+ All Categories
Home > Documents > Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in...

Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in...

Date post: 19-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
12
Ecology and Evolution. 2018;1–12. | 1 www.ecolevol.org Received: 30 November 2017 | Revised: 9 March 2018 | Accepted: 15 March 2018 DOI: 10.1002/ece3.4057 ORIGINAL RESEARCH Applying ecological site concepts and state-and-transition models to a grazed riparian rangeland Felix Ratcliff 1 | James Bartolome 1 | Luke Macaulay 1 | Sheri Spiegal 2 | Michael D. White 3 This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 1 Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, California 2 USDA-ARS-Jornada Experimental Range, Las Cruces, New Mexico 3 Tejon Ranch Conservancy, Frazier Park, California Correspondence Felix Ratcliff, Department of Environmental Science, Policy, & Management UC Berkeley, Berkeley, CA. Email: [email protected] Funding information Tejon Ranch Conservancy Abstract Ecological sites and state-and-transition models are useful tools for generating and testing hypotheses about drivers of vegetation composition in rangeland systems. These models have been widely implemented in upland rangelands, but compara- tively, little attention has been given to developing ecological site concepts for range- land riparian areas, and additional environmental criteria may be necessary to classify riparian ecological sites. Between 2013 and 2016, fifteen study reaches on five creeks were studied at Tejon Ranch in southern California. Data were collected to describe the relationship between riparian vegetation composition, environmental variables, and livestock management; and to explore the utility of ecological sites and state-and-transition models for describing riparian vegetation communities and for creating hypotheses about drivers of vegetation change. Hierarchical cluster analysis was used to classify the environmental and vegetation data (15 stream reaches × 4 years) into two ecological sites and eight community phases that com- prised three vegetation states. Classification and regression tree (CART) analysis was used to determine the influence of abiotic site variables, annual precipitation, and cattle activity on vegetation clusters. Channel slope explained the greatest amount of variation in vegetation clusters; however, soil texture, geology, watershed size, and elevation were also selected as important predictors of vegetation composition. The classification tree built with this limited set of abiotic predictor variables explained 90% of the observed vegetation clusters. Cattle grazing and annual precipitation were not linked to qualitative differences in vegetation. Abiotic variables explained almost all of the observed riparian vegetation dynamics—and the divisions in the CART analysis corresponded roughly to the ecological sites—suggesting that ecologi- cal sites are well-suited for understanding and predicting change in this highly varia- ble system. These findings support continued development of riparian ecological site concepts and state-and-transition models to aid decision making for conservation and management of rangeland riparian areas. KEYWORDS CART analysis, ecological site descriptions, grazing management, hierarchical cluster analysis, riparian classification
Transcript
Page 1: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

Ecology and Evolution. 2018;1–12.  | 1www.ecolevol.org

Received:30November2017  |  Revised:9March2018  |  Accepted:15March2018DOI:10.1002/ece3.4057

O R I G I N A L R E S E A R C H

Applying ecological site concepts and state- and- transition models to a grazed riparian rangeland

Felix Ratcliff1  | James Bartolome1 | Luke Macaulay1 | Sheri Spiegal2 |  Michael D. White3

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2018TheAuthors.Ecology and EvolutionpublishedbyJohnWiley&SonsLtd.

1DepartmentofEnvironmentalSciencePolicyandManagement,UniversityofCalifornia,Berkeley,Berkeley,California2USDA-ARS-JornadaExperimentalRange,LasCruces,NewMexico3TejonRanchConservancy,FrazierPark,California

CorrespondenceFelixRatcliff,DepartmentofEnvironmentalScience,Policy,&ManagementUCBerkeley,Berkeley,CA.Email:[email protected]

Funding informationTejonRanchConservancy

AbstractEcologicalsitesandstate-and-transitionmodelsareusefultoolsforgeneratingandtestinghypothesesaboutdriversofvegetationcomposition in rangelandsystems.Thesemodelshavebeenwidely implemented inupland rangelands,but compara-tively,littleattentionhasbeengiventodevelopingecologicalsiteconceptsforrange-landriparianareas,andadditionalenvironmentalcriteriamaybenecessarytoclassifyriparian ecological sites. Between 2013 and 2016, fifteen study reaches on fivecreekswerestudiedatTejonRanchinsouthernCalifornia.Datawerecollectedtodescribe the relationshipbetween riparianvegetationcomposition, environmentalvariables,andlivestockmanagement;andtoexploretheutilityofecologicalsitesandstate-and-transitionmodelsfordescribingriparianvegetationcommunitiesandforcreatinghypothesesaboutdriversofvegetationchange.Hierarchicalclusteranalysiswas used to classify the environmental and vegetation data (15 streamreaches×4years) intotwoecologicalsitesandeightcommunityphasesthatcom-prisedthreevegetationstates.Classificationandregressiontree(CART)analysiswasusedtodeterminethe influenceofabioticsitevariables,annualprecipitation,andcattleactivityonvegetationclusters.Channelslopeexplainedthegreatestamountofvariationinvegetationclusters;however,soiltexture,geology,watershedsize,andelevationwerealsoselectedasimportantpredictorsofvegetationcomposition.Theclassificationtreebuiltwiththislimitedsetofabioticpredictorvariablesexplained90% of the observed vegetation clusters. Cattle grazing and annual precipitationwerenotlinkedtoqualitativedifferencesinvegetation.Abioticvariablesexplainedalmost all of the observed riparian vegetation dynamics—and the divisions in theCARTanalysiscorrespondedroughlytotheecologicalsites—suggestingthatecologi-calsitesarewell-suitedforunderstandingandpredictingchangeinthishighlyvaria-blesystem.Thesefindingssupportcontinueddevelopmentofriparianecologicalsiteconcepts and state-and-transitionmodels to aiddecisionmaking for conservationandmanagementofrangelandriparianareas.

K E Y W O R D S

CARTanalysis,ecologicalsitedescriptions,grazingmanagement,hierarchicalclusteranalysis,riparianclassification

Page 2: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

2  |     RATCLIFF eT AL.

1  | INTRODUC TION

Riparian areas threading through upland rangelands boostlandscape-level biodiversity (Sabo etal., 2005), filter water (Tate,Atwill,Bartolome,&Nader,2006),andprovideothervaluableeco-system services (George, Jackson, Boyd,& Tate, 2011). They alsoprovideforageandwaterfor livestock,whichtendstocongregatetheseareas,potentiallydegradingriparianresources(Belsky,Matzke,&Uselman,1999;Kauffman&Krueger,1984).Accordingly,effortstoimprovetheoutcomesofriparianmanagementarecommon,butthehighlyvariableandsite-specificresponsesofrangelandriparianzonescancomplicatemanagers’abilitytomakereliablepredictionsabouttheeffectsofmanagement(Georgeetal.,2011).

Ecologicalsitedescriptionsandstate-and-transitionmodelsarecurrentlyregardedasusefulorganizingframeworksforunderstand-ingandpredictingthepatternsandprocessesonrangelands(Spiegaletal.,2016;Sayre,2017).Thesemodelshavebeenextensivelyde-velopedforuplandrangelandsintheUnitedStates,butonlyrecentlyhas attention been given to developing them for riparian systems(Stringham&Repp,2010).

Major determinants of riparian rangeland vegetation composi-tionincludefluvialprocessesandtheircontrolsonchannelgeomor-phology(McBride&Strahan,1984;Stella,Battles,McBride,&Orr,2010),depthtowatertableandsoilmoisturedynamics(Stringham,Krueger,&Thomas,2001), inundationfrequency (Sankey,Ralston,Grams, Schmidt, & Cagney, 2015), annual fluctuations in precipi-tation (Lunt,Jansen,Binns,&Kenny,2007),andflooddisturbanceregimes (Campbell&Green,1968).As a result of frequentdistur-bancesandspatialheterogeneity,vegetationwilllikelyneverreach“climax” stages (Campbell&Green, 1968), and biotic drivers suchas cattlegrazingmayhave limitedeffectsonvegetationcomposi-tion (Luntetal., 2007).Nevertheless, cattle tend to congregate inriparianareasandcanhaveexaggeratedeffectsonthesesystems(Kauffman&Krueger,1984),andmanagersneedmodelsthatcon-sider the role of abiotic disturbances, livestockmanagement, andsitepotential.

Rangelands inMediterranean-typeclimates,whicharepredict-ablymesicinthewinterandxericinthesummer,havedistinctflora,fauna and unique management systems, conservation challenges,andthreats(Bartolomeetal.,2014;Perevolotsky&Seligman,1998).RipariansystemsinMediterranean-typeregionshavehighinteran-nualandintra-annualweathervariationcoupledwitha“flashy”hy-drologyproducedduring the relatively shortwet season, creatingperiodicfluvialdisturbancesanddroughtwhichstructurebiologicalcommunities(Gasith&Resh,1999).Modelsthatconsidertheseabi-oticperturbationsmaybenecessarytodescribevegetationdynam-icsinMediterranean-typeripariansystems.

State-and-transitionmodelsareusuallyrepresentedbyboxandarrowdiagramsanddescriptivetextthatcatalogsalltheknownveg-etationstates(boxes)andtransitionsbetweenstates(arrows)foragivensite.Theyweredevelopedtomodelnonlinearvegetationdy-namicsinrangelandsystems(Westoby,Walker,&Noy-Meir,1989)and are a useful tool for communicating vegetation dynamics to

managers.Ecologicalsitesdescribedivisionsofthelandscapewithsimilarenvironmentalcharacteristicsthatsupportthesamerangeofstatesandtransitions (Spiegal,Larios,Bartolome,&Suding,2014).Given the variable nature of rangeland riparian sites, ecologicalsitedescriptionsandstate-and-transitionmodelsmaybe theopti-malframeworkforcataloguingandmakingpredictionsabouttheirecology(Stringham&Repp,2010)—butmoreinformationisneededabout how tobest classify ecological sites, states, andphases forrangelandriparianareas.

Upland sites are largely classified based on soils, climate, andlandscapeposition,whicharerelativelystableovertimescalesrele-vanttomanagement(Caudle,DiBenedetto,Karl,Sanchez,&Talbot,2013).Thesefactorsareprobablynotsufficienttodescribediffer-encesinrangelandripariansites,becauseripariansitesarealsoinflu-encedbydifferences in fluvialprocesses,channelgeomorphology,andhydrologiccyclesbetweensites(Stringham&Repp,2010).

Processesgoverningtemporalvariationwithinriparianecologi-calsitesdiffersomewhatfromthoseinuplandsaswell.Inadditiontoclimaticandmanagementdriversassociatedwithinterannualvaria-tioninuplands,fluvialprocessesandsoil–watercharacteristicsmaydrive temporal variation in vegetation composition (Stringham &Repp,2010;Stringhametal.,2001).Linkingcharacteristicsofchan-nelgeomorphology,soils,andhydrologicpropertiestodifferencesinriparianvegetationstatesisnecessarytohelppairriparianecologicalsitedescriptionswithstate-and-transitionmodels.

Given their value to conservation and management, it is im-portanttounderstandripariansystems inrangelandssothat theirmanagementcanbe improved.Thisstudyaddresses the followingresearchquestions:

1. Can ecological sites and state-and-transition models be usedto describe riparian vegetation assemblages and develop hy-potheses about their relationships to environmental and man-agement (i.e., cattle grazing) variables?

2. Inadditiontoparameterstypicallyusedinuplandecologicalsiteclassification,whatnewparametersareneededtoclassifyripar-ianecologicalsitesinaMediterranean-typesystem?

2  | MATERIAL S AND METHODS

2.1 | Study site

Tejon Ranch, located in southern California, contains 97,124 hec-taresofconservedlandsthatarejointlymanagedbytheTejonRanchCompany,TejonRanchConservancy,andtwograzinglessees.Cattlegrazing is themostwidespread landmanagement practice affect-ing riparian areas on the ranch. TheRanch encompasses areas ofCalifornia’s San Joaquin Valley, Sierra NevadaMountains,MojaveDesert,TehachapiMountains,andSouthCoastRanges.Thisstudyislimitedtomajorstreamswithwell-developedwoodyvegetation,intheSanJoaquinValleyportionoftheranch.Despitelarge-scalecon-versionofriparianforestsinCalifornia’sCentralValley,theseareas

Page 3: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

     |  3RATCLIFF eT AL.

provideawidearrayofecosystemservices(Vaghti&Greco,2007);duetoitsextentandmanagementhistory,TejonRanchprovidesan

ideallocationtostudyarelativelyintactnetworkofCentralValleyriparianforests.

Fivecreeksegmentswereselected forstudywithin theareaof interest:ChanacCreek (CH), El PasoCreek (EP), LowerTejonCreek (LT),TunisCreek (TU),andUpperTejonCreek (UT)—here-afterreferredtoas“creeksegments.”Withineachofthesecreeksegments, three locations were selected randomly within areaswithwoodyvegetationforatotalof15studyreaches—hereafterreferred toas “study reaches” (Figure1). In thewinterof2014–2015,onestudyreachoneachstreamsegmentwasrandomlycho-sentoreceiveacattleexclosure.Theexclosureswereinplacefortheremainderofthestudy.ReachesthatreceivedexclosureswereCH2,EP3,LT1,TU2,andUT3.

Although somewhat drier than the “true” Mediterraneanclimate (Aschmann,1984),thestudyarea is inaMediterranean-type region of California, with hot dry summers and cool wetwinters.Meanannualprecipitationis21cm.Eighty-ninepercentof this fallsbetweenNovemberandApril (http://ipm.ucanr.edu/WEATHER/wxactstnames.html). Mean maximum summer dailytemperatures are between 32 and 35°C, and mean minimumsummertemperaturesarebetween15and19°C.Meanmaximumwinter daily temperatures are between 15 and 21°C, andmeanminimumdailywintertemperaturesarebetween3and8°C.The4years encompassed by this study had below-average rainfall.Between 2012 and 2015, the average annual precipitation was

F IGURE  1 MapofstudyreachesonTejonRanch

Tejon Ranch

LT1 LT2LT3

CH1

CH2

CH3UT1

UT2UT3

EP1EP2

EP3

TU1TU2

TU3

LegendStudy reaches

Streams

Tejon Ranch

TABLE  1 Variablesusedintheecologicalsiteclusteranalysis

Variable Source Description

Elevation(m) Field Measuredinageographicalinformationsystem(GIS)frompointstakenusingaGPS

Slope(500m) GIS(10mspatialresolutionDigitalElevationModel[DEM])

Slopealonga500mportionofthecreekcenteredattheplotcenter(NRCSNationalCartographyandGeospatialCenter,2010)

Slope(thalweg) Field Slopeofthethalwegonthestudyreachtakenfromlongprofilefieldmeasurements

Sinuosity(500m) GIS DistancealongcreekdividedbyEuclidiandistancebetweenendpointsfor500mofcreek

Sinuosity(thalweg) Field DistancealongcreekdividedbyEuclidiandistancebetweenendpointsofthelongprofilemeasuredinstudyreach

WatershedSize GIS(10mDEM) Areaofwatershedcontributingtostreamatstudyreach(NRCSNationalCartographyandGeospatialCenter2010)

Geology GIS Mappedgeologyatstudyreach.(Dibblee,2005,2008a,b)

DominantUpstreamGeology GIS Mostcommongeologymappedalongstreambetweenstudyreachandheadwaters.(Dibblee,2005,2008a,b)

Width:DepthRatio Field Widthofstreamchanneldividedbydepthofchannel.Calculatedfromchannelcross-sections

EntrenchmentRatio Field Widthofflood-proneareadividedbywidthofchannel.Calculatedfromchannelcross-sections

GreenlineHeightAboveThalweg Field Averageheightofgreenlineabovethalweginthestudyreach.

Sand(%) Field Percentsandincompositesoilsamplealonggreenline

Silt(%) Field Percentsiltincompositesoilsamplealonggreenline

Clay(%) Field Percentclayincompositesoilsamplealonggreenline

Page 4: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

4  |     RATCLIFF eT AL.

only15.7cm.The2015–2016rain-yearhadapproximatelyaver-agerainfall(20cm).

2.2 | Sampling abiotic site factors

Fourteenvariableswereusedtoclassifythe15studyreachesintoeco-logicalsites(Table1).Theseincluderemotelysensedvaluesmeasuredinageographicalinformationsystem,suchaselevation,slope,sinuos-ity,watershed size, andgeology (Table1).Measurementsof streamgeomorphologyweremadeinthefieldusingatotalstation.Soilsam-pleswerecollectedinthefieldin2013andanalyzedforsoiltextureusingthehygrometermethodattheUCDavisAnalyticalLaboratory.

2.3 | Sampling vegetation

VegetationwassampledannuallyateachofthestudyreachesinlateMayandearlyJuneof2013through2016.A“greenline”transectfol-lowedthetoeofthecreekbankandsampledvegetationgrowingnearthewater’sedge.Winward (2000) recommendssamplinggreenlinevegetationatthetopofbank;however,wesampledthegreenlineatthetoeofthebankbecausetheherbaceousvegetationatthetopofbankwastypicallycomposedofthesameannualgrassspeciesthatdominate theadjacentuplands. Inorder to sample theherbaceousspecies compositionmost influencedby the stream,weneeded tosampleinthewettersoilsfoundatthetoeofthebank.Shrubsandtreeswererecordedinthesamplingtransectsregardlessofposition.

Greenlinevegetationcompositionwasmeasuredalong50mofthe15studyreachesinthreedifferentstrata:herbaceous,shrub,andtree.Thestartingpointforeachtransectwastherandomlyassignedcenterpointofthestudyreach.Herbaceousvegetationwasmeasuredwithaline-pointintercepttransect.Eachhalf-meteralongthetransecttape,thefirstplanthitwithinonemeterabovethegroundwasrecorded.Aline-intercepttransectwasusedtorecordthelineardistanceofshrubsand treesoverhanging thegreenline transect.Anyplant (regardlessofspecies)overhangingthetapebetweenoneand3mofheightwasrecordedinthe“shrub”category,andanyplantoverhangingthetapeabove3minheightwasrecordedinthe“tree”category.

2.4 | Statistical methods

Our analytical approach proceeded as follows: (1) cluster analysiswasusedtoclassifystreamreachesintoecologicalsiteswithrespecttotheirabioticsitefactorsand(2)todefinemeaningfulvegetationcommunityassemblages (vegetationclusters); (3) IndicatorSpeciesAnalysiswasusedtodescribethevegetationclusters;(4)thepres-enceofstateswereevaluatedasaggregationsofclusters;(5)CARTanalysiswasusedtoidentifytheinfluenceofabioticsitefactorsonvegetationclusterdifferentiation.

2.5 | Ecological site cluster analysis

Hierarchical cluster analysis can be used to classify ecologicalsitesbasedongroupingsofkeyabioticenvironmentalvariables in

rangelanduplands(Spiegaletal.,2014).Similarly,ithasbeenusedtoclassifystreamreachesfromgeomorphicandhydrologicmeasure-mentsofstreamchannelsand isespeciallyuseful ifappliedwithinadistinctphysiographicunitwhereitcanyieldobjectiveclassifica-tions (Kondolf,Montgomery, Piegay, & Schmitt, 2003). A suite ofindicators used in stream classification and those used in uplandecologicalsiteclassificationwerecombinedinaclusteranalysistocreatetheriparianecologicalsiteclassification(Table1).

TheecologicalsiteclusteranalysiswasperformedusingGower’sdistance,whichcalculatessimilarityforeachvariableinthematrixsep-arately(usingamethodaccordingtothevariabletype)andisthereforeabletoanalyzebothcontinuousandcategoricalvariablestogether.Thefinaldistancemetricisanaverageofthepartialsimilarities(Borcard,Gillet,&Legendre,2011).AnalysiswasperformedinRusingthepack-ages “vegan” and “cluster” (Maechler, Rousseeuw, Struyf,Hubert,&Hornik,2015;Oksanenetal.,2015;RCoreTeam2016).Theclusterdendrogram was pruned using the Mantel test, which compares amatrixofclusterassignmentstotheoriginaldistancematrixusedtocreatetheclusterdendrogram.Thistestisrepeatedforeverypossiblenumberofclusters,andthenumberwiththehighestMantelcorrela-tionisconsideredtheoptimalnumberofclusters(Borcardetal.,2011).

2.6 | Vegetation cluster analysis

Aclusteranalysiswasperformedonthegreenlinevegetationcoverdata to investigate patterns of riparian plant community structurewithinthe15studyreachesover4years.The60uniqueReach×Yearcombinationswereclusteredbasedonabsolutecoverofallliveplantsalongtransects.Proportionalcoverdatafromtheshrubandtreelay-ersweregenerallymuchhigherthandatafromtheherbaceouslayer;therefore, herbaceous layer datawere square-root transformed sothattheshrubandtreelayersdidnotoverlyinfluencetheclusteras-signments(McCune,Grace,&Urban,2002).ShrubandTreecoverwasnottransformed.Similarly,allspeciesoccurringon<2Reach×Yearswere removed from the analysis so that very rare species did notdisproportionately influencetheanalysis.Allspecies×canopyclasscombinationswere treated as unique species. The cluster analysiswasperformedusingBray–Curtisdistance,whichcalculatessimilar-itybasedonspeciesfoundtobepresentonstudyreachesratherthanmutualabsences(Zuur,Ieno,&Smith,2007).

Twomethodswere utilized to prune the cluster dendrogram totheoptimalnumberof clusters.First, aMantel correlation testwasused,asdescribedabove.Second,anIndicatorSpeciesAnalysiswasperformed,andthenumberofgroupswhichcontainedthemostsig-nificant indicator specieswas selected (Dufrene& Legendre, 1997;McCuneetal.,2002).AllstatisticalanalyseswereperformedinRusingpackages: vegan, cluster, and indicspecies (DeCaceres&Legendre,2009;Maechleretal.,2015;Oksanenetal.,2015;RCoreTeam2016).

2.7 | Indicator species analysis

In addition to showing the optimal location to prune the clusterdendrogram,the“significant”indicatorspeciesshowwhichspecies

Page 5: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

     |  5RATCLIFF eT AL.

bestcharacterizeeachcluster. Indicatorspeciesarethosethatarecommonwithinstudyreachesofonecluster,andrelativelyscarceinstudyreachesofotherclusters(Dufrene&Legendre,1997).Basedon these criteria, species aregivenan indicatorvalue (0–1), andarandomizationtestisperformedtodeterminethestatisticalsignifi-canceoftheindicatorvalue.“Significant”indicatorspeciesarethosewith<5%probabilityofhavingnodifferencebetweengroups.

2.8 | Identifying states, phases, and transitions

The USDA Natural Resources Conservation Service (NRCS) im-plementation of state-and-transition models and ecological sitedescriptions is largely a “top-down” process where elements ofstate-and-transition models are drawn and populated by expertopinionandafterwardvalidatedwithdata (Jackson,Bartolome,&Allen-Diaz,2002).Incontrast,inthisstudy,plantspeciesdataareag-gregatedtobuildvegetationstatesfromthe“ground-up”withfewerpreconceptions about what constitutes a “state.” The NRCS alsodifferentiates betweenminor, easily reversible changes in vegeta-tionlabeled“phase-shifts”andthemoreresilient“states”theyoccurin (Bestelmeyer etal., 2003; Stringham,Krueger,&Shaver, 2003).These distinctions formalize some general aspects of the originalstate-and-transitionapproachandprovideusefulcategoriesthatcanbethebasisoftestablehypotheses.

Inthisstudy,weperformedclusteranalysistodefinemeaningfulvegetationassemblages.Manyoftheseclustershadsimilarvegeta-tionstructureandfunctionalgroupcomposition—thushavingsimi-larimplicationsformanagement—andtransitionsbetweensomeoftheseclusterswouldlikelyoccurwithoutthresholddynamics.Asaresult, theoptimalnumberof clusters from thevegetationclusteranalysiswasconsideredvegetation“phases,”not“states.”Themoregeneral “states” were defined by considering: potential drivers ofspatial and temporal variation (e.g., irreversible geomorphologicalchanges),differencesinBray–Curtisdistancebetweentheclusters,and ecological characteristics of the dominant and indicator spe-ciesofeachcluster (e.g.,wetlandvs.uplandplants).The resultingstatesarestillbasedontheoriginalvegetationclusterdendrogram,butrepresentadeeper“cut”ofthedendrogramwithfewerterminalnodes.

Thevegetationclusteranalysiswasperformedondatafromall15studyreaches,andtheresultingstatesandphasesweresubse-quently divided into the two ecological sites. This procedurewaschosenbecause(1)itallowedevaluationofhowwelltheecologicalsitescorrespondedtoobserveddifferencesinvegetationdynamics,and(2)althoughstudyreachesarerepresentedbydiscreetecolog-ical sites, they represent a gradientof site characteristics and arethereforeexpectedtosharesomevegetationstates.Combiningdatafromallstudyplotsshowedwhichstatesareuniquetoeachecolog-icalsite,andwhicharesharedbetweenthem.

Inourscheme,a“temporaltransition”occurswhenthestateatastudyreachmovesinspeciesclusterspacebetweenyears(sensuSpiegal etal., 2014). “Spatial transitions” are evident in cases inwhichdifferentvegetationclustersoccur indifferentareaswithin

the same ecological site and are differentiated by spatial—insteadof inherently temporal—processes (also seeBestelmeyer,Goolsby,&Archer,2011).

2.9 | Classification Tree (CART)

Aclassificationtreewasbuilttodeterminewhichenvironmentalfac-torsbestpredicttheobservedvegetationstatesandtoinformourecological site classification approach. The response variable (thedata tobepartitioned)was the clusters from thevegetation clus-teranalysis,andtheindependentvariablesweretheenvironmentalvariablesusedintheecologicalsiteclusteranalysis,annualprecipi-tation,andgrazingtreatments(exclosures).Aclassificationtreeusestop-down recursivebinary splitting topartition the responsedataintoatreethatoptimizestheclassificationofresponsevariablesateachnodewith respect toeachof thepredictorvariables (James,Daniela,Trevor,&Robert,2013).

The classification treewas built using the “tree” package in R(Ripley, 2016). The tree was pruned using the function “cv.tree,”whichdeterminestheoptimalnumberofterminalnodesbyminimiz-ingthedevianceinaK-foldcross-validation(Ripley,2016).PruningtheCARTtreetoseventerminalnodesresultedinthelowestdevi-anceintheCARTanalysis.Thisresultedinonlysixofthefourteenabioticfactorsbeing includedintheconstructionoftheclassifica-tiontree(Table2).

3  | RESULTS

3.1 | Ecological sites

The Mantel correlation test showed that the optimal number ofclusterswas 2 (r=.644), representing two ecological sites: LowerTejonCreekandallotherstudyreaches(Figure2).Thervalueforthenexthighestcorrelation(forfiveclusters)wassubstantiallyloweratr=.572.

Thesetwoecologicalsitesdifferinseveralregards.EcologicalSite 1 is morewidespread in the study area and as a result ismorevariable.ReachesinEcologicalSite1(allstudyreachesex-ceptthoseonLowerTejonCreek)havehigherelevations,higherchannel slopes, smaller watershed sizes, lower entrenchmentratios,moresiltand lesssand in thesoil, andmorediversege-ologies andupstreamgeologies than reaches inEcological Site2 (thoseonLowerTejonCreek).Thevariablesthatdonotsub-stantiallydifferbetween the twoecological sitesaresinuosity,width:depthratio,greenlineheightabovethalweg,andpercentclayinsoil(Table2).

3.2 | Vegetation states

The vegetation cluster analysis showed that Reach×Years gener-allyclusteredmostcloselywiththesamereachinotheryears.TheMantel correlation test pruned the resulting dendrogram to 10clusters(r=.663).However,eightclustershadthemostsignificant

Page 6: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

6  |     RATCLIFF eT AL.

indicator species p-values andwere therefore selected by indica-torspeciesanalysis.AstheMantelcorrelationcoefficientwasveryclosebetweeneightandtenclusters,(r=.645andr=.663respec-tively), eight clusters were selected to represent the vegetationgroups(Figure3).

Each of the eight clusters has statistically significant indicatorspecies.Allclusters includeperennialwoodyspeciesas indicators,andallclustersexceptClusters1and2includeherbaceousspeciesas significant indicator species (Figure4). Indicator species are al-waysmostabundantintheclustertheyareassignedto;however,in

Ecological site 1 Ecological site 2Selected by CART model?

Elevation(m) 444 265 Yes

Slope(500m) 3.1% 1.7% Yes

Thalwegslope 2.8% 1.0% No

Sinuosity(500m) 1.10 1.15 No

SinuosityofThalweg 1.20 1.14 No

Watershedsize(m2) 9.68×107 2.82×108 Yes

Width:Depthratio 8.49 9.97 No

Entrenchmentratio 3.39 5.86 No

GreenlineheightaboveThalweg(m)

0.213 0.223 No

Sand(%) 79.5 87.0 Yes

Silt(%) 14.83 7.33 Yes

Clay(%) 5.67 5.67 No

Geology Qt,gn,hdq1 Qa Yes

Dominantupstreamgeology

Qt,gn,hdq Qa No

Geology abbreviations indicate the following geology map units (Dibblee, 2005, 2008a,b):gn=Gneissic Rocks; hdq=Mafic Intrusive Rock; Qa=Quaternary Alluvium; Qt=QuaternaryTerraceDeposits.

TABLE  2 Meanvaluesperecologicalsiteforeachoftheenvironmentalattributesusedintheecologicalsiteclusteranalysis.Geologyvalueslistallthegeologymappingunitsineachecologicalsite

F IGURE  2 Clusterdendrogramshowingtheresultsoftheecologicalsiteclusteranalysisbasedonabioticvariables.Themorecloselytheirbranchesarerelatedinthedendrogram,themoresimilartheirenvironmentalattributesare.Thelettersinthestudyreachnamesrepresentthecreekstheyareon.CH=ChanacCreek,EP=ElPasoCreek,LT=LowerTejonCreek,TU=TunisCreek,UT=UpperTejonCreek.ThedottedlineshowstheoptimallocationtoprunethedendrogramEcological Site 2Ecological Site 1

Ecological site clusters -- Gower distace

Page 7: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

     |  7RATCLIFF eT AL.

thisanalysis,theygenerallyoccurinotherclustersaswell,sotheirmerepresenceisnotdiagnosticofclustermembership.Justfiveofthe41 indicator speciesoccurred inonlyonecluster, and fiveoc-curred in all eight clusters. Thirty-five of the 41 indicator specieswereinthetopfivespecies(bycover)fortheircanopylayerintheclustertheybelongedto.

Per methods described previously, three vegetation “states”weredefinedamongtheeightvegetationclusters(Figure3).States1and2occurexclusivelyinEcologicalSite1,whileState3occursalmostexclusivelyinEcologicalSite2,buthasalimiteddistributiononEcologicalSite1(Figure3).Thesethreestatesrepresentadeeper“cut” of the dendrogram and also have a highMantel correlationvalue(r=.61).Thethreestatesare:

3.2.1 | Vegetation state 1

This state comprises four of the eight vegetation clusters(Clusters1,5,6,and8)thatarecloselybranchedontheclusterdendrogramandisonlypresentinEcologicalSite1(Figure3).Thereaches in this state (CH1, EP1, EP2, EP3, TU1, TU2, TU3, andUT1 in all years) generally hadmultitiered canopies of ripariantrees: Salix laevigata, Populus fremontii,Quercus lobata, and thevine Vitis californica; and these clusters have many hydrophilicindicator species (Figure4). Their close linkagedistances in theclusteranalysisaswellastheecologicalsimilaritiesoftheirindica-torspeciessuggestthatchangesbetweentheseplantcommunitytypesmayhappenfrequentlyandwithoutmajoroutsideforcing.For that reason, thefourclustersare included in thestate-and-transitiondiagramascommunityphaseswithinVegetationState1(Figure4).

3.2.2 | Vegetation state 2

Althoughmostof the study reachesclassifiedasEcologicalSite1areclusteredinarelativelycohesiveareaofthevegetationclusterdendrogram,onecluster(Cluster3)isisolatedfromtherestoftheEcologicalSite1clusters(Figure3).UnlikeVegetationState1,veg-etation inCluster3 is characterizedbyuplandannualgrassesandforbs intheherbaceouslayer,andlacksanywoodyplant indicatorspeciesexceptthenon-nativeshrubNicotiana glauca.Noneof theindicator species in Cluster 3 is considered hydrophilic (Figure4).Thestudyreachesthatmakeupthisclusterarethepredominantlydryreaches:UT2(allyears),UT3(allyears),andCH2(in2015and2016only).ThegenerallydryconditionsandephemeralstreamflowonUT2andUT3makeitunlikelythatthesereacheswillshifttoacommunity dominated by woody plants and hydrophilic speciescharacteristic of the other vegetation clusters in Ecological Site 1withoutamajorweathereventandasubsequentchangeingeomor-phologyandhydrology.For that reason,Cluster3 is includedasauniquevegetationstate(State2)inthestate-and-transitiondiagram(Figure4).

3.2.3 | Vegetation state 3

InEcologicalSite2,therearethreecloselyrelatedvegetationclus-ters (clusters2,4,and7).All threeshareacommonbranchoftheclusterdendrogram (Figure3) and share similar riparian shrubandtree species.Theclustershave relativelyhighcoverofSalix good-ingii,Populus fremontii,andBaccharis salicifolia,relatively lowcoverof Salix laevigata, and no Quercus lobata cover. Given the simi-larities in perennial riparian vegetation and their proximityon the

F IGURE  3 Clusterdendrogramshowingtheresultsofthevegetationclusteranalysis.TheunitsbeingclusteredarealltheReach×Years.Themorecloselyrelatedbranchesinthedendrogramhavemoresimilarvegetation.ThelettersintheReach×Yearnamesrepresentthecreekstheyoccuron.ReachnamesinblackareinEcologicalSite1;namesingrayareinEcologicalSite2.Thesolidanddottedlinesshowwheretotrimthedendrogramtoproduceeightcommunityphaseclustersandthreevegetationstates,respectively

Cluster 1 Cluster 6 Cluster 8 Cluster 2Cluster 7 Cluster 4 Cluster 3Cluster 5

State 1 State 3 State 2

Page 8: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

8  |     RATCLIFF eT AL.

clusterdendrogram,thesethreevegetationclustersareallconsid-eredphasesinVegetationState3(Figure4).

3.3 | Transitions and phase shifts

Spatialvariationwithineachof theecologicalsiteswasmorepro-nouncedthantemporalchangeoverthestudyperiod.Intotal,sevencommunity phases (i.e., the vegetation clusters) comprising threevegetationstateswereobservedacrossthereachesinEcologicalSite

1,andthreecommunityphaseswereobservedacrossthereachesinEcologicalSite2(Figure4).Ofallthepotential“spatialtransitions,”compelling evidenceonly exists for the causeof one transition inEcologicalSite1betweenVegetationState2andVegetationState1(T2,Figure4).InEcologicalSite1,oneminor“temporal”phaseshiftandonemoresignificant“temporal”transitionwerealsoobservedoverthe4yearsofthestudy;andonlyonephaseshiftwasobservedonreachesinEcologicalSite2.Asummaryofthesetransitionsandphaseshiftsisbelow:

F IGURE  4 State-and-transitiondiagramfortheriparianstudyreaches.ThetopdiagramshowsthestatesandphasesoccurringonstudyreachesinEcologicalSite1,andthebottomdiagramshowsstateandphasesoccurringonreachesinEcologicalSite2.Specieslistedineachphasearethesignificantindicatorspeciesforthatphase,listedbydescendingorderofindicatorvalue.Solidarrowsindicate“temporaltransitions”andphaseshifts,thedottedarrowshowstheonly“spatialtransition”withaplausibledriver.Wetlandcodesareprovidedinparenthesesaftereachspeciesname(Lichvar,Banks,Kirchner,&Melvin,2016).An*indicatesthatthespeciesisnotincludedin“TheNationalWetlandPlantList”(Lichvaretal.,2016).Thewetlandstatusofspecieswithone*isinferredfromcongenersonthelist.Specieswithtwo**donothavecongenersonthelist,andtheirwetlandstatusishypothesizedfromauthors’fieldobservations.MoreinformationonplantspeciesisincludedinTableS1.DescriptionsofthestatesandtransitionsareinthetextoftheResultssection

Page 9: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

     |  9RATCLIFF eT AL.

3.3.1 | Transition from vegetation state 2 to vegetation state 1 (spatially- observed) (T2-Ecological Site 1)

ThistransitionoccursinEcologicalSite1whenVegetationState2(VegetationCluster3—characterizedbydry stream reachesdomi-nated by upland annual grasses) changes to Vegetation State 1(Vegetation Cluster 6—characterized by perennially wet streamreachesdominatedbyhydrophilicplantspecies)(Figure4).AlthoughthesetwostatesbothoccuronUpperTejonCreek,theyaresepa-ratedbyalargeheadcutandhavedrasticallydifferentchannelmor-phologiesandstreamflows.Abovetheheadcut,studyreachesUT2and UT3 are multichannel reaches with short distances betweenthalwegandhistorical floodplains (2.0and1.5mrespectively).Onthese reaches,water flowsephemerallyanduplandplantsare thedominantvegetation.Below theheadcut,UT1 isa singlechannelreach with a much larger distance between thalweg and historicfloodplain(7.2m).Onthisreach,waterflowsyear-roundandvegeta-tionisamixofwetlandplants.

3.3.2 | Transition from vegetation state 3 to vegetation state 2 (temporally- observed) (T1-Ecological Site 1)

InEcologicalSite1,thestudyreachCH2changedfromVegetationState3 (VegetationCluster 2—characterized byPlatanus racemosa and Baccharis salicifolia) in 2013 and 2014 to the upland annual-dominatedVegetation State 2 (VegetationCluster 3) in 2015 and2016 (Figure4).Althoughthis transitionoccurredonaplotwitha

cattleexclosure,itisunlikelythatthechangesincattleactivitypre-cipitatedthischange.Thetransitionwascharacterizedbyadie-offofestablishedripariantreesandwasmorelikelytheresultof4yearsofbelow-averageprecipitation.Duringtheseyears,Populus fremontii absolutecoverinthetreecanopydecreasedfrom40%in2013and2014to5%in2015and0%in2016;Salix laevigatacoverinthetreecanopydecreasedfrom35%in2013to13%in2015and0%in2016(Figure5, Figure S1). Reversing this transitionmay require severalyearsofwetconditionstoreestablishthesetreespecies.

3.3.3 | Phase shift from vegetation cluster 1 to 6 (temporally- observed) (PS1-Ecological Site 1)

InEcologicalSite1,thestudyreachEP3changedfromVegetationCluster1toVegetationCluster6between2015and2016sampling.ThisrepresentedaphaseshiftfromacommunitydominatedbyVitis californicaandSalix laevigataintheherbaceouslayertoonecharac-terizedbya suiteofherbaceoushydrophilicplants (Figure4).Thisphaseshiftfollowedanunusualsummerfloodin2015thatclearedoutsomeofthewoodyplantunderstory.

3.3.4 | Phase shift from vegetation cluster 7 to 2 (temporally- observed) (PS1-Ecological Site 2)

The only phase shift observed in Ecological Site 2waswhen thestudyreachLT2changedfromVegetationCluster7 toVegetationCluster2between2013and2014sampling.ThisrepresentedashiftfromacommunitycharacterizedbySalix goodingii,Populus fremontii,andasuiteofherbaceoushydrophytestoacommunitycharacter-izedbyhighcoverofBaccharis salicifoliaintheherbaceouscanopy.TheshiftoccurredafterherbaceoushydrophyteandSalix goodingii coverdecreasedin2014,possiblyalsotheresultofbelow-averageprecipitation(Figure4).

3.4 | Results of CART analysis

Therootsplit in theclassificationtreewaschannelslope (500m),indicatingthatitexplainedthemostvariationinvegetationphases.After that, a combinationof soil texture, geology,watershed size,andelevationwerethefactorschosentofurtherpartitiontheclus-terassignments.Thereach-scalestreamgeomorphologicalmeasure-ments,cattleexclosures,andannualprecipitationwerenotincludedintheprunedclassificationtree,indicatingthattheydidnotconsist-entlypredictthedifferentvegetationclusters(Figure6).Overall,theprunedCARTmodelcorrectlyclassified90%oftheReach×Years,withonlysixReach×Yearsmisclassified.

4  | DISCUSSION

The distribution of the vegetation states and phases was largelyexplained by the two ecological sites (Figures3 and 4). Similarly,phasesandstatesfromeachoftheecologicalsitesoccurredlargely

F IGURE  5 PhotosofstudyreachCH2.Notethedie-backintreecanopybetween2013and2016.VegetationonthereachwasclassifiedasVegetationState3in2013and2014,butchangedtoVegetationState2in2015and2016.Thereisnophotofor2015,buttreeandshrubthinningwasobserved

2013

2014

2016

Page 10: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

10  |     RATCLIFF eT AL.

onseparatebranchesoftheclassificationtree(Figure6),suggestingthatecologicalsitecharacteristicscorrespondedcloselywithdiffer-ences in vegetation.This couplingof ecological siteswithvegeta-tionphasesandstatesissignificantasitshowsthattheecologicalsiteclassification(basedpurelyonabioticvariables)canbeusedtoexplaintheoccurrenceofalmostallofthevegetationphasesonthestudyreachesandshowsthateachecologicalsitesupporteduniquevegetationstates.

The 15 study reaches are on the boundary of two floristic re-gionsinCalifornia:(1)theSanJoaquinValleySubregion,and(2)theTehachapiMountainAreaSubregion(Baldwin,2012).TheyarealsoontheboundaryoftwoMajorLandResourceAreas(MLRAs).Thehigherelevation reaches in Ecological Site 1 are closer to the TehachapiSubregion and fall in the Sierra Nevada Foothills MLRA, and thereaches in Ecological Site 2 fall squarely in the San JoaquinValleySubregionandareclosertotheSacramentoandSanJoaquinValleyMLRA.Whileitisnotsurprisingthatthetwoecologicalsites—whichdescribeanelevationgradientontheboundaryoftheregions—havedistinctvegetationcommunities,itisvalidatingthattheyalsodetectdifferencesinvegetationpredictedbythesebiogeographicregions.

Theclassificationtreehighlightedwhichenvironmentalfactorscorrespondedtodifferencesseeninthevegetationcommunitiesandgaveagoodindicationofhowbesttoadaptexistingecolog-ical site concepts to create meaningful predictions for riparianrangelandsinthisregion.Itshowedtheimportanceoftheunder-lyingsitevariables:channelslope,elevation,geology,watershedsize and soil texture; suggesting that in this system—in additiontouplandecologicalsitecriteria—channelslopeandcontributorywatershed size should be considered when classifying riparianecologicalsites.

Surprisingly,with the exception of channel slope, stream geo-morphologicalfactorswerenotimportantintheclassificationtree.

This implies that none of these geomorphological variables con-sistently predicted differences in the vegetation phases. Streamcross-sectionalprofilesdifferedatlargespatialscales,asseeninthedifferencesbetweenecologicalsites(Table2),buttheyalsovariedatrelativelysmallspatialscalesthroughoutthestudyarea(e.g.,be-tweenstudyreachesonacreeksegment).Channelgeomorphologywasonlymeasuredonceateachreachduringthestudy;however,itwasconsideredrelativelystableoverthestudyperiodbecauseofthebelow-averagerainfall.

Cattleexclosureandprecipitationwerealsonotsignificantvari-ables in theCARTanalysis. Thismakes sense given that (1) cattleexclosureswereonlyinplacefortwoyears;(2)rainfallwasnothighlyvariableoverthestudyperiod;and(3)clusterindicatorspeciescon-tainedmanyperennialwoody species. The apparent lack of influ-encefromcattlegrazingraisesimportantquestionsformanagementofthissystem,including:

1. Does cattle activity affect vegetation states over longerperiodsof time? Ifso,what levelsofsustainedcattleactivityresult in qualitative changes to vegetation, and what arethe primary mechanisms of change (e.g., hindering woodyplant recruitment)? Are these changes contingent on eco-logical site?

2. Arecertainstatesorphasesmoresensitivetocattleactivity?Inparticular,are reacheswithmoreherbaceous,perennialhydro-phytes (e.g.,Cluster6 inEcologicalSite1)more likelytobeaf-fectedbycattle?

3. Whatopportunitiesexistforenhancingormaintainingriparianvegetation?Arethereinteractionsbetweengrazingandrainfallorgrazingandacornmastyears that shouldbe takenadvan-tageoforavoided?DoesgrazingmanagementinUpperTejonCreek affect the rate at which the head cut in that stream

F IGURE  6 Resultsfromaclassificationtreewithvegetationclustersasthecategoricalresponsevariable,andtheabioticEcologicalSitevariables,totalannualprecipitation,andcattleexclosuresasthefactorsusedtosplitthedata.Thesplitsfartherupinthetreeexplainmoreoftheoverallvariationinvegetation

Slope_500 m < 2.3%

Geology: Qa

Elevation < 272.5 m

Sand < 78.5%

Watershed < 8.8e + 07 m2 Silt < 12%

Elevation < 378 m

7 4

3

8 4

6 15

Page 11: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

     |  11RATCLIFF eT AL.

segment moves upstream—and thus the vegetation state?Could management strategies—such as seasonal grazing re-gimes,bankstabilizationusingrestorationplanting,ormoder-ating peak stream discharge using an existing dam—slow orstop the movement of the head cut and prevent vegetationfromtransitioningfromState2toState1?

These questions can be formulated as formal hypotheses andtestedthroughlonger-termmonitoringofexclosuresorriparianpas-tureswithprescribedstockingrates.Theecologicalsitesandvegeta-tionstates/phases identified inthisstudyprovideecologicalcontextthatcanguidemanagers’selectionofstudylocations,treatments,andmonitoring methods to efficiently answer these questions. Furtherinvestigation in this areawill result in better descriptions of states,driversoftransitions,andecologicalsiteboundaries.Futureresearchshouldalsoinvestigatethedistributionandextentoftheseecologicalsitesandtheirassociatedstate-and-transitiondynamicsinthesouth-ernSanJoaquinValleyandtheSierraNevadaFoothillsMLRA.

5  | CONCLUSIONS

By including riparian-specific criteria, ecological site classificationscanbebuiltforripariansystems.OnTejonRanch,riparianecologicalsitedescriptionsandstate-and-transitionmodelsprovidedaunifiedframeworklinkingabioticandmanagementfactorstovegetationdy-namics.Thesemodelswereableto incorporateandorganizehighlyvariableripariansitefactorsandvegetationassemblages.Bycatalog-ingknownphases,states,andtransitionsoneachecologicalsite,thesemodelscreatedanorganizedapproachtounderstandingthecomplexandsite-specificresponsesofrangelandriparianareas.Theyprovidedaframeworkforpredictingvegetationstatesandtransitions,andforgeneratingandtestinghypotheseslinkingweather,management,andsitecharacteristicstovegetationchangesovertimeandspace.

ACKNOWLEDG MENTS

This work was supported by the Tejon Ranch Conservancy. Wealso thank Michele Hammond, Peter Hopkinson, and the UCBerkeleyRangeEcologyLab for their feedbackandcontributionsto fieldwork. Publication made possible in part by support fromtheBerkeleyResearchImpactInitiative(BRII)sponsoredbytheUCBerkeleyLibrary.

CONFLIC T OF INTERE S T

Nonedeclared.

AUTHOR CONTRIBUTION

FR,JB,SS,andMWdevelopedtheideasandmethodology;FR,JB,SS,andMWcollectedthedata;FRanalyzedthedata,withcontribu-tionsfromJB,LM,SS,andMW;FRledthewritingofthemanuscript

withsubstantialcontributionsfromJB,LM,SS,andMW.Allauthorsgavefinalapprovalforpublication.

DATA ACCE SSIBILIT Y

DatawillbemadeavailableintheDryadDigitalRepository.

ORCID

Felix Ratcliff http://orcid.org/0000-0002-3105-6264

R E FE R E N C E S

Aschmann,H.(1984).Arestrictivedefinitionofmediterraneanclimates-Bulletin de La Société Botanique de France. Actualités Botaniques,131(2-4), 21–30. https://doi.org/10.1080/01811789.1984.10826643

Baldwin,B.G.(Ed.)(2012).The Jepson manual: Vascular plants of California,(2nded.)Berkeley,CA:UniversityofCaliforniaPress.

Bartolome, J. W., Allen-Diaz, B. H., Barry, S., Ford, L. D., Hammond,M.,Hopkinson, P.,…White,M.D. (2014).Grazing for biodiversityinCalifornianMediterranean grasslands.Rangelands,36(5), 36–43.https://doi.org/10.2111/Rangelands-D-14-00024.1

Belsky,A. J.,Matzke,A.,&Uselman,S. (1999). Surveyof livestock in-fluencesonstreamandriparianecosystems in thewesternUnitedStates.Journal of Soil and Water Conservation,54,419–431.

Bestelmeyer,B.T.,Brown,J.R.,Havstad,K.M.,Alexander,R.,Chavez,G.,&Herrick,J.E.(2003).Developmentanduseofstate-and-transitionmodels for rangelands. Journal of Range Management, 56(2), 114.https://doi.org/10.2307/4003894

Bestelmeyer, B. T., Goolsby, D. P., & Archer, S. R. (2011). Spatial per-spectives in state-and-transition models: A missing link to landmanagement?Journal of Applied Ecology,48(3),746–757.https://doi.org/10.1111/j.1365-2664.2011.01982.x

Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. New York, NY: Springer New York. Retrieved from http://link.springer.com/10.1007/978-1-4419-7976-6 https://doi.org/10.1007/978-1-4419-7976-6

Campbell, C. J., & Green, W. (1968). Perpetual succession ofstream-channel vegetation in a semiarid region. Journal of the Arizona Academy of Science, 5(2), 86–98. https://doi.org/10.2307/40024609

Caudle,D.,DiBenedetto, J.,Karl,M., Sanchez,H.,&Talbot,C. (2013).Interagency ecological site handbook for rangelands. United StatesDepartmentofAgriculture:NaturalResourcesConservationService.

DeCaceres,M.,&Legendre,P.(2009).Associations between species and groups of sites: Indices and statistical inference.RPackage.Retrievedfromhttp://sites.google.com/site/miqueldecaceres/.

Dibblee, T. W. (2005).Geologic Map of the Pastoria Creek Quadrangle. DibbleeGeologyCenterMap#DF-175.,SantaBarbaraMuseumofNaturalHistory.

Dibblee,T.W.(2008a).Geologic map of the Arvin and Tejon hills quadran-gles.DibbleeGeologyCenterMap#DF-416.,SantaBarbaraMuseumofNaturalHistory.

Dibblee, T.W. (2008b).Geologic map of the Neenach and willow springs quadrangles.DibbleeGeologyCenterMap#DF-383.,SantaBarbaraMuseumofNaturalHistory.

Dufrene,M.,&Legendre,P.(1997).Speciesassemblagesandindicatorspecies:Theneedforaflexibleasymmetricalapproach.Ecological Monographs,67(3),345–366.https://doi.org/10.2307/2963459

Gasith,A.,&Resh,V.H. (1999). Streams inmediterranean climate re-gions: Abiotic influences and biotic responses to predictable

Page 12: Applying ecological site concepts and state‐and‐transition ... · site potential. Rangelands in Mediterranean-type climates, which are predict-ably mesic in the winter and xeric

12  |     RATCLIFF eT AL.

seasonal events. Annual Review of Ecology and Systematics, 30(1),51–81.https://doi.org/10.1146/annurev.ecolsys.30.1.51

George,M.,Jackson,R.,Boyd,C.,&Tate,K.(2011).Conservation benefits of rangeland practices: Assessment, recommendations, and knowledge gaps. United StatesDepartment ofAgriculture,Natural ResourcesConservationService.

Jackson,R.D.,Bartolome,J.W.,&Allen-Diaz,B.(2002).Stateandtransi-tionmodels-responsetoESAsymposium:Thresholdsandnon-linearresponses inecosystems:Understanding, sustaining, and restoringcomplexrangelands.Bulletin of the Ecological Society of America,83,194–195.

James,G.,Daniela,W.,Trevor,H.,&Robert,T.(2013).An introduction to statis-tical learning Vol. 103. Springer texts in statistics.NewYork,NY:SpringerNew York. Retrieved from http://link.springer.com/10.1007/978-1-4614-7138-7.https://doi.org/10.1007/978-1-4614-7138-7

Kauffman, J. B., & Krueger,W. C. (1984). Livestock impacts on ripar-ian ecosystems and streamside management implications. A re-view. Journal of Range Management, 37(5), 430–438. https://doi.org/10.2307/3899631

Kondolf, G. M., Montgomery, D., Piegay, H., & Schmitt, L. (2003).GeomorphicClassificationofRiversandStreams.InG.M.Kondolf&P.Hervé(Eds.),Tools in fluvial geomorphology.Hoboken,NJ:JWiley.https://doi.org/10.1002/0470868333

Lichvar,R.W.,Banks,D.W.,Kirchner,W.N.,&Melvin,N.C.(2016).Thenationalwetlandplant list: 2016wetland ratings.Phytoneuron,30,1–17.

Lunt, I. D., Jansen, A., Binns, D. L., & Kenny, S. A. (2007). Long-Termeffects of exclusion of grazing stock on degraded herbaceousplantcommunities ina riparianeucalyptusCamaldulensis forest inSouth-EasternAustralia.Austral Ecology,32(8),937–949.https://doi.org/10.1111/j.1442-9993.2007.01782.x

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K.(2015).Cluster: Cluster analysis basics and extensions.Rpackagever-sion2.0.3.

McBride, J., & Strahan, J. (1984). Fluvial Processes and Woodland Succession Along Dry Creek, Sonoma County, California. InE.Richard(Ed.),Warner and Kathleen M.Hendrix:UniversityofCaliforniaPress.

McCune,B.,Grace,J.B.,&Urban,D.L.(2002).Analysis of ecological com-munities.GlenedenBeach,OR:MjMSoftwareDesign.

NationalCartographyandGeospatialCenter(NRCS)(2010).10 meter na-tional elevation data.FortWorth,TX:USGeologicalSurvey.

Oksanen, J., Blanchet,G., Kindt, R., Legendre, P.,Minchin, P.,O’Hara,R. B., … Wagner, H. (2015). Vegan: community ecology package. R package version 2.3-5. Retrieved fromhttp://CRAN.R-project.org/package=vegan.

Perevolotsky,A.,&Seligman,N.G.(1998).Roleofgrazinginmediterra-neanrangelandecosystems.BioScience,48(12),1007–1017.https://doi.org/10.2307/1313457https://doi.org/10.2307/1313457

RCore Team (2016).R: A language and environment for statistical com-puting. Vienna, Austria: R Foundation for Statistical Computing.Retrievedfromhttps://www.R-project.org/.

Ripley,B.(2016).Tree: Classification and regression trees.Rpackageversion1.0-37.Retrievedfromhttps://CRAN.R-project.org/package=tree.

Sabo,J.L.,Sponseller,R.,Dixon,M.,Gade,K.,Harms,T.,Heffernan,J.,…Welter, J. (2005). Riparian zones increase regional species rich-nessbyharboringdifferent,notmore,species.Ecology,86(1),56–62.https://doi.org/10.1890/04-0668

Sankey, J. B., Ralston, B. E., Grams, P. E., Schmidt, J. C., &Cagney, L.E. (2015). Riparian vegetation, Colorado River, and climate: Five

decadesofspatiotemporaldynamicsinthegrandcanyonwithriverregulation. Journal of Geophysical Research: Biogeosciences, 120(8),2015JG002991.https://doi.org/10.1002/2015jg002991

Spiegal,S.,Huntsinger,L.,Hopkinson,P.,&Bartolome,J.(2016).Rangeecosystems inecosystemsof california. InA.Harold (Ed.),Mooney and erika zavaleta.Oakland,CA:UniversityofCaliforniaPress.

Spiegal,S.,Larios,L.,Bartolome,J.,&Suding,K.N.. (2014).Grasslandsbiodiversityandconservationinachangingworld.InP.Mariotte&P.Kardol(Eds.),Environmental science, engineering and technology. New York,NY:NovaPublishers.

Stella, J. C., Battles, J. J.,McBride, J. R., &Orr, B. K. (2010). Riparianseedling mortality from simulated water table recession,and the design of sustainable flow regimes on regulated riv-ers. Restoration Ecology, 18(November), 284–294. https://doi.org/10.1111/j.1526-100X.2010.00651.x

Stringham,T.K.,Krueger,W.C.,&Shaver,P.L. (2003).Stateandtran-sition modeling: An ecological process approach. Journal of Range Management,56(2),106–113.https://doi.org/10.2307/4003893

Stringham,T.K.,Krueger,W.C.,&Thomas,D.R.(2001).Applicationofnon-equilibriumecologytorangelandriparianzones.Journal of Range Management,54(3),210–217.https://doi.org/10.2307/4003236

Stringham, T., & Repp, J. (2010). Ecological site descriptions:Considerationforripariansystems.Rangelands,32(6),43–48.https://doi.org/10.2111/Rangelands-D-10-00085.1

Tate,K.W.,Atwill,E.R.,Bartolome,J.W.,&Nader,G.(2006).SignificantEscherichia coli attenuation by vegetative buffers on annual grass-lands. Journal of Environmental Quality,35(3),795–805.https://doi.org/10.2134/jeq2005.0141

Vaghti,M.,&Greco,S.(2007).RiparianVegetationoftheGreatValley.InM.G.Barbour,T.Keeler-Wolf&A.A.Schoenherr(Eds.),Terrestrial vegetation of California [electronic Resource].Berkeley,CA:UniversityofCaliforniaPress,c2007.

Westoby,M.,Walker,B.,&Noy-Meir, I. (1989).Opportunisticmanage-mentforrangelandsnotatequilibrium.Journal of Range Management Archives,42(4),266–274.https://doi.org/10.2307/3899492

Winward, A. H. (2000).Monitoring the vegetation resources in riparian areas. Ogden, UT: US Department of Agriculture, Forest Service,Rocky Mountain Research Station. Retrieved from http://www.fs.fed.us/rm/pubs/rmrs_gtr047.pdf. https://doi.org/10.2737/RMRS-GTR-47

Zuur,A.F.,Ieno,E.N.,&Smith,G.M.(2007).Analysing ecological data. New York, NY; London: Springer. Retrieved from http://public.eblib.com/choice/publicfullrecord.aspx?p=371384. https://doi.org/10.1007/978-0-387-45972-1

SUPPORTING INFORMATION

AdditionalSupportingInformationmaybefoundonlineinthesup-portinginformationtabforthisarticle.

How to cite this article:RatcliffF,BartolomeJ,MacaulayL,SpiegalS,WhiteMD.Applyingecologicalsiteconceptsandstate-and-transitionmodelstoagrazedriparianrangeland.Ecol Evol. 2018;00:1–12. https://doi.org/10.1002/ece3.4057


Recommended