+ All Categories
Home > Documents > Application of Wake Vortex Models in Encounter...

Application of Wake Vortex Models in Encounter...

Date post: 28-Jul-2018
Category:
Upload: dodan
View: 214 times
Download: 0 times
Share this document with a friend
19
Berlin Institute of Technology D. Bieniek, R. Luckner November 7 th /8 th , 2011 WakeNet3 - Europe Specific Workshop: Operational Wake Vortex Models Application of Wake Vortex Models in Encounter Simulations
Transcript

Berlin Institute ofTechnology D. Bieniek, R. Luckner

November 7th/8th, 2011WakeNet3 -

Europe Specific Workshop: Operational Wake Vortex Models

Application of Wake Vortex Models in Encounter Simulations

Slide 2D. Bieniek, R. Luckner November 7/8, 2011

Content

Flight Simulation

Parameter Studies

Simplified Encounter Simulation

Fast-time Simulations

Application of Vortex Models in…

Slide 3D. Bieniek, R. Luckner

Objectives

What we need…

For Encounter Simulation: (Objective: Simulate aircraft upset due to the vortices)

-

Models for vortex-induced velocity field

-

Approx. 1m resolution

-

Parametric models, scalable models

-

Analytical or numeric models

-

Models with low computational effort

(e.g. real-time or fast-time simulations)

Subject of th

is

presentation

For Detection, Warning and Avoidance Systems: (Objective: Evaluate potential of such systems)

-

Models for vortex transport by wind

-

Models for vortex descend by mutual induction

Slide 4D. Bieniek, R. Luckner

0 1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r / rc [-]

V /

V 0 [-]

Top HatGaussian (Lamb-Oseen, L-O)ProctorLow Order Algebraic (Burnham-Hallock, B-H)

November 7/8, 2011

Examples of Flow Field Models

Distance from Center r / rC [-]

Nor

mal

ized

Indu

ced

Velo

city

Limited accuracy

Low computational effort

Quick variation of parameters

Analytical Models e.g. Low-order algebraic

(Burnham-Hallock, B-H)

Numerical Simulation Data e.g. LES Data

22c rr

rπ2

V(r)

Γ

Source: I. De Visscher et al. (UCL)

Accurate data

High computational effort

Variation of parameters requires time consuming simulation

Slide 5D. Bieniek, R. Luckner November 7/8, 2011

Vortex-induced Forces and

Moments

Application of WV Models

Integration of Operational WV Models into WV Encounter Simulation

WVE SoftwareAerodynamic InteractionModels (AIM) e.g. Strip Method

Strips

Vortex Models Velocities + Shape

MWV

FWV

+

Vortex Trajectory

Vortex Data

Aircraft Trajectory

Aircraft Data

Wake encounter software package from S-WAKE is being improved continuously

Slide 6D. Bieniek, R. Luckner

Implementation of WV Models

PilotInputs

EngineModule

AerodynamicsModule

Sum ofForces andMoments

KinematicEquations

Integration

BasicFlight

SimulationGeometry andAerodynamic

Dataof the Aircraft

Configuration,Attitude

and Trajectoryof the Aircraft

Induced Forcesand Moments

WVE Software

InverseAerodynamics

[AERO]-1

EquivalentLinear

Wind Field

AIMWV

Vortex Trajectory and Vortex Data

Slide 7D. Bieniek, R. Luckner November 7/8, 2011

Real-Time Flight Simulation

Combination of parametric models

Flow field and deformation fixed in space and time during encounter

Movie 1

Analytical Model for Deformation

Screenshot from SEPHIR Simulator at TU Berlin

Aircraft on ILS

Source: Loucel, Crouch, AIAA 2004

Model for Flow Field

Movie 2

Slide 8D. Bieniek, R. Luckner

40 45 50 55 60 65 70-1

0

1Pilot Side-Stick Roll Input [-]

40 45 50 55 60 65 70-20

0

20Roll Angle [deg]

40 45 50 55 60 65 70-4

-2

0

2x 106 Vortex Induced Rolling Moment [Nm]

time [s]

-5 0 5 10 15 20-1

0

1Pilot Side-Stick Roll Input [-]

-5 0 5 10 15 20-10

0

10

20Roll Angle [deg]

-5 0 5 10 15 20-4

-2

0

2x 106 Vortex Induced Rolling Moment [Nm]

time [s]

November 7/8, 2011

Types of Real-Time Encounter Simulation

“Free” Encounters “Fixed” Encounters

Complete simulation of encounter

Multiple comparable

encounters

Fixed vortex disturbance

Multiple identical

encounters

Online computation of disturbance Pre-recorded disturbance

Slide 9D. Bieniek, R. Luckner November 7/8, 2011

Example of Fixed Encounters

Piloted encounters with curved vortices

Source: D. Vechtel

(DLR): “Curved wake vortices encounter simulations with pilots-in-the-loop”, WN3E Specific Workshop on Models and Methods for Wake Vortex Encounter Simulations, 2010

Use of LES data to acquire vortex wind field

Pre-defined flight tracks

Comparison of straight and curved vortices

AIM

LES Wind Field

Simulator Campaign in ZFB A330 full-

flight simulator at TU Berlin in 2009

MWV

FWV

Slide 10D. Bieniek, R. Luckner November 7/8, 2011

-4040

y`gr [m]

z`gr

[m]

Rollbeschleunigung

max: 108.77min: -108.77

-100-50050100

-100

-50

0

50

100

deg/s2-200

-150

-100

-50

0

50

100

150

200

-6-6 -6-6 666

1818

y`gr [m]

z`gr

[m]

Nickbeschleunigung

max: 22.91min: -14.17

-100-50050100

-100

-50

0

50

100

deg/s2-30

-20

-10

0

10

20

30

-2-2 22

y`gr [m]

z`gr

[m]

Gierbeschleunigung

max: 5.35min: -5.35

-100-50050100

-100

-50

0

50

100

deg/s2-10

-5

0

5

10

y`gr [m]

z`gr

[m]

Lastvielfaches nx

max: -0.00min: -0.00

-100-50050100

-100

-50

0

50

100

g`s-0.1

-0.05

0

0.05

0.1

-0.020.02

y`gr [m]

z`gr

[m]

Lastvielfaches ny

max: 0.02min: -0.02

-100-50050100

-100

-50

0

50

100

g`s-0.1

-0.05

0

0.05

0.1

-0.20.20.2

y`gr [m]

z`gr

[m]

Lastvielfaches nz

max: 0.25min: -0.53

-100-50050100

-100

-50

0

50

100

g`s-1

-0.5

0

0.5

1

Static Evaluation

-1.2-1.2 -0.8-0.8-0.40.40.4 0.80.8

y`gr [m]

z`gr

[m]

max: 1.07min: -1.28

m/s

uw v,f

-100-50050100

-100

-50

0

50

100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8-8 -4-4 44 88

y`gr [m]

z`gr

[m]

max: 11.96min: -11.96

m/s

vw v,f

-100-50050100

-100

-50

0

50

100

-20

-15

-10

-5

0

5

10

15

20

-8-8 -4-4 488 1212

y`gr [m]

z`gr

[m]

max: 13.19min: -10.96

m/s

ww v,f

-100-50050100

-100

-50

0

50

100-20

-15

-10

-5

0

5

10

15

20

488 1212

y`gr [m]

z`gr

[m]

max: 13.96min: 0.00

m/s

u,f

-100-50050100

-100

-50

0

50

1000

5

10

15

20

8 12

y`gr [m]

z`gr

[m]

Ausschnitt von u,f

m/s

max: 13.96min: 0.00

01020304050

-20

-10

0

10

20

0

5

10

15

20

-100-50050100

-20

-10

0

10

20

ww v,f bei z = 0

max: 10.36min: -8.13

y`gr [m]

ww

v,f [m

/s]

Vortex-induced Velocities Vortex-induced A/C Accelerations

AIM

Slide 11D. Bieniek, R. Luckner November 7/8, 2011

Parameter Studies

Theoretical Worst Case

0.5·bf

= bv

= π/4·bg

bg

/bf

0.640 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

TC 69 - 85 = 100m2/s rc = 2.5% b

g

WV = 0.0°

WV = 0.0°

max

. Rol

lbes

chle

unig

ung

[/s

]

Cessna CitationDornier Do228VFW614-ATDCRJ-700Fokker 100B737A320-200A330-300

( Max

. Rol

l Acc

. / M

ax. p

er A

/C [

°/s2 ]

)

0.64

Rol

l Acc

eler

atio

n R

atio

[-]

Example: Wing Span Ratio Effects

bv

= 0.5·bf

Simulations with B-H vortex model

Slide 12D. Bieniek, R. Luckner November 7/8, 2011

Parameter Studies

0 1 2 3 4 5 60.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

TC 186 - 197 = 100m2/s bg = 79.80m

WV = 0.0°

WV = 0.0°

rc/b

g [%]

max

. Rol

lb. /

max

. Rol

lb.(r c

= 2

.5%

b g)

Cessna CitationDornier Do228VFW614-ATDCRJ-700Fokker 100B737A320-200A330-300

( Max

. Rol

l Acc

. / M

ax. R

oll A

cc. (

r c=

2.5%

) [°/

s2 ] )

10 –

25% decrease

8 –

16% increase

Rol

l Acc

eler

atio

n R

atio

[-]

Example: Core Radius Effects

Research need to identify core radius size

Size of follower aircraft (mainly wingspan, moment of inertia)

has significant impact on

Roll Acceleration Ratio versus rc

/bg

Simulations with B-H vortex model

Slide 13D. Bieniek, R. Luckner

Citation Do228 VFW614CRJ-700 F100 B737 A320 A3300

0.2

0.4

0.6

0.8

1

1.2

TC 198 - 199 = 100m2/s r

c = 2.5% b

g b

g = 79.80m

WV = 0.0°

WV = 0.0°

max

. rol

l acc

. / m

ax. r

oll a

cc.

BH

Low Order Algebraic (B-H) Gaussian (L-O)

November 7/8, 2011

Parameter Studies

Example: Vortex Model

( Max

. Rol

l Acc

. / M

ax. R

oll A

cc. (

B-H

Mod

el) [

°/s2 ]

)R

oll A

ccel

erat

ion

Rat

io [-

] Vortex model selection has

a significant impact on

Roll Acceleration Ratio

Effect varies with size of

follower aircraft

Validated parametric

vortex velocity field models

are needed

Slide 14D. Bieniek, R. Luckner November 7/8, 2011

Simplified Encounter Simulation

Recorded data from piloted flight simulations

Simplified WVE simulation model

-8 -6 -4 -2 0 2 4 6 8-20

-10

0

10

20

Ban

k A

ngle

[°]

TC 444444 = 665m2/s WV

= -3° WV

= 10°

-8 -6 -4 -2 0 2 4 6 8-20

-10

0

10

20

30

Time [sec]

Rol

l Rat

e [°

/sec

]

Straight flight path to compute vortex disturbance

Linear 1DoF model for aircraft roll motion

Generic control surface deflections

(Pilot model + FCS model)

-100-50050100

-100

-50

0

50

100

-0.06-0.02

-0.02

0.02

0.02

0.06

y`gr [m]

z`gr

[m]

rolling moment coefficient

max: 0.09min: -0.09

z wv[m

]

yWV

[m]

Rolling moment coefficient

Simplified dynamic WVE model: option for RECAT Phase II or III methodology

Slide 15D. Bieniek, R. Luckner November 7/8, 2011

Fast-Time Simulations

Pilot Model

A/C Simulation Model

PilotInputs

WV Simulation

Model-40-30-20-10010203040

-20

-15

-10

-5

0

5

10

15

20

Lamb-OseenBurnham & HallockProctorWinckelmans

Vortex Disturbance

A/CResponse

Encounter Parameters

A/C - WVDistance

Worst-Case SearchAnti-optimization to identify worst-case encounter conditions

Exemplary Application:

G. Höhne, M. Fuhrmann, R. Luckner: „Critical wake vortex encounter scenarios“, Aerospace Science and Technology 8 (2004) 689–701, 2004

Slide 16D. Bieniek, R. Luckner November 7/8, 2011

Fast-Time Simulations

Risk AnalysisMonte-Carlo Simulations with tools such as VESA / WakeScene

Pilot Model

A/C Simulation Model

PilotInputs

WV Simulation

Model-40-30-20-10010203040

-20

-15

-10

-5

0

5

10

15

20

Lamb-OseenBurnham & HallockProctorWinckelmans

Vortex Disturbance

A/CResponse

Scenario (incl. Probability)

A/C - WVDistance

Risk

Multi-Parameter Severity Models

Slide 17D. Bieniek, R. Luckner November 7/8, 2011

Research Needs

Criteria and data for WV model validation are needed.

Uncertainties regarding values of important parameters have to be addressed (e.g. core radius, vortex span).

Interaction of aircraft surfaces and wake vortex flow field is not considered in current encounter simulations. How strong are the effects?

Slide 18D. Bieniek, R. Luckner November 7/8, 2011

Conclusions

Interdisciplinary cooperation between vortex modeling (fluid dynamics) and encounter simulation (flight dynamics) is important for model development (fit for purpose).

WVE simulation provides results on parameter sensitivities and importance of model parameters.

WV models in WVE simulations directly affect aircraft upsets (e.g. max. bank angle) and consequently pilot’s severity rating.

For severity assessments and safety analysis, validated WV (and WVE) models are essential.

Slide 19D. Bieniek, R. Luckner November 7/8, 2011

This document and all information contained herein is the sole property of TU Berlin. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of TU Berlin. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, TU Berlin will be pleased to explain the basis thereof.

Thank you for your attention!Thank you for your attention!Questions?Questions?


Recommended