΊπ‘šπ‘š,𝑏𝑏 = οΏ½ π‘₯π‘₯𝑖𝑖 βˆ™ πœ‡πœ‡π‘–π‘–,𝑏𝑏𝑖𝑖

π‘‰π‘‰π‘šπ‘š = οΏ½ π‘₯π‘₯𝑖𝑖 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖𝑖𝑖

πΊπΊπ‘šπ‘š = οΏ½ π‘₯π‘₯𝑖𝑖 βˆ™ πœ‡πœ‡π‘–π‘–π‘–π‘–

= οΏ½ π‘₯π‘₯𝑖𝑖 βˆ™ πœ‡πœ‡π‘–π‘–,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘–π‘–

𝜎𝜎 = πœŽπœŽπ‘–π‘–

Page 20: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Chemical potential in multi-phase situations

πœ‡πœ‡π‘–π‘– = πœ‡πœ‡π‘–π‘–,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ 𝜎𝜎 + π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™πΊπΊπ‘šπ‘šπ‘Žπ‘Žπ‘Žπ‘Ž βˆ’ 𝐺𝐺𝑓𝑓𝑠𝑠

𝑉𝑉

Page 21: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Case 1: sessile drop

πœ‡πœ‡π‘–π‘–(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) = πœ‡πœ‡π‘–π‘–,𝑏𝑏 +3π‘Ÿπ‘Ÿβˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘ π‘ π‘™π‘™ βˆ™

2 βˆ’ 3 βˆ™ π‘π‘π‘π‘π‘π‘Ξ˜ + 𝑐𝑐𝑐𝑐𝑐𝑐3Θ4

1/3

πœ‡πœ‡π‘–π‘– = πœ‡πœ‡π‘–π‘–,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘–π‘–

0

0,2

0,4

0,6

0,8

1

0 30 60 90 120 150 180

, degrees

Page 22: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Case 2: Liquid confined in capillaries

πœ‡πœ‡π‘–π‘–(π‘π‘π‘šπ‘šπ‘ π‘ ) = πœ‡πœ‡π‘–π‘–,𝑏𝑏 βˆ’2π‘Ÿπ‘Ÿπ‘π‘π‘šπ‘šπ‘ π‘ 

βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘ π‘ π‘™π‘™ βˆ™ π‘π‘π‘π‘π‘π‘Ξ˜

πœ‡πœ‡π‘–π‘–(𝑐𝑐𝑐𝑐𝑠𝑠) = πœ‡πœ‡π‘–π‘–,𝑏𝑏 +2π‘Ÿπ‘Ÿπ‘π‘π‘šπ‘šπ‘ π‘ 

βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘ π‘ π‘™π‘™

-1

-0,5

0

0,5

1

0 30 60 90 120 150 180

, degrees

Page 23: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Josiah Willard Gibbs 1839 - 1903

William Thomson (Lord Kelvin) 1824 - 1907

(1869) (1878)

The historical accident: nano-Calphad came before Calphad

Page 24: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The Kelvin equation and the reasons of its incorrectness

πΊπΊπ‘šπ‘š = π‘ˆπ‘ˆπ‘šπ‘š + 𝑝𝑝 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ’ 𝑇𝑇 βˆ™ π‘†π‘†π‘šπ‘š 𝑝𝑝𝑖𝑖𝑖𝑖 = π‘π‘π‘œπ‘œπ‘œπ‘œπ‘Žπ‘Ž + 𝜎𝜎 βˆ™1π‘Ÿπ‘Ÿ1

+1π‘Ÿπ‘Ÿ2

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 +1π‘Ÿπ‘Ÿ1

+1π‘Ÿπ‘Ÿ2

βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

Reasons of incorrectness: - p is a state parameter, not an inside pressure p(in) - No nano-effect for not-curved phases ? (cubic nano-L) - The surface term of Gibbs is forgotten, - The Laplace pressure is obtained from G…. - Contradiction with nucleation theory

Page 25: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The nucleation contradiction

[J Nanosci Nanotechnol 12 (2012) 2625-2633]

Gibbs: critical size

Gibbs: equilibrium size

Kelvin (Gibbs-Thomson): equilibrium size

nucleus size, nm

Gibbs

energy

change,

J

Page 26: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Kelvin (Gibbs-Thomson) or Gibbs?

Gibbs (specific surface area)

msSb VAGG ,, ΦΦΦΦΦ β‹…β‹…=βˆ’ Οƒ

Kelvin (curvature)

+β‹…β‹…=βˆ’ ΦΦΦΦ

21,

11rr

VGG mgb Οƒ

2r

rVmβ‹…β‹…Οƒ2

rVmβ‹…β‹…Οƒ3

0Ξ΄

δσσ moutin Vβ‹…+ )(

Page 27: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

CALORIMETRIC INVESTIGATION OF THE LIQUID Sn-3.8Ag-0.7Cu ALLOY WITH MINOR Co ADDITIONS

Andriy Yakymovych University of Vienna, Austria

George Kaptay University of Miskolc, Hungary

Ali Roshanghias, Hans Flandorfer, Herbert Ipser University of Vienna, Austria

. J. Phys. Chem. C,120 (2016) 1881-1890

Page 28: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

High-Temperature Calorimeter

β€’SETARAM Β© β€’High temperature calorimeter (twin calorimeter) β€’ambient to 1000Β°C Equipped with an

automatic dropping device

H. Flandorfer, F. Gehringer, E. Hayer, Thermochim. Acta 382 (2002), 77-87

Page 29: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Materials Sn-3.8Ag-0.7Cu foil High purity metals in bulk form

Alfa Aesar (99.99%)

Page 30: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Results

βˆ†π»π»π‘–π‘–π‘šπ‘šπ‘–π‘–π‘œπ‘œ= βˆ’7.5 Β± 1.5 π‘˜π‘˜π‘˜π‘˜/π‘šπ‘šπ‘π‘π‘šπ‘š

Page 31: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Theoretical Consideration

𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š = 𝐴𝐴𝐡𝐡𝐡𝐡𝐡𝐡 βˆ™ 𝑀𝑀

( ) -2, , 2.80 0.15 J m

Dsg H Tσ ≅ ± ⋅

( ) 3 2 150 10 10 m kgBETA βˆ’= Β± β‹… β‹…3 158.933 10 kg molM βˆ’ βˆ’= β‹… β‹…

βˆ†π»π»π‘–π‘–,π‘Žπ‘Žβ„Ž= βˆ’8.2 Β± 2.1 π‘˜π‘˜π‘˜π‘˜/π‘šπ‘šπ‘π‘π‘šπ‘š

βˆ†π»π»π‘–π‘–,π‘ π‘ π‘šπ‘šπ‘ π‘ = βˆ’7.5 Β± 1.5 π‘˜π‘˜π‘˜π‘˜/π‘šπ‘šπ‘π‘π‘šπ‘š

πΊπΊπ‘šπ‘š = πΊπΊπ‘šπ‘š,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ 𝜎𝜎

bulk-liquid nano-liquid nano-bulk

π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘š,π‘–π‘–π‘šπ‘šπ‘–π‘–π‘œπ‘œ = π»π»π‘šπ‘šπ‘–π‘–π‘šπ‘šβˆ’π‘π‘π‘œπ‘œπ‘ π‘ π‘π‘ + βˆ†π»π»π‘–π‘–π‘šπ‘šπ‘–π‘–π‘œπ‘œ

βˆ†π»π»π‘–π‘–π‘šπ‘šπ‘–π‘–π‘œπ‘œ = (0 βˆ’ 𝐴𝐴𝑠𝑠𝑠𝑠) βˆ™ π‘‰π‘‰π‘šπ‘š βˆ™ πœŽπœŽπ‘ π‘ π‘ π‘ ,𝐻𝐻

Page 32: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

A new state parameter

πœ‡πœ‡π‘–π‘–(𝛼𝛼) = πœ‡πœ‡π‘–π‘–(𝛽𝛽) πœ‡πœ‡π‘–π‘– = πœ‡πœ‡π‘–π‘–,𝑏𝑏 + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,𝑖𝑖 βˆ™ πœŽπœŽπ‘–π‘–

80

100

120

140

160

180

200

220

0 10 20 30 40 50

, J/m

ol

r, nm

A new state parameter: Asp, r, or N

Page 33: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The extended phase rule of Gibbs

Gibbs, 1875:

Due to a new, independent variable:

CP += 3max PCF βˆ’+= 3

P = number of phases, C = number of components, F = freedom

[J. Nanosci. Nanotechnol., 2010, vol.10, pp.8164–8170]

CP += 2max PCF βˆ’+= 2

Page 34: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Macro-thallium

-100

-50

0

50

100

480 500 520 540 560 580 600

T, K

Go a

- G

o HC

P, J

/mol

a = LIQΞ± = VAP2.5E-13 bar

a = HCP

a = BCC

Ξ± = VAP4.2E-11 bar

T1

T2

-15

-12

-9

-6

-3

0

3

6

480 500 520 540 560 580 600

T, K

logp

(bar

)

VAP

BCCHCP

HCP

LIQ

T2

T1

Page 35: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Nano-thallium (with a quaternary point)

-15

-12

-9

-6

-3

0

3

6

480 500 520 540 560 580 600

T, K

logp

(bar

)

HCP

HCP

BCC LIQ

T1 VAPT2

N>1E12

T3

-15

-12

-9

-6

-3

0

3

6

480 500 520 540 560 580 600

T, K

logp

(bar

)

VAPVAP

LIQ

LIQ

HCP

HCPHCP

T1 T2

T3

N=2E5

BCC

-15

-12

-9

-6

-3

0

3

6

480 500 520 540 560 580 600

T, K

logp

(bar

)

HCPLIQ

HCP

BCC

VAPVAP

Q

HCP

N=1.2E5

-15

-12

-9

-6

-3

0

3

6

480 500 520 540 560 580 600

T, K

logp

(bar

)

HCP

HCP

LIQ

VAP

N=1E4

T4

[G.Kaptay: J. Nanosci. Nanotechnol., 2010, vol.10, pp.8164–8170]

Page 36: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The size dependence of interfacial energies

Tolman, 1949:

Buff, 1951:

R

phase Ξ±phase Ξ²

r

o

δσσ

β‹…+

= 21 VL ρρδ

βˆ’Ξ“

≑

+

β‹…βˆ’β‹…= ....21

ro δσσ

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5r, nm

Οƒ, J

/m2

,

Tolman

Buff

Ξ΄

Rcr

Samsonov

σο

( ) SrVTT

m

sslomm βˆ†β‹…β‹…+

β‹…β‹…βˆ’=

δσ

23

Page 37: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The separation dependence of interfacial energies

Ξ± = s

Ξ² = g

Ξ³ = l z

( ) )z(f5.0)z( //// β‹…Οƒβˆ’Οƒβ‹…+Οƒ=Οƒ Ξ³Ξ±Ξ²Ξ±Ξ³Ξ±Ξ³Ξ±

[ ] )z(f5.0)z( //// β‹…Οƒβˆ’Οƒβ‹…+Οƒ=Οƒ Ξ³Ξ²Ξ²Ξ±Ξ³Ξ²Ξ³Ξ²

2

)(

+

=z

zfΞΎ

ΞΎ

βˆ’=

ΞΎzzf exp)(metals:

non-metals:

βˆ’β‹…βˆ†++=

ξσσσσ zz glls exp)( // gllsgs /// σσσσ βˆ’βˆ’β‰‘βˆ†

Page 38: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Surface melting

Ξ± = s

Ξ² = g

Ξ³ = l z

Ξ± = s

Ξ² = g

surface melting

( )

βˆ’βˆ’β‹…βˆ†βˆ’βˆ†β‹…βˆ’β‹…=

βˆ†ΞΎ

Οƒ zSTTVz

AzG o

mo

mos

m exp1)(

-80

-60

-40

-20

0

20

40

60

0 3 6 9 12 15z, nm

βˆ†m

G/A

, mJ/

m2 equilibrium thickness of the

surface melted layer, zeq

( )

βˆ’β‹…βˆ†β‹…

β‹…βˆ†β‹…=

TTSVz o

mm

os

eq ξσξ ln

0

2

4

6

8

10

900 920 940 960 980 1000 1020T, K

z eq, n

m

omT

ΞΎ

( ) )/( SeVTT mo

so

m βˆ†β‹…β‹…β‹…βˆ†β‰€βˆ’ ΞΎΟƒ

Page 39: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Ξ± Ξ² Ξ± Ξ²

The role of the relative arrangement of phases

Same results for N > 1012

Different results for N < 1012

Ξ± Ξ²

Equilibrium arrangement corresponds to minimum Gibbs energy

βˆ‘ ΦΦΦΦ Οƒβ‹…β‹…=βˆ†s

s/spec,s/surf AVG

Page 40: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

6. Dependence on the substrate material

Ξ³

Ξ²Ξ±

Ξ±Ξ²

Ξ³

Ξ±Ξ²

Ξ³

Wettable substrates stabilize nano-droplets

βˆ‘ ΦΦΦΦ Οƒβ‹…β‹…=βˆ†s

s/spec,s/surf AVG

Page 41: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Dependence on segregation (Butler)

)s/(i)s/(B)s/(As/ ... ΦΦΦΦ Οƒ==Οƒ=Οƒ=Οƒ

3/13/2)(

)()/(

)(

)/(3/13/2

)()/()/( ln

Avi

Ei

Esi

bi

si

Avi

osisi NVf

GGx

xNVf

TRβ‹…β‹…

βˆ†βˆ’βˆ†β‹…+

β‹…

β‹…β‹…β‹…

+=Ξ¦

ΦΦ

Ξ¦

Ξ¦

ΦΦΦ

βσσ

1xi

)s/(i =βˆ‘ Ξ¦1)( =βˆ‘ Ξ¦

i

bix

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1xB*

ΟƒA, Οƒ

B, J/

m2

A

B

solution

Page 42: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Size limits of thermodynamics

Thermodynamics is a statistical science

G has an average value for a large number of atoms in the given environment during a long

enough time

At small N the fluctuations will increase.

What is the critical N below which thermodynamic is not valid is a β€žreligious” question (at N = 13: Tm β‰ˆ 0 K, what is OK):

only the fluctuation increases with smaller N

0

200

400

600

800

1000

0 3 6 9 12logNa

T m,i,

K

13 atoms

oimT ,

Page 43: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Algorithm for 2-phase, 2-component nano-phase-equilibria (1)

1. Fix values for p, T, xA, N 2. Suppose a certain phase-arrangement, e.g.

3. Suppose a value for yΞ± (0 < yΞ± < 1), then:

Ξ±Ξ²

NyN β‹…= Ξ±Ξ± NyN β‹…βˆ’= )1( Ξ±Ξ²

Page 44: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Algorithm for nano phase equilibria (2)

Ξ²Ξ± ,, AA GG =

4. Suppose a value for xA,Ξ± (0 < xA,Ξ± < 1), then:

Ξ±

Ξ±Ξ±Ξ² y

xyxx AA

A βˆ’

β‹…βˆ’=

1,

,

Ξ±Ξ± ,, 1 AB xx βˆ’=

Ξ²Ξ² ,, 1 AB xx βˆ’=

5. Find σα and σβ from the Butler equation (modify xAΞ±).

6. Check, if the equations for G-s with Οƒ-s are satisfied

7. If not, select new values for (xA,Ξ±, yΞ±) and go back to Step 3

8. If yes, check solution for other phase arrangements / shapes and select equilibrium arrangement / shape configuration for the phases by minimizing Gibbs energy

Ξ²Ξ± ,, BB GG =

Page 45: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Algorithm for nano phase equilibria (3)

The final result xA,Ξ± and xA,Ξ² will be dependent on xA. Thus, tie line has not the same sense as before.

This is not a true tie-line

Page 46: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

T

A BxA

Ξ± Ξ²Ξ± + Ξ²

xA,Ξ²xA,Ξ±

p, N, T = const

A BxA

Ξ±

Ξ²

Ξ± + Ξ²

xA,Ξ²

xA,Ξ±

p, N = const

xA,Ξ²

xA,Ξ±

not a tie line

tie line

Page 47: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Part 3. Thermodynamic stabilization of nano-alloys vs grain coarsening and precipitation

Page 48: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

The case of pure metals

πΊπΊπ‘šπ‘š,π΄π΄π‘œπ‘œ = πΊπΊπ‘šπ‘š,𝐴𝐴,𝑏𝑏

π‘œπ‘œ + 𝐴𝐴𝑠𝑠𝑠𝑠 βˆ™ π‘‰π‘‰π‘šπ‘š,π΄π΄π‘œπ‘œ βˆ™ 𝜎𝜎𝐴𝐴,𝑠𝑠𝑏𝑏

π‘œπ‘œ

𝐴𝐴𝑠𝑠𝑠𝑠 ≑𝐴𝐴𝑉𝑉

=π‘˜π‘˜π‘Ÿπ‘Ÿ

πΊπΊπ‘šπ‘š,π΄π΄π‘œπ‘œ = πΊπΊπ‘šπ‘š,𝐴𝐴,𝑏𝑏

π‘œπ‘œ +π‘˜π‘˜π‘Ÿπ‘Ÿβˆ™ π‘‰π‘‰π‘šπ‘š,𝐴𝐴

π‘œπ‘œ βˆ™ 𝜎𝜎𝐴𝐴,π‘ π‘ π‘π‘π‘œπ‘œ

G.Kaptay: Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci, 47

(2012) 8320-8335

k = 3 (sphere); k = 3.72 (cube); k = 3.36 Β± 0.36 for a grain

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

, J/m

ol

r, nm

coarsening, no stability

Page 49: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

2-component alloys (GB = grain boundayr)

49

A = bulk component, B = segregated component, = average mole fraction π‘₯π‘₯𝐡𝐡

y = GB-ratio, = atomic radius, = bulk and GB filling ratios, x = B mole fraction in bulk, π‘Ÿπ‘Ÿπ‘šπ‘šπ‘–π‘–π‘–π‘– = minimum possible grain size, πœ”πœ”π΅π΅

π‘œπ‘œ ,πœŽπœŽπ΅π΅π‘œπ‘œ = molar surface area and GB energy of component B, Ξ© = bulk interaction energy, π‘‰π‘‰π‘šπ‘š = molar volume, πΊπΊπ‘šπ‘š molar Gibbs energy.

𝑦𝑦 =π‘Ÿπ‘Ÿβˆ—

π‘Ÿπ‘Ÿ + 3 βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘š π‘Ÿπ‘Ÿβˆ— ≑

43βˆ™ π‘˜π‘˜ βˆ™

𝑓𝑓𝑠𝑠𝑏𝑏𝑓𝑓𝑏𝑏

βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘š

π‘Ÿπ‘Ÿπ‘šπ‘š 𝑓𝑓𝑏𝑏, 𝑓𝑓𝑠𝑠𝑏𝑏

π‘₯π‘₯ =π‘₯π‘₯𝐡𝐡 βˆ’ 𝑦𝑦1 βˆ’ 𝑦𝑦 π‘Ÿπ‘Ÿπ‘šπ‘šπ‘–π‘–π‘–π‘– β‰…

π‘Ÿπ‘Ÿβˆ—

π‘₯π‘₯π΅π΅βˆ’ 3 βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘š

π‘Ÿπ‘Ÿπ‘šπ‘š =3 βˆ™ 𝑓𝑓𝑏𝑏 βˆ™ π‘‰π‘‰π‘šπ‘š4 βˆ™ πœ‹πœ‹ βˆ™ 𝑁𝑁𝐴𝐴𝑙𝑙

1/3

πœ”πœ”π΅π΅π‘œπ‘œ = πœ‹πœ‹ βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘š2 βˆ™

𝑁𝑁𝐴𝐴𝑙𝑙𝑓𝑓𝑠𝑠𝑏𝑏

πΊπΊπ‘šπ‘š = 𝑅𝑅 βˆ™ 𝑇𝑇 βˆ™ π‘₯π‘₯ βˆ™ π‘šπ‘šπ‘›π‘›π‘₯π‘₯ + 1 βˆ’ π‘₯π‘₯ βˆ™ π‘šπ‘šπ‘›π‘› 1 βˆ’ π‘₯π‘₯ + Ξ© βˆ™ π‘₯π‘₯ βˆ™ 1 βˆ’ π‘₯π‘₯ +

+π‘˜π‘˜

π‘Ÿπ‘Ÿ + 3 βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘šβˆ™π‘‰π‘‰π‘šπ‘šπœ”πœ”π΅π΅π‘œπ‘œ

βˆ™ πœ”πœ”π΅π΅π‘œπ‘œ βˆ™ πœŽπœŽπ΅π΅π‘œπ‘œ βˆ™ 1 +3 βˆ™ π‘Ÿπ‘Ÿπ‘šπ‘šπ‘Ÿπ‘Ÿ βˆ’ 𝑅𝑅 βˆ™ 𝑇𝑇 βˆ™ π‘šπ‘šπ‘›π‘›π‘₯π‘₯ βˆ’ Ξ© βˆ™ 1 βˆ’ π‘₯π‘₯ 2

Page 50: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

W-”Ag” alloys, 500 K, 15 mol% Ag

50 6M meeting, 29 March 2017, Miskolc, Hungary

-1000

0

1000

2000

3000

4000

0 4 8 12 16 20

Gm

, J/m

ol

r, nm

OMEGA = 20 kJ/mol

-1000

0

1000

2000

3000

4000

0 4 8 12 16 20

Gm

, J/m

ol

r, nm

OMEGA = 35 kJ/mol

-1000

0

1000

2000

3000

4000

0 4 8 12 16 20

Gm

, J/m

ol

r, nm

OMEGA = 50 kJ/mol

Page 51: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Stability diagram for W-based alloys

51 6M meeting, 29 March 2017, Miskolc, Hungary

-40

-20

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35

, kJ/

mol

, kJ/molunstable

kinetically stable

thermodynamically stable

Ti

Cr Sc

YAg, Mn

Ce

Cu

Ta

Mo, Nb99%

75%

ZrFe - Co - Ni Al

???

Page 52: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

W-Ag phase diagram

52 6M meeting, 29 March 2017, Miskolc, Hungary

0

500

1000

1500

2000

2500

0 0,2 0,4 0,6 0,8 1

T, K

xAg

bulk bcc-W + bulk liq-Ag

bulk bcc-W + bulk fcc-Ag

bulk bcc-W + bulk vap-Ag (1 bar)

W Ag

0

500

1000

1500

2000

2500

0 0,2 0,4 0,6 0,8 1

T, K

xAgW Ag

bulk bcc-W + bulk fcc-Ag

bulk bcc-W + bulk liq-Ag

bulk bcc-W + bulk vap-Ag (1 bar)

100

3010 3 1

bcc-W-nano-grains with

segregated Ag atoms

Maximum Hall-Petch

Maximum stabity

Page 53: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Theoretically selected stable nc alloys

W-based alloys: Ag, Au, Ba, Bi, Cd, Ce, Cr, Cs, Cu, Eu, Gd, Hg, Ho, In, K, La, Li, Mg, Na, Nd, Pb, Pu, Rb, Sb, Sc, Sm, Sn, Tb, Th, Tl, Tm, U, Y, Yb, Zn.

Mo-based alloys: Ag, Ba, Bi, Ca, Cd, Ce, Cs, Cu, Er, Eu, Hg, Ho, In, K, La, Li,

Mg, Na, Nd, Pb, Rb, Sm, Sr, Tl, Yb.

Nb-based alloys: Ag, Ba, Bi, Ca, Cd, Ce, Cs, Cu, Er, Eu, Gd, Hg, K, La, Li, Mg, Na, Rb, Sc, Sm, Tl, Y, Yb.

Ti-based alloys: Ba, Ca, Ce, Cs, Eu, Gd, K, La, Li, Mg, Na, Nd, Rb, Sr, Yb.

Al-based alloys: Bi, Cd, Cs, In, K, Na, Pb, Rb, Tl.

Mg-based alloys: Cs, K, Na, Rb.

Page 54: Application of the nano-Calphad method to select stable ...Β Β· The Kelvin equation and the reasons of its incorrectness πΊπΊπ‘šπ‘š= π‘ˆπ‘ˆπ‘šπ‘š+ π‘π‘βˆ™π‘‰π‘‰π‘šπ‘šβˆ’π‘‡π‘‡βˆ™π‘†π‘†π‘šπ‘š

Key papers

Calphad, 56 (2017) 169-184.

J. Phys. Chem. C, 120 (2016) 1881-1890.

J. Mater. Sci., 51 (2016) 1738-1755.

Langmuir 31 (2015) 5796-5804.

Acta Mater, 60 (2012) 6804-6813.

J Mater Sci, 47 (2012) 8320-8335.

Int. J. Pharmaceutics, 430 (2012) 253-257.

J Nanosci Nanotechnol, 12 (2012) 2625-2633

J. Nanosci. Nanotechnol., 10 (2010) 8164–8170

[email protected]


Recommended