+ All Categories
Home > Documents > Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al....

Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al....

Date post: 04-Jan-2016
Category:
Upload: oswin-jennings
View: 214 times
Download: 0 times
Share this document with a friend
21
applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: http://tiny-tera.stanford.edu/~nickm/talks/Sigcomm_20 03.ppt
Transcript
Page 1: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory1

Scaling Internet Routers Using Optics

Isaac Keslassy, et al.

Proceedings of SIGCOMM 2003.

Slides: http://tiny-tera.stanford.edu/~nickm/talks/Sigcomm_2003.ppt

Page 2: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory2

Do we need faster routers?

• Traffic still growing 2x every year• Router capacity growing 2x every 18 months• By 2015, there will be a 16x disparity

– 16 times the number of routers

– 16 times the space

– 256 times the power

– 100 times the cost

• => Necessity for faster, cost effective, space and power efficient routers.

Source: Dr. Nick McKeown’s SIGCOMM talk

Page 3: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory3

Current router : Juniper T640• T640: Half-rack

– 37.45 x 17.43 x 31 in (H x W x D)

– 95.12 x 44.27 x 78.74 cms (area ≈ 3 m2)

– 32 interface card slots

– 640 Gbps front side switching capacity

– 6500 W power dissipation

– Black body radiation = T4 W/m2

– at 350 F, Power radiated = 2325 W/m2

– Operating temp. = 32 to 104 F = 0 to 40 C = Stefan Boltzmann constant = 5.670 * 10-8 W / m2 K4

• References:– http://www.alcatel.com/products/productCollateralList.jhtml?productRepID=/x/opgproduct/Alcatel_

7670_RSP.jhtml

– http://www.juniper.net/products/ip_infrastructure/t_series/100051.html#03

– http://www.cisco.com/en/US/products/hw/routers/ps167/products_data_sheet09186a0080092041.html

Page 4: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory4

Multi-rack routers

• Switch fabric and linecards on separate racks• Problem: Switch fabric power density is limiting

– Limit = 2.5 Tbps (scheduler, opto-electronic conversion, other electronics)

• Switch fabric can be single stage or multi stage– Single stage: complexity of arbitration algorithms– Multi-stage: unpredictable performance (unknown throughput guarantees)

Switch fabricLinecards

Page 5: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory5

Optical switch fabric

• Pluses– huge capacity– bit rate independent– low power

• Minuses– slow to configure (MEMS ≈ 10 ms)– fast switching fabrics based on tunable lasers are

expensive• Reference:

– http://www.lightreading.com/document.asp?doc_id=2254&site=lightreading

Page 6: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory6

Goals

• Identify architectures with predictable throughput and scalable capacity– Use the load balanced switch described by C-S. Chang

– Find practical solutions to the problems with the switch when used in a realistic setting

• Use optics with negligible power consumption to build higher capacity single rack switch fabrics (100 Tbps)

• Design a practical 100 Tbps switch with 640 linecards each supporting 160 Gbps

Page 7: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory7

Load balanced switch

• 100 % throughput for a broad class of traffic

• No scheduler => scalable

VOQ

VOQ

VOQ

Page 8: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory8

Problems with load-balanced switch

• Packets can be mis-sequenced

• Pathological traffic patterns can make throughput arbitrarily small

• Does not work when some of the linecards are not present or are have failed

• Requires two crossbars that are difficult or expensive to implement using optical switches

Page 9: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory9

Linecard block diagram

• Both input and output blocks in one linecard• Intermediate input block for the second stage in the

load balanced switch

Page 10: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory10

Switch reconfigurations

• The crossbars in the load balanced switch can be replaced with a fixed mesh of N2 links each of rate R/N

• The two meshes can be replaced with a single mesh carrying twice the capacity (with packets traversing the fabric twice)

R R/N R/N R R 2R/N R

Page 11: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory11

Optical switch fabric with AWGRs

• AWGR: data-rate independent passive optical device that consumes no power

• Each wavelength operates at rate 2R/N• Reduces the amount of fiber required in the mesh (N2)• N = 64 is feasible but N = 640 is not

AWGR = Arrayed Wavelength Grating Router

Page 12: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory12

Decomposing the mesh

2R/81

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Source: Dr. Nick McKeown’s SIGCOMM slides

Page 13: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory13

Decomposing the mesh

2R/42R/8

2R/8

2R/8

2R/8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

TDMWDM

Source: Dr. Nick McKeown’s SIGCOMM slides

Page 14: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory14

Full Ordered Frames First (FOFF)

• Every N time slots– Select a queue to serve in round robin order that

holds more than N packets– If no queue has N packets, pick a non-empty queue

in round robin order– Serve this queue for the next N time slots

N FIFO queues(one per output)

input To intermediate input block

Page 15: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory15

FOFF properties

• No Mis-sequencing– Bounds the amount of mis-sequencing inside the switch

– Resequencing buffer at most N2 + 1 packets

• FOFF guarantees 100 % throughput for any traffic pattern

• Practical to implement– Each stage has N queues, first and last stages hold N2+1

packets/linecard

– Decentralized and does not need complex scheduling

• Priorities are easy to implement using kN queues at each linecard to support k priority levels

Page 16: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory16

Flexible linecard placement

• When second linecard fails, links between first and second linecards have to support a rate of 2R/2

• Switch fabric must be able to interconnect linecards over a range of rates from 2R/N to R => Not practical

2R/3

Page 17: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory17

Partitioned switch

M input/output channels for each linecard

Theorems:1) M = L+G-1, each path supporting

a rate of 2R2) Polynomial time reconfiguration

when new linecards are added or removed.

Page 18: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory18

M = L + G -1 illustration

• Total traffic going out or coming in at Group 1 = LR

• Total number of linecards = L + G -1

• Number of extra paths needed to/from first group = L -1

LC 1LC 2

LC L

Group 1

LC 1

LC 1

Group 2

Group G

LC 1LC 2

LC L

Group 1

LC 1

LC 1

Group 2

Group G

Page 19: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory19

Hybrid electro-optical switch

Page 20: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory20

Optical Switch

Page 21: Applied research laboratory 1 Scaling Internet Routers Using Optics Isaac Keslassy, et al. Proceedings of SIGCOMM 2003. Slides: nickm/talks/Sigcomm_2003.ppt.

applied research laboratory21

100Tb/s Load-Balanced Router

L = 16160Gb/s linecards

Linecard Rack G = 40

L = 16160Gb/s linecards

Linecard Rack 1

L = 16160Gb/s linecards

55 56

1 2

40 x 40MEMS

Switch Rack < 100W

Source: Dr. Nick McKeown’s SIGCOMM slides


Recommended