+ All Categories
Home > Documents > Applications of Light-Front Dynamics in Hadron PhysicsPinning Down Which Form Factors • Jaus’s...

Applications of Light-Front Dynamics in Hadron PhysicsPinning Down Which Form Factors • Jaus’s...

Date post: 02-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
68
Applications of Light-Front Dynamics in Hadron Physics 1. Anomaly and Zero Modes 2. Application to DVCS and GPDs Chueng-Ryong Ji North Carolina State University June 7, 2013 5 th & 6 th Lectures
Transcript
  • Applications of Light-Front Dynamics in

    Hadron Physics

    1. Anomaly and Zero Modes

    2. Application to DVCS and GPDs

    Chueng-Ryong Ji

    North Carolina State University

    June 7, 2013

    5th & 6th Lectures

  • Outline for AM

    • Common Belief of Equivalence

    • Unexpected Surprises and Treacherous Points

    • Chiral Anomaly and Zero Modes in LFD

    • Anomaly Free Condition in Standard Model

    • Power Counting Method

  • ò0dk

    Common Belief of Equivalence

    Manifestly Covariant Formulation

    Equal t Formulation Equal t = t + z/c Formulation

    ò-dk

    (Time Ordered Amps) S

    However, the proof of equivalence is treacherous.

    B.Bakker and C.Ji, PRD 62, 074014 (00)

    Heuristic regularization to recover the equivalence.

    B.Bakker, H.Choi and C.Ji, PRD63,074014 (01)

    Arc-contribution removes the mystery.

    B.Bakker, M.DeWitt, C.Ji, Y.Mishchenko, PRD72, 076005(05)

  • Electromagnetic Form Factor

    )()'(||' 2qFppipJp

    52222522 )'(

    '

    )()2(||'

    impk

    mpk

    impk

    mpk

    imk

    mkTr

    kdNpJp

    n

    n

    p ' | J± | p = i (p+ p ')± F±(q2 )

    F+(q2 )=?

    F-(q2 )

  • Equivalent Result in LFD

    )()'(||' 2qFppipJp ±±± +=

    Valence Nonvalence

    +

    2

    0

    2 1),(),(

    )2()(

    MRwhere

    x

    xRdx

    NqFnv

    a

    aaa

    a

    a

    ap

    a+

    =-+

    = ò-

    However, in bad(-) current, the end-point singularity exists without arc contribution.

    B.Bakker and C.Ji, PRD62, 074014 (2000)

    Fcov (q2 ) = Fval

    + (q2 )a=0 = Fval+ (q2 )a¹0 + Fnv

    + (q2 )a¹0

    q2 = -q^2 < 0 q2 = q+q- - q^

    2 > 0Alright in good(+) current:

  • Arc Contribution in LF-Energy

    Contour

    dk-(k-)2

    (k- - k1-)(k- - k2

    -)(k- - k3-)

    ¥

    ò = -i dq = -iparc

    ò

    k1- k2

    - k3-

    dk- = dk-

    ò + dk-arc

    ò = 0contour

    ò

    dk-

    ò = - dk-arc

    ò

    With the arc contribution, we find

    Fnv- (q2) =

    N

    p (2 + a)dx

    0

    a

    òR(x,a) - R(a,a)

    a - xB.Bakker, M.DeWitt, C.Ji, Y.Mishchenko, PRD72, 076005(2005)

  • Heuristic Regularization

    to recover the equivalence

    )()()(),(),( 222

    cov

    0

    qFqFqFforx

    RxRdx tottot

    ikkSwhere

    pkSpkS

    22

    2

    )(

    )'()(

    211221

    1111

    DDDDDD

  • u(p) /kg 51

    /p - /k - Mg 5 /k u(p) = u(p)[ /k - /p + M ]g

    5 1

    /p - /k - Mg 5[ /k - /p + M ]u(p)

    = 4M 2 u(p)g 51

    /p - /k - Mg 5u(p)+ 2M u(p)u(p)+ u(p) /ku(p)

    Ji, Melnitchouk, Thomas, PRL 110, 179191 (2013)

    =

    “treacherous” k+ = 0 (end-point) term

    Note also the relation between PV and PS theories.

    ˆ S PV = -i2gA

    fp

    æ

    è ç

    ö

    ø ÷

    2

    t ×

    t

    d4k

    (2p )4/ k g5( / p - / k + M)g5 / k

    Dp DNò

    SPV =1

    2u (p,s) ˆ S PV u(p,s)

    s

    å

    Dp = k2 - mp

    2 + ie

    DN = (p - k)2 - M 2 + ie

  • LFD

    I =1

    2dk+dk-ò

    1

    k+k- - m2 + ie=

    1

    2

    dk +

    k+dk-ò

    1

    k- -m2

    k++ i

    e

    k+

    ò

    m2

    k+- i

    e

    k+

    x

    x

    k+ > 0

    k+ < 0

    m2

    k+- i

    e

    k+

    ``Moving Pole”

    X X

    Capture the pole!

    k+ = rcosf k- = rsinf

    I =dr

    r0

    ¥

    ò dz2

    z - (ia + 1-a 2 +e)éë

    ùû

    z - (ia - 1-a 2 +e)éë

    ùû

    ò Þ ip logm2

    z = e2if

  • en)

    0

    0

    0

    >

    v

    ¶m Jm = 0 ; qmu( ¢p )g

    mu(p)

    = u( ¢p )[ / ¢p - /p]u(p)

    = u( ¢p )[m - m]u(p)

    = 0

    ¶m J5m = 0 ; qmu( ¢p )g

    mg5u(p)

    = u( ¢p )[ / ¢p - /p]g5u(p)

    = u( ¢p )[ / ¢p g5 +g5 /p]u(p)

    = 2mu( ¢p )g5u(p)

    = 0 if m = 0

    Tree Level

    Loop Level ¶m J

    m = 0

    ¶m J5m =

    e2

    16p 2eabgdFab Fgd

    Classical

    symmetry

    is broken

    due to

    infinite

    degrees

    of freedom

    in quantum

    fields.

  • C.Ji & S.Rey, PRD53,5815(1996)

  • Standard Model

    t

    t vv

    e

    v

    b

    t

    s

    c

    d

    u

    e

    1

    0

    3/1

    3/2

    )(0 ConditionFreeAnomalyQf

    f

  • CP-Even Electromagnetic Form

    Factors of W Gauge Bosons

    qqpp

    M

    QqgqggqgqgppAie

    W

    )'(2

    )())(()(2)'(

    2

    At tree level, for any q2, 0,0,1 QA

    Beyond tree level,

    )()'(2

    )()()()'( 2322

    2

    2

    1 qFppM

    qqqFqgqgqFgppJ

    W

    Jie

    qFQ

    qFqF

    qFA

    ),()(

    ),(2)()(

    ),(

    2

    3

    2

    1

    2

    2

    2

    1

  • One-loop Contributions in

    S.M.

    W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)

    G.Couture and J.N.Ng, Z.Phys.C35,65(1987)

    E.N.Argyres et al.,NPB391,23(1993)

    J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

  • One-loop Contributions in

    S.M.

    W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)

    G.Couture and J.N.Ng, Z.Phys.C35,65(1987)

    E.N.Argyres et al.,NPB391,23(1993)

    J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

  • One-loop Contributions in

    S.M.

    W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)

    G.Couture and J.N.Ng, Z.Phys.C35,65(1987)

    E.N.Argyres et al.,NPB391,23(1993)

    J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

  • One-loop Contributions in

    S.M.

    W.A.Bardeen,R.Gastmans and B.Lautrup, NPB46,319(1972)

    G.Couture and J.N.Ng, Z.Phys.C35,65(1987)

    E.N.Argyres et al.,NPB391,23(1993)

    J.Papavassiliou and K.Philippidas,PRD48,4255(1993)

  • Vector Anomaly

    in Fermion Triangle Loop

    “Sidewise” channel “Direct” channel

    """"

    2

    2

    """"

    )()(

    26)()(

    DirectSidewise

    WF

    DirectSidewise

    QQ

    MG

    L.DeRaad, K.Milton and W.Tsai, PRD9, 2847(1974);

    PRD12, 3972(1975)

  • Vector Anomaly Revisited Smearing of charge (SMR)

    Pauli-Villars Regulation (PV1, PV2)

    Dimensional Regularization (DR4,DR2)

    B.Bakker and Ji, PRD71, 053005 (2005)

  • Manifestly Covariant Results

    4323133 )()()()( DRPVPVSMR FFFF

    2

    3

    1

    4)2()2(

    3

    2

    4)2()2(

    6

    1

    4)2()2(

    2

    2

    2

    2

    412212

    2

    2

    412112

    2

    2

    41212

    WF

    f

    DRPV

    f

    DRPV

    f

    DRSMR

    MGg

    QgFFFF

    QgFFFF

    QgFFFF

  • LFD Results

    )22(2,2),22(2),(2

    ),(4/0,||',

    3

    2

    21003321031

    2222''

    FFFpGFpGFFFpGFFpG

    qQMQwithframeqinphJphG Whh

    J+

  • LFD Results

    )22(2,2),22(2),(2

    ),(4/0,||',

    3

    2

    21003321031

    2222''

    FFFpGFpGFFFpGFFpG

    qQMQwithframeqinphJphG Whh

    0)1(

    )1(

    2 2212

    22

    1

    22

    1

    0

    23

    2

    ..00Qxxmk

    Qxxmkkddx

    M

    pQgG

    W

    f

    MZ

    J+ q+=0

  • LFD Results

    )22(2,2),22(2),(2

    ),(4/0,||',

    3

    2

    21003321031

    2222''

    FFFpGFpGFFFpGFFpG

    qQMQwithframeqinphJphG Whh

    GGG

    pFFG

    G

    pFF )41()21(

    4

    12,

    2

    12 00

    00

    1200

    12

    0)1(

    )1(

    2 2212

    22

    1

    22

    1

    0

    23

    2

    ..00Qxxmk

    Qxxmkkddx

    M

    pQgG

    W

    f

    MZ

    9

    2

    3

    1

    2

    1

    4)2()2(

    6

    1

    4)2()2(

    2

    2

    412

    00

    212

    2

    2

    412

    0

    212

    f

    DRDR

    f

    DRDR

    QgFFFF

    QgFFFF

  • LFD Results for Other

    Regularizations

    6

    1

    4)2()2()2()2(

    2

    2

    412

    cov

    12

    00

    12

    0

    12

    f

    DRSMRSMRSMR

    QgFFFFFFFF

    0

    212 )2( PVFF

    3

    2

    4)2()2()2()2(

    2

    2

    412

    cov

    112

    00

    112

    0

    112

    f

    DRPVPVPV

    QgFFFFFFFF

    00

    212 )2( PVFF

    3

    1

    4)2()2(

    2

    2

    412

    cov

    212

    f

    DRPV

    QgFFFF= ?

  • Limit to q+=0 or q2=q+q--q2 0 or q+0

    and Analytic Continuation

    from q20 (timelike)

    = å +

    Absent in the limit q+ 0 ?

    q+

    Issue in Hadron Phenomenology

  • • Zero-Mode

    • Even if q+→0, the off-diagonal elements do not

    go away in some cases.

    0(....)lim0

    qp

    pq

    dk

    For example, G00 has the zero-mode contribution

    in the calculation of spin-1 form factors.

    B.Bakker,H.M.Choi and C.Ji,Phys.Rev.D65,116001(2002)

    +

    n n+2

    n n

    n n

    q+

  • Typical Electroweak Transition Form Factors

    < P2 | JV -Am | P1 >=< P2 |V

    m | P1 >

    = f+(q2)(P1 + P2)

    m + f-(q2)(P1 - P2)

    m

    and

    JV -Am = V m - Amwhere

    < P2 | Am | P1 >= 0

    for 0- to 0

    - transition.

  • LF-covariant -dependent formulation:W.Jaus,PRD60,054026(99)

    Power counting method:H.-M.Choi & C.Ji, PRD80, 054016 (09)

  • Pinning Down Which Form Factors

    • Jaus’s -dependent formulation yields

    zero-mode contributions both in G00 and G01.

    W.Jaus, PRD60,054026(1999);PRD67,094010(2003)

    • However, we find only G00 gets zm-contribution.

    B.Bakker,H.Choi and C.Ji,PRD67,113007(2003)

    H.Choi and C.Ji,PRD70, 053015(2004)

    • Also,discrepancy exists in weak transition form

    factor A1(q2)=f(q2)/(MP+MV).

    Power Counting Method

    H.Choi and C.Ji, PRD72, 013004(2005)

  • Electroweak Transition Form Factors

    < P2;1h | JV -Am | P1;00 >= ig(q

    2)emnaben* Paqb

    - f (q2)e*m - a+(q2)(e* × P)Pm - a-(q

    2)(e* × P)qm

    where

    P = P1 + P2, q = P1 - P2

  • < JV -Am >h = i

    d4k

    (2p)4SL1 (P1 - k)Sh

    mSL 2 (P2 - k)

    Dm1 DmDm2ò

    where

    Dm = k2 - m2 + ie,

    SL i (Pi) = L i2 /(Pi

    2 - L i2 + ie),

    Shm = Tr ( / p 2 + m2)g

    m (1- g5)( / p 1 + m1)g5(-/ k + m)e* × G[ ],

    Gm = g m -(P2 - 2k)

    m

    D,

    and

    (1) Dcov (MV ) = MV + m2 + m,

    (2) Dcov (k × P2) = 2k × P2 + MV (m2 + m) - ie[ ] / MV ,

    (3) DLF (M0) = M0 + m2 + m.

  • Power Counting Method

    where

    Sh= 0+ Power Counting :

    (1) (1- x)-1 = (1-a)(1- z)[ ]-1

    for Dcov (MV ),

    (2) (1- x)0 for Dcov (k × P2),

    (3) (1- x)-1/ 2 = (1-a)(1- z)[ ]-1/ 2

    for DLF (M0).

  • g a+ f a-

    x x x O( )

    x

    x O( ) O( , )

    x

    x x x

    x

    x x x

    1

    VJ1

    AJ JA+

    0, JA

    +

    1, JA

    ^

    1

    JA+

    0, JA

    +

    1

    (P2 - 2k)m

    Dcon

    (P2 - 2k)m

    Dcov

    (P2 - 2k)m

    DLF

    JA+

    0

    Z .M .

    JA^

    1

    Z .M .

    JA+

    0

    Z .M .

    JA^

    1

    Z .M .

    Existence(O(source element)) or absence (X) of the zero-mode

    contribution to (g, a+, a-, f) depending on and JV-Am

    hGV

    m =g m - (P2 - 2k)m / D

    Dcon = M2 + m2 + m ~ (1/ x)0as x® 0, D cov=

    2k ×P2 + M2 (m2 + m)- ie

    M2~ (1/ x)1 as x® 0

    DLF = M0 + m2 + m ~ (1/ x)1/2as x® 0

  • T1 T2 T3

    x x x

    x

    O( )

    O( )

    x

    x x

    x

    x x

    10

    J J5+

    0, J5

    +

    1

    (P2 - 2k)m

    Dcon

    (P2 - 2k)m

    Dcov

    (P2 - 2k)m

    DLF

    J5+

    0

    Z.M .

    Tensor form factors Ti (i=1,2,3) for the rare P Vl+l- decays

    J5+

    0, J5

    +

    1

    J0m

    hº V(P2,eh

    *) | qis mnqnq | P(P1) = iemnaben

    *PaqbT1

    J5m

    hº V | qis mnqng5q | P(P1) = [e

    *m (P ×q)- (e* × q)Pm ]T2 + (e* × q) qm -

    q2

    (P × q)Pm

    é

    ëê

    ù

    ûúT3

    J5+

    0

    Z.M .

    T.Altomari & L. Wolfenstein, PRD37, 681(88)

  • Summary

    • The common belief of equivalence between manifestly covariant and LF Hamiltonian formulations is not always realized unless nothing is missing.

    • Arc, moving pole, zero-mode, etc. must be taken into

    account.

    • LFD contributes to fundamental understanding of anomaly intrinsic to QFT.

    • Gauge symmetry appears to be intimately related to Lorentz symmetry in realization of anomaly free condition.

  • Outline for PM • Hadron Phenomenology at JLab

    • JLab Kinematics in DVCS

    (t < -|tmin|

    • Original Formulation of DVCS with GPDs

    (Valid only at a limited t region)

    • Comparison between

    Exact Tree-Level Result and the corresponding

    Results from Original Formulation

    • Hadronic Tensors in DVCS

    Toward Generalization: Two Approaches

    • Conclusion and Outlook

  • Hadron Physics at JLab

  • Wakamatsu (2010)

    X.Ji (1997) Jaffe-Manohar (1990)

    Chen et al. (2008)

    Sq

    Sg Lg

    Lq

    Sq

    Sg Lg

    Lq Sq

    Sg Lg

    Lq

    Sq

    Jg

    Lq

    Gauge-invariant extension (GIE)

  • Generalized Parton Distributions

    1

    21

    ( ) ( , , ) ( , , )4

    q qE

    q

    tG t dx H x t E x tM

    x xì üï ïí ýï ïî þ

    +

    -

    - = +åò (for example),

    • and the GPDs unify the description of inclusive and exclusive processes, connecting directly to the “normal” parton distributions:

    1 1

    2 2

    1

    1( , , 0) ( , , 0)

    quarkq qqJ dxx H x t tL E xx x

    ì üï ïí ýï ïî þ

    +

    -= DS+ = = + =ò

    • GPDs provide access to fundamental quantities such as the quark orbital angular momentum that have not been accessible

    e

    e'

    x+x x-x

    H, E, H, E

    g*

    x = xB

    2- xBg, p, h, r, w, K

    H, E - unpolarized, H, E - polarized GPD

    H, E, H, E

    (1+ x)P (1- x)P

    N N', D, L

    The GPDs Define Nucleon Structure

  • JLab Kinematics t < -|tmin|

    ; ;

  • thesis

    Coincidence Experiment

  • Ranges of Kinematic Variables

    0 < Q2 <4E2M

    2E + M

    Q2

    2ME< xBj =

    Q2

    2p × q

  • Table III in E12 - 06 - 114, Julie Roche et al.

    Jlab 12 GeV Exclusive Kinematics

  • qg =14

  • Nucleon GPDs in DVCS Amplitude X.Ji,PRL78,610(1997): Eqs.(14) and (15)

    Just above Eq.(14),

    ``To calculate the scattering amplitude, it is convenient to define

    a special system of coordinates.”

    Note here that = 0 .

  • Nucleon GPDs in DVCS Amplitude A.V.Radyushkin, PRD56, 5524 (1997): Eq.(7.1)

    At the beginning of Section 2E (Nonforward distributions),

    ``Writing the momentum of the virtual photon as q=q’-ζp is equivalent to using the Sudakov decomposition in the

    light-cone `plus’(p) and `minus’(q’) components in a situation when there is no transverse momentum .”

    q = ¢ q -z p ,

    z =Q2

    2p × ¢ q ,

    r = p - ¢ p

    T mn ( p,q, ¢ q ) =1

    2(p × ¢ q )ea

    2

    a

    å [ -gmn +1

    p × ¢ q (pm ¢ q n + pn ¢ q m )

    æ

    è ç

    ö

    ø ÷

    ´ u ( ¢ p ) ¢ / q u(p)TFa (z ) +

    1

    2Mu ( ¢ p )( ¢ / q / r - / r ¢ / q )u(p)TK

    a (z )ì í î

    ü ý þ

    + iemnabpa ¢ q b

    p × ¢ q u ( ¢ p ) ¢ / q g5u(p)TG

    a (z ) +¢ q × r

    2Mu ( ¢ p )g5u(p)TP

    a (z )ì í î

    ü ý þ ]

    Note here that ,i.e. only consistent at t=0,

    neglecting nucleon mass.

  • JLab Kinematics t < 0

    • In JLab, the final hadron and final photon

    move off the z-axis.

    • To see the effect of taking t

  • Bare Bone Structure

  • “Bare Bone” VCS Amplitude at Tree Level

    H(hq,h ¢ q ,sk,s ¢ k ) = em* ( ¢ q ,h ¢ q ) en (q,hq ) TS

    mn + TUmn( )

    TSmn =

    ka + qa

    Su ( ¢ k ,s ¢ k )g

    mgagn u(k,sk )

    TUmn =

    ka - ¢ q aU

    u ( ¢ k ,s ¢ k )gn gag mu(k,sk )

    S = (k + q)2

    U = (k - ¢ q )2

    = ¢ k

    Neglecting masses,

    Identity:

    g mgagn = gmagn + gang m - gmn ga + iemanbgbg5

    Hadron Helicity Amplitude:

  • Keeping no transverse momentum in DVCS, we agree on

    equivalent to the expression given by X. Ji and A.V. Radyushkin.

    Using Sudakov vectors

    we find

  • Full Amp vs. Reduced Amp

    S-channel:

    U-channel:

  • Checking Amplitudes • Gauge invariance of each and every polarized amplitude

    including the longitudinal polarization for the virtual photon.

    • Klein-Nishina Formula in RCS.

    • Angular Momentum Conservation.

    ll = l ¢ l = +1

    2, sk = s ¢ k = +

    1

    2, h ¢ q = +1 ;

    Allowed !

  • Checking Amplitudes • Gauge invariance of each and every polarized amplitude

    including the longitudinal polarization for the virtual photon.

    • Klein-Nishina Formula in RCS.

    • Angular Momentum Conservation.

    ll = l ¢ l = +1

    2, sk = s ¢ k = +

    1

    2, h ¢ q = -1 ;

    Prohibited !

  • Comparison

  • Swap

    C.Carlson and C.Ji, Phys.Rev.D67,116002 (2003);

    B.Bakker and C.Ji, Phys.Rev.D83,091502(R) (2011).

  • For any orders in Q

    Exact Reduced

  • Number of Independent Amplitudes in VCS

    Nucleon Target

    3 ´ 2 ´ 2 ´ 22

    = 12

    12 independent tensor structures

    M.Perrottet, Lett. Nuovo Cim. 7, 915 (1973);

    R.Tarrach, Nuovo Cim. 28A, 409 (1975);

    D.Drechsel et al.,PRC57,941(1998);

    A.V.Belitsky, D.Mueller and A.Kirchner, NPB629, 323(2002);

    A.V.Belitsky and D.Mueller, PRD82, 074010(2010)

  • A.V.Belitsky and D. Mueller,arXiv:1005.5209v1[hep-ph]

    Biproducts of P,V,A,T, but not S

  • D.Drechsel,G.Knoechlein,A.Yu.Korchin,A.Metz and S.Scherer,

    PRC 57, 941 (1998)

    Biproducts of S,V,A,T, but not P

  • Gordon Decomposition and Extension

    Possible Reconciliation

  • Jm = g mF1 + is mn qn2M

    F2

    = g m (F1 + F2) +(p + ¢ p )

    m

    2MF2

    =(p + ¢ p )

    m

    2M

    4M 2F1 + q2F2

    4M 2 - q2- ie mnabg 5gn pa ¢ p b

    2(F1 + F2)

    4M 2 - q2

    =(p + ¢ p )

    m

    2MF1 + i

    s mn qn2M

    (F1 + F2)

    = g m (F1 +q2

    4M 2F2) - ie

    mnabg 5gn pa ¢ p bF2

    2M 2

    = is mn qn2M

    (4M 2

    q2F1 + F2) + ie

    mnabg 5gn pa ¢ p b2F1

    q2

    All are equivalent!

    V T

    V S

    S A

    S T

    V A

    T A

  • Conclusion and Outlook

    • We find that the XJ and AVR amplitudes for DVCS in terms of GPDs for t < 0 are not satisfactory.

    • The determination of all independent structures is important for the discussion of GPDs and maintaining

    EM gauge invariance is a crucial constraint.

    • If all invariant structures are identified, the question whether one can measure GPDs in experiments where Q2 does not go to infinity may become more focused.

    • LFD appears to be a promising tool for hadron phenomenology provided treacherous points are well taken care of.


Recommended