+ All Categories
Home > Documents > Applications and Mathematical Derivation of Options Greeks From First Principle

Applications and Mathematical Derivation of Options Greeks From First Principle

Date post: 14-Apr-2018
Category:
Upload: kapil-agrawal
View: 216 times
Download: 0 times
Share this document with a friend

of 27

Transcript
  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    1/27

    ApplicationsandMathematicalDerivationofOptions

    Greeksfromfirstprinciple

    Hong-YiChen,RutgersUniversity,USA

    Cheng-FewLee,RutgersUniversity,USA

    WeikangShih,RutgersUniversity,USA

    Abstract

    Inthischapter,weintroducethedefinitionsofGreekletters.WealsoprovidethederivationsofGreeklettersforcallandputoptionsonbothdividends-payingstockand non-dividends stock. Then we discuss some applications of Greek letters.Finally,weshowtherelationshipbetweenGreekletters,oneoftheexamplescanbeseenfromtheBlack-Scholespartialdifferentialequation.Keywords

    Greekletters,Delta,Theta,Gamma,Vega,Rho,Black-Scholesoptionpricingmodel,Black-Scholespartialdifferentialequation

    30.1Introduction

    Greek lettersaredefined asthe sensitivities of the option pricetoa single-unitchangeinthevalueofeitherastatevariableoraparameter.Suchsensitivitiescanrepresent the different dimensions to the risk inan option. Financial institutionswhoselloptiontotheirclientscanmanagetheirriskbyGreeklettersanalysis.

    Inthischapter,wewilldiscussthedefinitionsandderivationsofGreekletters.WealsospecificallyderiveGreeklettersforcall(put)optionsonnon-dividendstockanddividends-payingstock.SomeexamplesareprovidedtoexplaintheapplicationofGreekletters.Finally,wewilldescribetherelationshipbetweenGreeklettersandtheimplicationindeltaneutralportfolio.

    30.2Delta( )

    The delta of an option, , is defined as the rate of change of the option pricerespectedtotherateofchangeofunderlyingassetprice:

    S

    =

    where is the option price and S is underlying asset price. We next show thederivationofdeltaforvariouskindsofstockoption.

    30.2.1DerivationofDeltaforDifferentKindsofStockOptions

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    2/27

    FromBlack-Scholesoptionpricingmodel,weknowthepriceofcalloptiononanon-dividendstockcanbewrittenas:

    ( ) ( )21

    dNXedNSCr

    tt

    = (30.1)

    andthepriceofputoptiononanon-dividendstockcanbewrittenas:

    ( ) ( )rt 2 t 1P Xe N d S N d

    = (30.2)

    where

    s

    str

    X

    S

    d

    ++

    =

    2ln

    2

    1

    2

    t s

    2 1 s

    s

    Sln r

    X 2d d

    +

    = =

    tT=

    ( )N isthecumulativedensityfunctionofnormaldistribution.

    ( ) ( )

    ==

    1

    2

    12

    1

    2

    1du

    d

    dueduufdN

    First,wecalculate ( )( )

    2

    1

    1

    1

    2

    1

    2

    1d

    e

    d

    dNdN

    =

    =

    (30

    ( )( )

    ( )

    rt

    d

    rX

    Sd

    d

    d

    d

    d

    eX

    Se

    eee

    eee

    e

    e

    d

    dNdN

    sst

    s

    s

    s

    =

    =

    =

    =

    =

    =

    ++

    2

    22

    ln

    2

    22

    2

    2

    2

    2

    2

    2

    1

    22

    2

    1

    2

    1

    2

    1

    2

    1

    2

    2

    2

    1

    2

    1

    2

    1

    2

    1

    2

    1

    (30.4)

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    3/27

    Eq.(30.2) andEq.(30.3)willbeusedrepetitively indetermining followingGreekletterswhentheunderlyingassetisanon-dividendpayingstock.

    ForaEuropeancalloptiononanon-dividendstock,deltacanbeshownas

    1N(d ) = (30.5)

    ThederivationofEq.(30.5)isinthefollowing:

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( )

    ( )

    2 2

    1 1

    2 2

    1 1

    1 2rt

    1 t

    t t t

    1 2r1 2

    1 t

    1 t 2 t

    d d

    r rt2 2

    1 t

    t s t s

    d d

    2 2

    1 t t

    t s t s

    1

    N d N dCN d S Xe

    S S S

    N d N dd dN d S Xe

    d S d S

    S1 1 1 1N d S e Xe e e

    X2 S 2 S

    1 1

    N d S e S eS 2 S 2

    N d

    = = +

    = +

    = +

    = +

    =

    ForaEuropeanputoptiononanon-dividendstock,deltacanbeshownas

    1N(d ) 1 = (30.6)

    ThederivationofEq.(30.6)is

    ( )( )

    ( )

    ( )( )

    ( )

    ( )

    ( )

    ( )

    2 21 1

    2 21 1

    2 1rt

    1 tt t t

    2 1r 2 11 t

    2 t 1 t

    d d

    r rt2 21 t

    t s t s

    d d

    2 2t 1 t

    t s t s

    1

    N d N dPXe N d S

    S S S

    (1 N d ) (1 N d )d dXe (1 N d ) S

    d S d S

    S1 1 1 1Xe e e (1 N d ) S e

    X2 S 2 S

    1 1S e N d 1 S e

    S 2 S 2

    N d 1

    = =

    =

    = +

    = +

    =

    Iftheunderlyingassetisadividend-payingstockprovidingadividendyieldatrateq,Black-Scholes formulas for the prices ofaEuropeancall option onadividend-payingstockandaEuropeanputoptiononadividend-payingstockare

    ( ) ( )q rt t 1 2C S e N d Xe N d

    = (30.7)

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    4/27

    and

    ( ) ( )r qt 2 t 1P Xe N d S e N d

    = (30.8)

    where

    2

    t s

    1

    s

    Sln r qX 2

    d

    + +

    =

    2

    t s

    2 1 s

    s

    Sln r q

    X 2d d

    +

    = =

    To make the following derivations more easily, we calculate Eq. (30.9) and Eq.(30.10)inadvance.

    ( )2

    11 21

    1

    1N (d )2

    d

    N d ed

    = =

    (30.9)

    ( )

    ( )

    22

    2

    1 s

    22s1

    1 s

    222 t ss1

    21

    2

    2

    2

    d

    2

    d

    2

    d

    d2 2

    Sd ln r q

    X 22 2

    d

    ( r q )t2

    N dN (d )

    d

    1e

    2

    1e

    2

    1e e e

    2

    1e e e

    2

    S1e e

    X2

    + +

    =

    =

    =

    =

    =

    =

    (30.10)

    ForaEuropeancalloptiononadividend-payingstock,deltacanbeshownasq

    1e N(d ) = (30.11)

    Thederivationof(30.11)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    5/27

    ( )( ) ( )

    ( )( ) ( )

    ( )

    ( )

    2 21 1

    21

    1 2q q rt1 t

    t t t

    1 2q q r1 21 t

    1 t 2 t

    d dq q r (r q)t2 2

    1 t

    t s t s

    d

    q q q21 t t

    t s t s

    N d N dCe N d S e Xe

    S S S

    N d N dd de N d S e Xe

    d S d S

    S1 1 1 1e N d S e e Xe e e

    X2 S 2 S

    1 1e N d S e e S e e

    S 2 S 2

    = = +

    = +

    = +

    = +

    ( )

    21d

    2

    q

    1e N d

    =

    ForaEuropeancalloptiononadividend-payingstock,deltacanbeshownas

    [ ]q 1e N(d ) 1

    = (30.12)

    Thederivationof(30.12)is

    ( )( )

    ( )

    ( )( )

    ( )

    ( )2 21 1

    21

    2 1r q qt1 t

    t t t

    2 1r q q2 11 t

    2 t 1 t

    d d

    r (r q) q qt2 21 t

    t s t s

    d

    q 2

    tt s

    N d N dPXe e N d S e

    S S S

    (1 N d ) (1 N d )d dXe e (1 N d ) S e

    d S d S

    S1 1 1 1Xe e e e (1 N d ) S e e

    X2 S 2 S

    1

    S e e eS 2

    = =

    =

    = +

    = +

    ( )( )

    21d

    q q 2

    1 tt s

    q

    1

    1

    (N d 1) S e eS 2

    e (N d 1)

    +

    =

    30.2.2ApplicationofDelta

    Figure30.1showstherelationshipbetweenthepriceofacalloptionandthepriceofitsunderlyingasset.ThedeltaofthiscalloptionistheslopeofthelineatthepointofAcorrespondingtocurrentpriceoftheunderlyingasset.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    6/27

    Figure30.1

    Bycalculatingdeltaratio,afinancialinstitutionthatsellsoptiontoaclientcanmakeadeltaneutralpositiontohedgetheriskofchangesoftheunderlyingassetprice.Supposethatthecurrentstockpriceis$100,thecalloptionpriceonstockis$10,and the current deltaof the call option is0.4. A financial institutionsold 10calloption to its client, so that the client has right to buy 1,000 shares at time tomaturity.Toconstructadeltahedgeposition,thefinancialinstitutionshouldbuy0.4x1,000=400sharesofstock.Ifthestockpricegoesupto$1,theoptionpricewillgoupby$0.4.Inthissituation,thefinancialinstitutionhasa$400($1x400shares)gaininitsstockposition,anda$400($0.4x1,000shares)lossinitsoptionposition.The totalpayoffof the financial institution iszero.Ontheotherhand, ifthestockpricegoesdownby$1,theoptionpricewillgodownby$0.4.Thetotalpayoffofthe

    financialinstitutionisalsozero.

    However, the relationship between option price and stockprice is not linear, sodeltachangesoverdifferentstockprice.Ifaninvestorwantstoremainhisportfolioindeltaneutral,heshouldadjusthishedgedratioperiodically.Themorefrequentlyadjustmenthedoes,thebetterdelta-hedginghegets.

    Figure30.2exhibitsthechangeindeltaaffectsthedelta-hedges.Iftheunderlyingstockhasapriceequalto$20,thentheinvestorwhousesonlydeltaasriskmeasurewillconsiderthathisportfoliohasnorisk.However,astheunderlyingstockpriceschanges,eitherupordown,thedeltachangesaswellandthushewillhavetousedifferentdeltahedging.Deltameasurecanbecombinedwithotherriskmeasuresto

    yieldbetterriskmeasurement.Wewilldiscussitfurtherinthefollowingsections.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    7/27

    Figure30.2

    30.3Theta( )

    The theta of an option, , is defined as the rate of change of the option pricerespectedtothepassageoftime:

    t

    =

    where istheoptionpriceandt isthepassageoftime.

    If T t = ,theta( )canalsobedefinedasminusonetimingtherateofchangeofthe option price respected to time to maturity. The derivation of suchtransformationiseasyandstraightforward:

    ( 1)t t

    = = =

    where T t = istimetomaturity.Forthederivationofthetaforvariouskindsofstockoption,weusethedefinitionofnegativedifferentialontimetomaturity.

    30.3.1DerivationofThetaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,thetacanbewrittenas:

    rt s1 2

    SN (d ) rX e N(d )

    2

    =

    (30.13)

    Thederivationof(30.13)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    8/27

    ( )

    21

    21

    r rt 1 2t 2

    r r1 1 2 2t 2

    1 2

    2 2ts s

    d

    r2t 23

    2s ss

    d

    r rt2

    C N(d ) N(d )S r X e N(d ) Xe

    N(d ) d N(d ) dS rX e N(d ) Xe

    d d

    slnr r1 X2 2S e rX e N(d )2 22

    S1Xe e e

    X2

    = = + +

    = +

    + + =

    +

    21

    21

    2t s

    32

    s ss

    2 2ts s

    d

    r2t 23

    2s ss

    2t s

    d

    2t 3

    2s ss

    d

    t

    sln r

    r X 2

    22

    slnr r

    1 X2 2S e rX e N(d )2 22

    sln r

    1 r X 2S e2 22

    1S e

    2

    +

    + +

    =

    +

    +

    =

    21

    2

    s

    r22

    s

    rt s1 2

    2 rX e N(d )

    SN (d ) rX e N(d )

    2

    =

    ForaEuropeanputoptiononanon-dividendstock,thetacanbeshownas

    rt s1 2

    SN (d ) rX e N( d )

    2

    = +

    (30.14)

    Thederivationof(30.14)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    9/27

    ( )

    21

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    2t s

    d

    r r rt22 3

    2s s

    P N( d ) N( d )r X e N( d ) Xe S

    (1 N(d )) d (1 N(d )) d( r)X e (1 N(d )) Xe S

    d d

    sln rS1 r X

    ( r)X e (1 N(d )) Xe e eX2 2

    = = +

    = +

    + = +

    21

    21

    21

    s

    2 2ts s

    d

    2t 3

    2s ss

    2t s

    d

    r 22 t 3

    2s ss

    2ts s

    d

    2t 3

    2s s

    2

    2

    slnr r

    1 X2 2S e2 22

    sln r

    1 r X 2rX e (1 N(d )) S e2 22

    slnr r

    1 X2S e2 2

    + +

    +

    = +

    + +

    21

    2

    s

    2

    sd

    r 22 t

    s

    r t s2 1

    r t s2 1

    2

    2

    1 2rX e (1 N(d )) S e2

    SrX e (1 N(d )) N (d )

    2

    SrX e N( d ) N (d )

    2

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,thetacanbeshownas

    q

    q rt st 1 1 2

    S eq S e N(d ) N (d ) rX e N(d )

    2

    =

    (30.15)

    Thederivationof(30.15)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    10/27

    ( )

    21

    q q r r t 1 2t 1 t 2

    q q r r 1 1 2 2t 1 t 2

    1 2

    2ts

    d

    q q 2t 1 t 3

    2s s

    C N(d ) N(d )q S e N(d ) S e r X e N(d ) Xe

    N(d ) d N(d ) dq S e N(d ) S e rX e N(d ) Xe

    d d

    slnr q r q1 X2q S e N(d ) S e e2 2

    = = + +

    = +

    + +

    =

    21

    2

    1

    2

    s

    r

    2

    s

    2t s

    d

    r (r q)t23

    2s ss

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    2 rX e N(d )2

    sln r q

    S1 r q X 2Xe e eX2 22

    slnr r

    1 X2 2q S e N(d ) S e e2 22

    + +

    + +

    =

    21

    21

    r

    2

    2t s

    d

    q 2t 3

    2s ss

    2

    sd

    q q r2t 1 t 2

    s

    qq rt s

    t 1 1 2

    rX e N(d )

    sln r

    1 r X 2S e e2 22

    1 2q S e N(d ) S e e rX e N(d )2

    S eq S e N(d ) N (d ) rX e N(d )

    2

    +

    +

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,thetacanbeshownas

    q

    r q t s2 t 1 1

    S erX e N( d ) qS e N( d ) N (d )

    2

    =

    (30.16)

    Thederivationof(30.16)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    11/27

    ( )

    21

    r r q qt 2 12 t 1 t

    r r q q2 2 1 12 t 1 t

    2 1

    d

    r r (r q)t22

    P N( d ) N( d )r X e N( d ) Xe ( q)S e N( d ) S e

    (1 N(d )) d (1 N(d )) drX e (1 N(d )) Xe qS e N( d ) S e

    d d

    S1rX e (1 N(d )) Xe e e

    X2

    = = + +

    = +

    = +

    21

    2

    1

    2t s

    32

    s ss

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    td

    r q 22 t 3

    2s s

    sln r qr q X 2

    22

    slnr q r q

    1 X2 2qS e N( d ) S e e2 22

    sln

    1 r q XrX e (1 N(d )) S e e2 2

    +

    + +

    = +

    21

    21

    2

    s

    s

    2 2ts s

    d

    q q 2t 1 t 3

    2s ss

    2

    sd

    r q q 22 t 1 t

    s

    r q

    2 t

    r q2

    2

    slnr q r q

    1 X2 2qS e N( d ) S e e2 22

    1 2rX e (1 N(d )) qS e N( d ) S e e2

    rX e (1 N(d )) qS e

    +

    + +

    =

    = q

    t s1 1

    qr q t s

    2 t 1 1

    S eN( d ) N (d )

    2

    S erX e N( d ) qS e N( d ) N (d )

    2

    =

    30.3.2ApplicationofTheta( )

    Thevalueofoptionisthecombinationoftimevalueandstockvalue.Whentimepasses,thetimevalueoftheoptiondecreases.Thus,therateofchangeoftheoptionpricewithrespectivetothepassageoftime,theta,isusuallynegative.

    Becausethepassageoftimeonanoptionisnotuncertain,wedonotneedtomakeathetahedgeportfolio against the effect of the passageof time.However,we stillregard theta as a useful parameter, because it is a proxy of gamma in the deltaneutralportfolio.Forthespecificdetail,wewilldiscussinthefollowingsections.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    12/27

    30.4Gamma( )

    Thegammaofanoption, ,isdefinedastherateofchangeofdeltarespectedtotherateofchangeofunderlyingassetprice::

    2

    2

    S S

    = =

    where istheoptionpriceandSistheunderlyingassetprice.

    Becausetheoptionisnotlinearlydependentonitsunderlyingasset,delta-neutralhedgestrategyisusefulonlywhenthemovementofunderlyingassetpriceissmall.Oncetheunderlying asset pricemoveswider, gamma-neutral hedgeisnecessary.Wenextshowthederivationofgammaforvariouskindsofstockoption.

    30.4.1DerivationofGammaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,gammacanbeshownas

    ( )1t s

    1N d

    S

    =

    (30.17)

    Thederivationof(30.17)is

    ( )

    ( )

    ( )

    t

    2

    tt

    2

    t t

    1 1

    1 t

    t

    1

    s

    1

    t s

    C

    SC

    S S

    N d d

    d S

    1

    SN d

    1N d

    S

    = =

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,gammacanbeshownas

    ( )1t s

    1

    N dS

    =

    (30.18)

    Thederivationof(30.18)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    13/27

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    1 1

    1 t

    t1

    s

    1

    t s

    P

    SP

    S S

    (N d 1) d

    d S

    1

    SN d

    1N d

    S

    = =

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,gammacanbeshownas

    ( )q

    1t s

    eN d

    S

    =

    (30.19)

    Thederivationof(30.19)is

    ( )

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    q

    1

    t

    1q 1

    1 t

    q t1

    s

    q

    1

    t s

    C

    SC

    S S

    e N(d )

    S

    N d d

    e d S

    1

    Se N d

    eN d

    S

    = =

    =

    =

    =

    =

    ForaEuropeancalloptiononadividend-payingstock,gammacanbeshownas

    ( )q

    1

    t s

    eN d

    S

    =

    (30.20)

    Thederivationof(30.20)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    14/27

    ( )( )

    ( )

    ( )

    ( )

    t

    2tt

    2

    t t

    q

    1

    t

    1q 1

    1 t

    q t1

    s

    q

    1

    t s

    P

    SP

    S S

    e (N d 1)

    S

    (N d 1) de

    d S

    1

    Se N d

    eN d

    S

    = =

    =

    =

    =

    =

    30.4.2ApplicationofGamma( )

    Onecanusedeltaandgammatogethertocalculatethechangesoftheoptionduetochanges in the underlying stock price. This change can be approximated by thefollowingrelations.

    21

    change in option value change in stock price (change in stock price)2

    +

    Fromtheaboverelation,onecanobservethatthegammamakesthecorrectionforthefactthattheoptionvalueisnotalinearfunctionofunderlyingstockprice.ThisapproximationcomesfromtheTaylorseriesexpansionneartheinitialstockprice.Ifwe let Vbe option value, S be stockprice, andS0 be initial stockprice, then theTaylorseriesexpansionaroundS0yieldsthefollowing.

    220 0 0

    0 0 0 02

    220 0

    0 0 02

    ( ) ( ) ( )1 1( ) ( ) ( ) ( ) ( )

    2! 2!

    ( ) ( )1( ) ( ) ( ) ( )

    2!

    n

    n

    n

    V S V S V S V S V S S S S S S S

    S S S

    V S V S V S S S S S o S

    S S

    + + + +

    + + +

    L

    Ifweonlyconsiderthefirstthreeterms,theapproximationisthen,

    2

    20 00 0 02

    2

    0 0

    ( ) ( )1( ) ( ) ( ) ( )2!

    1( ) ( )

    2

    V S V S V S V S S S S S

    S S

    S S S S

    +

    +

    .

    Forexample,ifaportfolioofoptionshasadeltaequalto$10000andagammaequalto$5000,thechangeintheportfoliovalueifthestockpricedropto$34from$35isapproximately,

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    15/27

    21change in portfolio value ($10000) ($34 $35) ($5000) ($34 $35)

    2

    $7500

    +

    Theaboveanalysiscanalsobeappliedtomeasurethepricesensitivityofinterest

    raterelatedassetsorportfoliotointerestratechanges.Hereweintroduce ModifiedDuration and Convexity as risk measure corresponding to the above delta andgamma. Modified durationmeasures the percentage change in asset or portfoliovalueresultingfromapercentagechangeininterestrate.

    Change in priceModified Duration Price

    Change in interest rate

    / P

    =

    =

    Usingthemodifiedduration,

    Change in Portfolio Value Change in interest rate

    ( P) Change in interest rateDuration

    =

    =

    wecancalculatethevaluechangesoftheportfolio.Theaboverelationcorrespondstothepreviousdiscussionofdeltameasure.Wewanttoknowhowthepriceoftheportfoliochangesgivenachangeininterestrate.Similartodelta,modifieddurationonlyshowthefirstorderapproximationofthechangesinvalue.Inordertoaccountforthenonlinearrelationbetweentheinterestrateandportfoliovalue,weneedasecondorderapproximationsimilarto thegammameasurebefore,thisisthentheconvexitymeasure.Convexityistheinterestrategammadividedbyprice,

    / PConvexity =

    andthismeasurecapturesthenonlinearpartofthepricechangesduetointerestrate changes. Using the modified duration and convexity together allow us todevelopfirstaswellassecondorderapproximationofthepricechangessimilartopreviousdiscussion.

    2

    Change in Portfolio Value P (change in rate)

    1P (change in rate)

    2

    Duration

    Convexity

    +

    Asaresult,(-durationxP)and(convexityxP)actlikethedeltaandgammameasurerespectively inthepreviousdiscussion.This showsthat theseGreeks can alsobeappliedinmeasuringriskininterestraterelatedassetsorportfolio.

    Nextwediscusshowtomakeaportfoliogammaneutral.Supposethegammaofa

    delta-neutralportfoliois ,thegammaoftheoptioninthisportfolioiso

    ,ando

    isthenumberofoptionsaddedtothedelta-neutralportfolio.Then,thegammaofthisnewportfoliois

    o o

    +

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    16/27

    Tomakeagamma-neutralportfolio,weshouldtrade *o o

    / = options.Because

    the position of option changes, the new portfolio is not in the delta-neutral.Weshouldchangethepositionoftheunderlyingassettomaintaindelta-neutral.

    Forexample,thedeltaandgammaofaparticularcalloptionare0.7and1.2.Adelta-

    neutral portfolio has a gamma of -2,400. To make a delta-neutral and gamma-neutralportfolio,weshould add a longpositionof 2,400/1.2=2,000shares and ashortpositionof2,000x0.7=1,400sharesintheoriginalportfolio.

    30.5Vega( )

    The vega of an option, , is defined as the rate of change of the option pricerespectedtothevolatilityoftheunderlyingasset:

    =

    where istheoptionpriceand isvolatilityofthestockprice.Wenextshowthederivationofvegaforvariouskindsofstockoption.

    30.5.1DerivationofVegaforDifferentKindsofStockOption

    ForaEuropeancalloptiononanon-dividendstock,vegacanbeshownas

    ( )t 1S N d = (30.21)

    Thederivationof(30.21)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    17/27

    21

    21

    rt 1 2t

    s s s

    r1 1 2 2t

    1 s 2 s

    123

    2 t s2 2sd

    2t 2

    s

    2

    t s

    d

    r rt2

    C N(d ) N(d )S Xe

    N(d ) d N(d ) dS Xe

    d dS

    ln rX 21

    S e2

    Sln r

    X 2S1Xe e e

    X2

    = =

    =

    + +

    =

    + +

    ( )

    2 21 1

    21

    1

    2

    2

    s

    1 12 23

    2 t s t s2 2 2sd d

    2 2t t2 2

    s s

    3d 2 2s2

    t 2

    s

    t 1

    S Sln r ln r

    X 2 X 21 1S e S e

    2 2

    1S e

    2

    S N d

    + + + +

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,vegacanbeshownas

    ( )t 1S N d = (30.22)

    Thederivationof(30.22)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    18/27

    21

    21

    rt 2 1t

    s s s

    r 2 2 1 1t

    2 s 1 s

    12

    t s 2d

    r rt22

    s

    23

    2 t s2sd

    2t

    P N( d ) N( d )Xe S

    (1 N(d )) d (1 N(d )) dXe S

    d d

    Sln rX 2S1

    Xe e eX2

    Sln r

    X 21S e

    2

    = =

    =

    + +

    =

    + +

    +

    2 2

    1 1

    21

    1

    2

    2

    s

    1 12 23

    2t s t s2 2 2s

    d d2 2

    t t2 2

    s s

    3d 2 2s2

    t 2

    s

    t

    S Sln r ln r

    X 2 X 21 1S e S e

    2 2

    1S e

    2

    S N d

    + + + +

    = +

    =

    = ( )1

    ForaEuropeancalloptiononadividend-payingstock,vegacanbeshownas

    ( )qt 1S e N d = (30.23)

    Thederivationof(30.23)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    19/27

    21

    21

    q rt 1 2t

    s s s

    q r1 1 2 2t

    1 s 2 s

    123

    2 t s2 2sd

    q 2t 2

    s

    t

    d

    r (r q )t2

    C N(d ) N(d )S e Xe

    N(d ) d N(d ) dS e Xe

    d d

    Sln r qX 21

    S e e2

    Sln r

    XS1Xe e e

    X2

    = =

    =

    + +

    =

    +

    2 2

    1 1

    21

    12

    s 2

    2

    s

    1 2 23

    2 t s t s2 2 s

    d dq q2 2

    t t2 2

    s s

    3d 2 2s2

    t

    q2

    S Sln r q ln r q

    X 2 X 21 1S e e S e e

    2 2

    1S e

    2

    +

    + + + +

    =

    =

    ( )

    2

    s

    q

    t 1S e N d

    =

    ForaEuropeancalloptiononadividend-payingstock,vegacanbeshownas

    ( )qt 1S e N d = (30.24)

    Thederivationof(30.24)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    20/27

    21

    21

    r qt 2 1t

    s s s

    r q2 2 1 1t

    2 s 1 s

    12

    t s 2d

    r (r q)t22

    s

    2

    sd

    q 2t

    P N( d ) N( d )Xe S e

    (1 N(d )) d (1 N(d )) dXe S e

    d d

    Sln r qX 2S1

    Xe e eX2

    1S e e

    2

    = =

    =

    + +

    =

    +

    2 2

    1 1

    123

    t s2 2

    2

    s

    1 2 23

    2t s t s2 2 s

    d dq q2 2

    t t2 2

    s s

    q

    t

    Sln r q

    X 2

    S Sln r q ln r q

    X 2 X 21 1S e e S e e

    2 2

    S e

    + +

    + + + +

    = +

    =

    ( )

    21

    3d 2 2s2

    2

    s

    q

    t 1

    1e

    2

    S e N d

    =

    30.5.2ApplicationofVega( )

    Supposeadelta-neutralandgamma-neutralportfoliohasavegaequalto andthevegaofaparticularoptionis

    o .Similartogamma,wecanaddapositionof

    o/

    inoption tomake a vega-neutral portfolio. Tomaintain delta-neutral,we shouldchangetheunderlyingassetposition.However,whenwechangetheoptionposition,the new portfolio is not gamma-neutral. Generally, a portfolio with one optioncannotmaintainitsgamma-neutralandvega-neutralatthesametime.Ifwewantaportfoliotobebothgamma-neutralandvega-neutral,weshouldincludeatleasttwokindofoptiononthesameunderlyingassetinourportfolio.

    Forexample,adelta-neutralandgamma-neutralportfoliocontainsoptionA,optionB,andunderlyingasset.Thegammaandvegaofthisportfolioare-3,200and-2,500,

    respectively.OptionAhasadeltaof0.3,gammaof1.2,andvegaof1.5.OptionBhasadeltaof0.4,gammaof1.6andvegaof0.8.Thenewportfoliowillbebothgamma-

    neutralandvega-neutralwhenaddingA

    ofoptionAandB ofoptionBintothe

    originalportfolio.

    A B

    Gamma Neutral: 3200 1.2 1.6 0 + + =

    A BVega Neutral: 2500 1.5 0.8 0 + + =

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    21/27

    Fromtwoequationsshownabove,wecangetthesolutionthatA

    =1000andB =

    1250.Thedeltaofnewportfoliois1000x.3+1250x0.4=800.Tomaintaindelta-neutral,weneedtoshort800sharesoftheunderlyingasset.

    30.6Rho( )

    Therhoofanoptionisdefinedastherateofchangeoftheoptionpricerespectedtotheinterestrate:

    rhor

    =

    where istheoptionpriceandrisinterestrate.Therhoforanordinarystockcalloptionshouldbepositivebecausehigherinterestratereducesthepresentvalueofthestrikepricewhichinturnincreasesthevalueofthecalloption.Similarly,therhoofanordinaryputoptionshouldbenegativebythesamereasoning.Wenextshow

    thederivationofrhoforvariouskindsofstockoption.

    30.6.1DerivationofRhoforDifferentKindsofstockoption

    ForaEuropeancalloptiononanon-dividendstock,rhocanbeshownas

    r

    2rho X e N(d )

    = (30.25)

    Thederivationof(30.25)is

    ( )

    2 21 1

    21

    r rt 1 2t 2

    r r1 1 2 2t 2

    1 2

    d d

    r r rt2 2t 2

    s s

    d

    2t

    s

    C N(d ) N(d )rho S X e N(d ) Xe

    r r r

    N(d ) d N(d ) dS X e N(d ) Xed r d r

    S1 1S e X e N(d ) Xe e e

    X2 2

    1S e

    2

    = =

    = +

    = +

    =

    21d

    r 22 t

    s

    r

    2

    1X e N(d ) S e

    2

    X e N(d )

    +

    =

    ForaEuropeanputoptiononanon-dividendstock,rhocanbeshownas

    r

    2rho X e N( d ) = (30.26)

    Thederivationof(30.26)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    22/27

    ( )

    2 2

    1 1

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    d d

    r r rt2 22 t

    s s

    P N( d ) N( d )rho X e N( d ) Xe S

    r r r

    (1 N(d )) d (1 N(d )) dX e (1 N(d )) Xe S

    d r d r

    S1 1X e (1 N(d )) Xe e e S eX2 2

    = = +

    = +

    = + 2 21 1d d

    r 2 22 t t

    s s

    r

    2

    1 1X e (1 N(d )) S e S e

    2 2

    X e N( d )

    = +

    =

    ForaEuropeancalloptiononadividend-payingstock,rhocanbeshownas

    r

    2rho X e N(d ) = (30.27)

    Thederivationof(30.27)is

    ( )

    2 21 1

    q r rt 1 2t 2

    q r r1 1 2 2t 2

    1 2

    d d

    q r r (r q)t2 2t 2

    s s

    t

    C N(d ) N(d )rho S e X e N(d ) Xe

    r r r

    N(d ) d N(d ) dS e X e N(d ) Xe

    d r d r

    S1 1S e e X e N(d ) Xe e e

    X2 2

    S e

    = =

    = +

    = +

    =

    2 21 1d d

    q r q2 22 t

    s s

    r

    2

    1 1e X e N(d ) S e e

    2 2X e N(d )

    +

    =

    ForaEuropeanputoptiononadividend-payingstock,rhocanbeshownas

    r

    2rho X e N( d ) = (30.28)

    Thederivationof(30.28)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    23/27

    ( )

    2

    1

    r r qt 2 12 t

    r r q2 2 1 12 t

    2 1

    d

    r r ( r q) qt22 t

    s

    P N( d ) N( d )rho X e N( d ) Xe S e

    r r r

    (1 N(d )) d (1 N(d )) dX e (1 N(d )) Xe S e

    d r d r

    S1 1X e (1 N(d )) Xe e e S e eX2 2

    = = +

    = +

    = +

    2

    1

    2 21 1

    d

    2

    s

    d d

    r q q2 22 t t

    s s

    r

    2

    1 1X e (1 N(d )) S e e S e e

    2 2

    X e N( d )

    = +

    =

    30.6.2ApplicationofRho()

    Assumethataninvestorwouldliketoseehowinterestratechangesaffectthevalue

    ofa3-monthEuropeanput option she holdswith the following information. Thecurrent stock price is $65 and the strike price is $58. The interest rate and thevolatility of the stock is 5% and 30% per annum respectively. The rho of thisEuropeanputcanbecalculatedasfollowing.

    2

    r (0.05)(0.25)

    put 2

    1ln(65 58) [0.05 (0.3) ](0.25)

    2Rho X e N(d ) ($58)(0.25)e N( ) 3.168(0.3) 0.25

    +

    = =

    Thiscalculationindicatesthatgiven1%changeincreaseininterestrate,sayfrom5% to 6%, the value of this European call option will decrease 0.03168 (0.01 x3.168). This simple example can be further applied to stocks that pay dividendsusingthederivationresultsshownpreviously.

    30.7DerivationofSensitivityforStockOptionsRespectivewithExercisePrice

    ForaEuropeancalloptiononanon-dividendstock,thesensitivitycanbeshownas

    rt2

    Ce N(d )

    X

    =

    (30.29)

    Thederivationof(30.29)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    24/27

    )(

    2

    1)(

    2

    1

    1121)(11

    21

    )()(

    )(

    )()(

    )(

    2

    22

    2

    22

    2

    2

    2

    22

    1

    1

    1

    22

    1

    21

    21

    2

    1

    2

    1

    dNe

    X

    SedNe

    X

    Se

    Xe

    X

    SeXedNeX

    eS

    X

    d

    d

    dNXedNe

    X

    d

    d

    dNS

    X

    dNXedNe

    X

    dNS

    X

    C

    r

    t

    d

    s

    rt

    d

    s

    s

    rt

    d

    rr

    s

    d

    t

    rr

    t

    rr

    t

    t

    =

    =

    =

    =

    =

    ForaEuropeanputoptiononanon-dividendstock,thesensitivitycanbeshownas

    rt

    2

    Pe N( d )

    X

    =

    (30.30)

    Thederivationof(30.30)is

    2 21 1

    r rt 2 12 t

    r r 2 2 1 12 t

    2 1

    d d

    r r rt2 22 t

    s s

    r

    2

    P N( d ) N( d )e N( d ) Xe S

    X X X

    (1 N(d )) d (1 N(d )) de (1 N(d )) Xe S

    d X d X

    S1 1 1 1 1 1e (1 N(d )) Xe e e S e

    X X X2 2

    e (1 N(d

    = +

    = +

    = +

    =

    2 21 1d d

    t t2 2

    s s

    r

    2

    S S1 1)) e e

    X X2 2

    e N( d )

    +

    =

    ForaEuropeancalloptiononadividend-payingstock,thesensitivitycanbeshownas

    rt2

    Ce N(d )

    X

    =

    (30.31)

    Thederivationof(30.31)is

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    25/27

    2 21 1

    21

    q r rt 1 2t 2

    q r r1 1 2 2t 2

    1 2

    d d

    q r r (r q )t2 2t 2

    s s

    d

    2

    s

    C N(d ) N(d )S e e N(d ) Xe

    X X X

    N(d ) d N(d ) dS e e N(d ) Xe

    d X d X

    S1 1 1 1 1 1S e e e N(d ) Xe e eX X X2 2

    S1e

    2

    =

    =

    =

    =

    21dq q

    rt t22

    s

    r

    2

    e S e1e N(d ) e

    X X2

    e N(d )

    =

    ForaEuropeanputoptiononadividend-payingstock,thesensitivitycanbeshownas

    rt2P e N( d )

    X

    =

    (30.32)

    Thederivationof(30.32)is

    2 21 1

    r r qt 2 12 t

    r r q2 2 1 12 t

    2 1

    d d

    r r (r q) qt2 22 t

    s s

    P N( d ) N( d )e N( d ) Xe S e

    X X X

    (1 N(d )) d (1 N(d )) de (1 N(d )) Xe S e

    d X d X

    S1 1 1 1 1 1e (1 N(d )) Xe e e S e e

    X X X2 2

    = +

    = +

    = +

    2 21 1d dq q

    r t t2 22

    s s

    r

    2

    S e S e1 1e (1 N(d )) e e

    X X2 2

    e N( d )

    = +

    =

    30.8RelationshipbetweenDelta,Theta,andGamma

    So far, the discussion has introduced the derivation and application of eachindividualGreeksandhowtheycanbeappliedinportfoliomanagement.Inpractice,the interactionor trade-off between these parameters is of concern aswell. For

    example,recallthepartialdifferentialequationfor theBlack-Scholesformulawithnon-dividendpayingstockcanbewrittenas

    2

    2 2

    2

    1

    2rS S r

    t S S

    + + =

    Where isthevalueofthederivativesecuritycontingentonstockprice, Sisthepriceofstock,ristheriskfreerate,and isthevolatilityofthestockprice,and tis

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    26/27

    thetimetoexpirationofthederivative.Giventheearlierderivation,wecanrewritetheBlack-ScholesPDEas

    2 21

    2rS S r + + =

    Thisrelationgivesusthetrade-offbetweendelta,gamma,andtheta.Forexample,suppose there are two delta neutral( 0) = portfolios, one with positive gamma

    ( 0) > andtheotheronewithnegativegamma ( 0) < andtheybothhavevalueof

    $1 ( 1) = .Thetrade-offcanbewrittenas

    2 21

    2S r+ =

    For the first portfolio, if gamma ispositive and large, then theta isnegative andlarge.Whengammaispositive,changeinstockpricesresultinhighervalueoftheoption.Thismeansthatwhenthereisnochangeinstockprices,thevalueoftheoptiondeclinesasweapproachtheexpirationdate.Asaresult,thethetaisnegative.Ontheotherhand,whengammaisnegativeandlarge,changeinstockpricesresultinlower option value. Thismeansthatwhen there isno stockprice changes, thevalueoftheoption increases asweapproach the expirationand thetais positive.Thisgivesusatrade-offbetweengammaandthetaandtheycanbeusedasproxyforeachotherinadeltaneutralportfolio.

    30.9Conclusion

    Inthischapterwehaveshownthederivationofthesensitivitiesoftheoptionpricetothechangeinthevalueofstatevariablesorparameters.ThefirstGreekisdelta(

    )whichistherateofchangeofoptionpricetochangeinpriceofunderlyingasset.Oncethedeltaiscalculated,thenextstepistherateofchangeofdeltawithrespecttounderlyingassetpricewhichgivesusgamma( ).Anothertworiskmeasuresaretheta( )andrho( ),theymeasurethechangeinoptionvaluewithrespectto

    passingtimeandinterestraterespectively.Finally,onecanalsomeasurethechangeinoptionvaluewithrespecttothevolatilityoftheunderlyingassetandthisgivesusthevega(v ).

    Therelationshipbetweentheseriskmeasuresareshown,oneoftheexamplecanbeseen from the Black-Scholes partial differential equation. Furthermore, theapplications of these Greeks letter in the portfolio management have also been

    discussed.Riskmanagementisoneoftheimportanttopicsinfinancetoday,bothforacademicsandpractitioners.Giventherecentcreditcrisis,onecanobservethatitiscrucialtoproperlymeasuretheriskrelatedtotheevermorecomplicatedfinancialassets.

    References

    Bjork,T.,ArbitrageTheoryinContinuousTime,OxfordUniversityPress,1998.

  • 7/27/2019 Applications and Mathematical Derivation of Options Greeks From First Principle

    27/27

    Boyle, P. P., & Emanuel, D. (1980). Discretely adjusted option hedges. Journal of

    FinancialEconomics,8(3),259-282.Duffie,D.,DynamicAssetPricingTheory,PrincetonUniversityPress,2001.

    Fabozzi,F.J.,FixedIncomeAnalysis,2ndEdition,Wiley,2007.Figlewski, S. (1989). Options arbitrage in imperfect markets. Journal of Finance,

    44(5),1289-1311.Galai,D.(1983).Thecomponentsofthereturnfromhedgingoptionsagainststocks.

    JournalofBusiness,56(1),45-54.Hull,J.,Options,Futures,andOtherDerivatives6thEdition,Pearson,2006.

    Hull,J.,&White,A.(1987).Hedgingtherisksfromwritingforeigncurrencyoptions. JournalofInternationalMoneyandFinance,6(2),131-152.

    Karatzas, I. and Shreve, S.E., Brownian Motion and Stochastic Calculus, Springer,

    2000.Klebaner,F.C.,IntroductiontoStochasticCalculuswithApplications,ImperialCollege

    Press,2005.McDonlad,R.L.,DerivativesMarkets2ndEdition,Addison-Wesley,2005.

    Shreve, S.E., Stochastic Calculus for Finance II: Continuous Time Model, Springer,2004.

    Tuckman,B., FixedIncomeSecurities:ToolsforToday'sMarkets, 2ndEdition,Wiley,2002.


Recommended