+ All Categories
Home > Documents > Applications of CLP: Robust Optimization - web.stanford.edu · Applications of CLP: Robust...

Applications of CLP: Robust Optimization - web.stanford.edu · Applications of CLP: Robust...

Date post: 22-Jul-2019
Category:
Upload: vuongkiet
View: 225 times
Download: 0 times
Share this document with a friend
31
Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 1 Applications of CLP: Robust Optimization Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/˜yyye
Transcript

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 1

Applications of CLP: Robust Optimization

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/˜yyye

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 2

Standard Optimization Problem

Consider an optimization problem

Minimize f(x, ξ)

(OPT)

subject to F (x, ξ) ∈ K ⊂ Rm.

(1)

where ξ is the data of the problem and x ∈ Rn is the decision vector, and K is

a convex cone.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 3

Data Uncertainty

For deterministic optimization, we assume ξ is known and fixed. In reality, ξ may

not be certain.

• Knowledge of ξ belonging to a given uncertain set U .

• The constraints must be satisfied for every ξ in the uncertain set U .

• Optimal solution must give the best guaranteed value of supξ∈U f(x, ξ).

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 4

Stochastic Method

Minimize Eξ[f(x, ξ)]

(EOPT)

subject to Eξ[F (x, ξ)] ∈ K.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 5

Sampling Method

Minimize z

(SOPT)

subject to F (x, ξk) ∈ K

f(x, ξk) ≤ z

for large samples ξk ∈ U.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 6

Robust Counterpart

Minimize supξ∈U f(x, ξ)

(ROPT)

subject to F (x, ξ) ∈ K for all ξ ∈ U.

(2)

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 7

Robust LP

Minimize qTx

subject to Ax ≥ b.

If the coefficient data q are from the set

q(u) = q0 +

k∑i=1

uiqi where ‖u‖ ≤ 1.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 8

Robust LP II

Minimizex max(u: ‖u‖≤1) q(u)Tx

subject to Ax ≥ b.

The inner problem:

Maximizeu q(u)Tx = (q0)Tx+∑k

i ui(qi)Tx

subject to ‖u‖2 ≤ 1.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 9

Robust LP III

The dual of inner problem:

Minimizeλ (q0)Tx+ λ

subject to λ ≥√∑k

i ((qi)Tx)2.

The integrated SOCP problem:

Minimizex,λ (q0)Tx+ λ

subject to Ax ≥ b,

‖Qx‖ ≤ λ.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 10

Robust Quadratic Optimization

Minimize qTx

(EQP)

subject to ‖Ax‖2 ≤ 1.

(3)

Here, vector q ∈ Rn and A ∈ Rm×n; and ‖.‖ is the Euclidean norm.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 11

2-Norm Uncertainty

A(u) = A0 +

k∑j=1

ujAj where ‖u‖ ≤ 1.

Minimize qTx

(REQP)

subject to ‖(A0 +∑k

j=1 ujAj)x‖2 ≤ 1 ∀‖u‖ ≤ 1.

Let

F (x) = (A0x, A1x, · · · Akx).

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 12

Robust Counterpart

‖(A0 +

k∑j=1

ujAj)x‖2 =

⎛⎝ 1

u

⎞⎠

T

F (x)TF (x)

⎛⎝ 1

u

⎞⎠ .

Minimize qTx

(REQP)

subject to

⎛⎝ 1

u

⎞⎠

T ⎛⎝⎛⎝ 1 0

0 0

⎞⎠− F (x)TF (x)

⎞⎠⎛⎝ 1

u

⎞⎠ ≥ 0

∀⎛⎝ 1

u

⎞⎠

T ⎛⎝ 1 0

0 −I

⎞⎠⎛⎝ 1

u

⎞⎠ ≥ 0.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 13

The S-Lemma

Lemma 1 Let P and Q be two symmetric matrices such that there exists u0

satisfying (u0)TPu0 > 0. Then the implication

uTPu ≥ 0 ⇒ uTQu ≥ 0

holds true if and only if there exists λ ≥ 0 such that

Q λP.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 14

Technical Result

⎛⎝ 1

u

⎞⎠

T ⎛⎝⎛⎝ 1 0

0 0

⎞⎠− F (x)TF (x)

⎞⎠⎛⎝ 1

u

⎞⎠ ≥ 0

∀⎛⎝ 1

u

⎞⎠

T ⎛⎝ 1 0

0 −I

⎞⎠⎛⎝ 1

u

⎞⎠ ≥ 0

if and only if there is a λ ≥ 0 such that⎛⎝ 1 0

0 0

⎞⎠− F (x)TF (x) λ

⎛⎝ 1 0

0 −I

⎞⎠ .

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 15

The Second Lemma

Lemma 2 Let P a symmetric matrix and A be a rectangle matrix. Then

P −ATA 0

if and only if ⎛⎝ P AT

A I

⎞⎠ 0.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 16

SDP Inequality

⎛⎜⎜⎝⎛⎝ 1 0

0 0

⎞⎠+ λ

⎛⎝ −1 0

0 I

⎞⎠ F (x)T

F (x) I

⎞⎟⎟⎠ 0

which is a SDP constraint since it is linear in x and λ.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 17

SDP Representation

Consider λ and x as variables, REQP finally becomes a SDP problem:

Minimize qTx

(REQP)

subject to

⎛⎜⎜⎝⎛⎝ 1− λ 0

0 λI

⎞⎠ F (x)T

F (x) I

⎞⎟⎟⎠ 0.

This is an SDP problem.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 18

Non-Homogeneous Case

Minimize qTx

(EQP)

subject to −xTATAx+ 2bTx+ γ ≥ 0.

(4)

Here, vector q,b ∈ Rn and and A ∈ Rm×n.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 19

2-Norm Uncertainty

Let A be uncertain and

(A,b, γ) = (A0,b0, γ0) +

k∑j=1

uj(Aj ,bj , γj)| uTu ≤ 1.

Minimize qTx

(REQP)

subject to −xTATAx+ 2bTx+ γ ≥ 0 ∀uTu ≤ 1.

Let again

F (x) = (A0x, A1x, · · · Akx).

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 20

Matrix Representation

−xTATAx+ 2bTx+ γ =

(1

u

)T

⎛⎜⎜⎜⎝⎛⎜⎜⎜⎝

γ0 + 2xTb0 γ1/2 + xTb1 · · · γk/2 + xTbk

γ1/2 + xTb1 0 · · · 0

· · · · · · · · · · · ·γk/2 + xTbk 0 · · · 0

⎞⎟⎟⎟⎠− F (x)TF (x)

⎞⎟⎟⎟⎠(

1

u

).

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 21

Apply the S-Lemma

If and only if there is λ ≥ 0 such that⎛⎜⎜⎜⎝

γ0 + 2xTb0 γ1/2 + xTb1 · · · γk/2 + xTbk

γ1/2 + xTb1 0 · · · 0

· · · · · · · · · · · ·γk/2 + xTbk 0 · · · 0

⎞⎟⎟⎟⎠− F (x)TF (x))

� λ

(1 0

0 −I

);

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 22

SDP Inequality

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

γ0 + 2xTb0 − λ γ1/2 + xTb1 · · · γk/2 + xTbk

γ1/2 + xTb1 λ · · · 0

· · · · · · · · · · · ·γk/2 + xTbk 0 · · · λ

⎞⎟⎟⎟⎠ F (x)T

F (x) I

⎞⎟⎟⎟⎟⎟⎠ � 0.

which is a SDP constraint since the matrix is linear in x and λ.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 23

SDP Representation

Minimize qTx

(REQP)

subject to

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

γ0 + 2xTb0 − λ γ1/2 + xTb1 · · · γk/2 + xTbk

γ1/2 + xTb1 λ · · · 0

· · · · · · · · · · · ·γk/2 + xTbk 0 · · · λ

⎞⎟⎟⎟⎠ F (x)T

F (x) I

⎞⎟⎟⎟⎟⎟⎠ � 0.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 24

General Tool for Robust Quadratic Optimization

Recall

Minimize supξ∈U f(x, ξ)

(ROPT)

subject to F (x, ξ) ≤ 0 for all ξ ∈ U.

(5)

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 25

Conic Dual Representation

Express

ξ = ξ(u) where u ∈ U .

Then,

supξ∈U

f(x, ξ) = supu∈U

f(x, ξ(u)).

In convex cases, we represent

supu∈U

f(x, ξ(u))

by its conic dual problem and let the dual objective function be

φ(λ0,x)

where λ0 is the dual variables.

The dual objective function is an upper bound on f(x, ξ(u)).

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 26

Robust Counterpart

Minimize φ(λ0,x)

(ROPT)

subject to F (x, ξ(u)) ≤ 0 for all u ∈ U

dual constraints on λ0.

(6)

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 27

Conic Constraint Representation

Minimize φ(λ0,x)

(ROPT)

subject to Φ(λ,x) ∈ C

dual constraints on λ0, λ,

(7)

where Φ(λ,x) is, component-wise, the dual objective function of

supu∈U

F (x, ξ(u))

and C is a suitable cone.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 28

Example:

ax+ b ≤ 0

where

(a, b) = (a0, b0) +k∑

i=1

ui(ai, bi)| u ∈ U .

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 29

2-Norm Uncertainty

Case of ‖u‖ ≤ 1:

maxu:‖u‖≤1

a0x+ b0 +k∑

i=1

ui(aix+ bi)

which is an SOCP. The dual is

Minimize a0x+ b0 + λ

subject to λ ≥√∑k

i=1(aix+ bi)2.

Thus, the robust constraint becomes

0 ≥ a0x+ b0 + λ ≥ (a0x+ b0) +

√√√√ k∑i=1

(aix+ bi)2.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 30

1-Norm Uncertainty

Case of ‖u‖1 ≤ 1:

maxu:‖u‖1≤1

a0x+ b0 +k∑

i=1

ui(aix+ bi)

which is 1-norm CP. The dual is

Minimize a0x+ b0 + λ

subject to λ ≥ maxi{|(aix+ bi)|}.

Thus, the robust constraint becomes

0 ≥ a0x+ b0 + λ ≥ (a0x+ b0) + maxi

{|(aix+ bi)|}.

Conic Linear Optimization and Appl. MS&E314 Lecture Note #15 31

∞-Norm Uncertainty

Case of ‖u‖∞ ≤ 1:

maxu:‖u‖∞≤1

a0x+ b0 +

k∑i=1

ui(aix+ bi)

The dual is

Minimize a0x+ b0 + λ

subject to λ ≥∑ki=1 |(aix+ bi)|.

Thus, the robust constraint becomes

0 ≥ a0x+ b0 + λ ≥ (a0x+ b0) +

k∑i=1

|(aix+ bi)|.


Recommended