+ All Categories
Home > Documents > Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. ·...

Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. ·...

Date post: 18-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
12
Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. NewYork 1992, pages 341-352 E. B. Saff" Institute for Constructive Mathematics Department of Mathematics University of South Florida Tampa, FL 33620, USA William B. Jones Department of Mathematics University of Colorado' Boulder, CO 80309-0426, USA 1. INTRODUCTION Let :r. N = {:r. N( m)} be an N -truncated causa.! signa.! of the form XN(m) = 1 ~ Qjei"'im, m=O,l,...,.N-l (XN(O) # 0) j=-1 \ 0, otherwise, 00 ? 0, O_j = Cr.j, (.J-j = -(.Jj, 0 = (.JO < (.Jl < ...< (.JI < 11" We consider the problem of determining the frequencies t.lj from the xN(m). Efficient numerical methods for finding the t.lj (especially in the presence of noise) have important applications to science and engineering. Various methods have been considered in [1), [2), [8). We consider a method due to Levinson and Wiener [9] formulated here in terms of Szego polynomials. Starting with autocorrelation coefficients .u<;) := L~:~ XN(711)XN(m+ k), -Research supported in part by the U.S. National Science Foundation under grant number DMS-8814026. 341 -
Transcript
Page 1: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

Approximation Theory(ed. by G. A. Anastassiou)Marce1 Dekker, Inc.New York 1992, pages 341-352

E. B. Saff"Institute for Constructive MathematicsDepartment of MathematicsUniversity of South FloridaTampa, FL 33620, USA

William B. JonesDepartment of MathematicsUniversity of Colorado'Boulder, CO 80309-0426, USA

1. INTRODUCTION

Let :r. N = {:r. N( m)} be an N -truncated causa.! signa.! of the form

XN(m) =

1

~ Qjei"'im, m=O,l,...,.N-l (XN(O) # 0)j=-1 \

0, otherwise,

00 ? 0, O_j = Cr.j, (.J-j = -(.Jj, 0 = (.JO < (.Jl < ...< (.JI < 11"

We consider the problem of determining the frequencies t.lj from the xN(m). Efficient

numerical methods for finding the t.lj (especially in the presence of noise) have important

applications to science and engineering. Various methods have been considered in [1), [2),

[8). We consider a method due to Levinson and Wiener [9] formulated here in terms of Szego

polynomials. Starting with autocorrelation coefficients .u<;) := L~:~ XN(711)XN(m + k),

-Research supported in part by the U.S. National Science Foundation under grant

number DMS-8814026.

341-

Page 2: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

Jones and Sa([

one forms recursively the Szego polynolnia.ls using:

(1.2a) Po( 1/INi z) := Po( 1/INi Z) := 1,

(1.2b)

(1.2c)

Pn( 1/JN; Z) := ZPn-l (1/JN; Z) + 6!,N} P~-l (1/JN; Z), n ~ 1

p~( 1/JN; z) := ~ ZPn-l( T/lN; z) + P~-l (T/lN; z), n ~ 1,

",n-l (n-I.N) (N) n-l(1 3) (N) L..j=O qj Jl.-j-l (01. ) ~ (n-l N) j.on :=- n-l (n-I.N) (N)' Pn-l 'l'N;Z =:L.,qj .z.

Lj=o qj Jl.j+l-n j=O

{Pn( 1/lN; z)} is the sequence of monic orthogonal polynomials on the unit circle (Szego

polynomials) with r~spect to the distribution function 1/lN( 9) defined by

N-l(1 A\ .1.1 (9) '- 1 IX ( i9 )12 X ( ) .-~ ( ) -m ,-- -, 'l'N .-2; N e , N Z .-L., %N m Z ,

m=O

p~(1/lNiz) = Znpn('l/JNiZ-I), Pn('l/JN;Z) = 0 ~ Izi < 1, 1b"~N)1 < 1. The zeros ofPn(1/lNiZ)

are used to approximate the points eiw;. Success of this method depends on the following

Conjecture [4]: As k -+ 00 and N -+ 00 the 2/ + 1 zeros of Pk( 1/JN; z) of largest modulus

approach the points eiCJ;, -[ $ j $ [. It is tacitly assumed that OJ tf 0 for j tf O. If

00 = 0 in (1.1), then there are only 2/ critical points, since eiO = 1 should not be counted.

Hence the statement of the conjecture must be adjusted accordingly. Several theorems and

numerical experinlents that support the conjecture were given in [4J. Another related result

is given here in Theorem 1. Our proof of it uses PPC-fractions

(N) ( I (N) I)(1.5) 6(N) -~ 1 -1- 61 : ~0 + £(N) + 6(N) + £(N) +

U1 z 2 u2 ZI'

5~N) := 2::~:~(xN(m»Z, introduced in [5], [6] to study the trigonometric moment problem.

If Pn and Qn denote the nth numerator and denominator, respectively, of (1.5), then PZn,

QZn, PZn+l' QZn+l are polynomials of degree at most nand QZn(1!JN;Z) = p;'(1!JN;Z),

QZn+l(1!JN;Z) = Pn(1!JN;Z).

2. CONVERGENCE THEOREM

1 .F(z):= L IQjj2 e1W; + z

;=-1(2.1)

eiw; -z= i.. ~ d'l/;(8),

We consider the rational function

Page 3: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

szego Polynomials 343

whose poles are the critical points eiw;, -I ~ j ~ I. Here 1/1(8) is a non-decreasing step

function with a jump of lair at each point (,Jj, j = -1,-1 + 1,..., I.

Theorem 1. There exist constants A and B such that for all k ?; 1, N ?; 1 and Izi :$ R < 1,

12. P2k('l/JNiZ) -F z I < ~ BN Q2k('l/JNi Z) ( ) -1- R2 + ../N(1- R)4'

The significance of this result for frequency analysis lies in the fact that the poles of

PzklQzk are given by 11 z(j, k, N) where z(j, k, lV) (for 1 ~ j ~ k) are the zeros of Pk( T/1N; z).

Our proof of Theorem 1 uses severa.llemma.s, the first involving

fN(Z) := i1r1r

Lemma 1. There exists a constant A such that, fot k ~ 1, N ~ 1, and Izi .s: R < 1,

\ P2k(tPN;Z) \ ANRk+lQ2k(tPN;Z) -!N(Z) S 1- R2

f.r.2.g.f. A proof of the lemma is given by (7, Theorem 3.1], [5, Theorem 3.2] and the fact

that there exists a constant A such that

N-lo~N) := L(XN(m))2 ~ (A/4)N

m=O

0for N ? 1.

For the next lemma we consider complex valued functions f( (), z) defined on -11" ~ () ~

11", Izi < 1 such that, for each 0 < R < 1, there exist constants Mp( R, f) satisfying

p=O,1,2,3.Izi ~ R < 1,

Moreover, it is assumed tha.t, for fixed z, J(8,z) is a. periodic function of 8 with period 2;r

and, for fixed 8, J( 8, z) is a.n a.na.lytic function of the complex varia.ble z for Izi < 1. For

18\ $ ;r, Izi < 1 a.nd N ~ 1, we define

f(t,z)lhN(8 -t}fdt,(2.6a) O'N(8,z,f) :=

where

.NuSInT

.uSin 2'

1 -eiNu

1- eiu= ei(N-l)i(2.6b) /tN(U) :=

Page 4: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

344 Jones and Sarr

Lemma 2. For functions 1(8,z) described above and for 181 ~ 1r, Izi ~ R < 1 and N:?; 1

2."vlo(R, f) + 4M3(R, f)If(8,z) -O'N(8,z,f)1 $ N

We consider the Fourier series partial sums

(2.8a)

1 (1faj(z) := -; J-1f 11"

f(t,z)cosjtdt, bj(z):=-11" -"

j(t,z)sinjtdt.

Integration by parts (three times) in (2.8b) yields for Izi .$ R < 1,.

j ~ 1, 0 ~ p ~ 3.

Since f(9,z) = lim Sk(9,z,f), we obta.in from (2.8) and (2.9)k-oo

(2.10)a)

If(8,z)-Sk(8,z,f)154.t\13(R,f) L -;-5j=k+l1

In [3, p. 33] it is shown that

O'N(9,z,f) =

lao(z)1Since If(8,z) -So(8,z,J)1 $ If(9,z)1 + -r $ 2Mo(R,J), it follows from (2.10) and

(2.11) that

(2.12)

from which (2.7) follows. 0

Lemma;S. There exists a constant B such that [or Izi ~ R < 1, and N ~ 1,

B(2.13)

VN(l- R)4

Page 5: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,
Page 6: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

346Jones and sarr

where

l wi+Ci

wi -ci

(2.19b)

(2.19c)..sin2.!Yo!!.

IhN(t.Jj -t)12dt $ 1 --::"du = 271"NO'N(9,z, 1) = 2:rlV..2 u-..Sin -

2

l "';+C;

"'.-c.1 1

For (2.19c) we have applied (2.6) to the constant function /(9, t) = 1, so that O'N(9, z, 1) = 1.

It follows from (2.19) that

Mo(R,g)./LV"N

l "'i+C;

"'--c.1 1

A similar bound holds for the fourth integral on the right-hand side of (2.17). Coulbining

the above results yields

Let a := ma.x[lail : -I S j S I]. Since there are 21(21 + 1) integrals of the form (2.20)

with j ;If m in (2.14a), it follows from (2.14), (2.16) and (2.20) that for Izi $ R < 1 and

(2.21 )N

+2/(2/+ 1)a2 [~~ + ~~~~~22]N

From the definition ofg(8,z) in (2.3) one can show that

12R

(l"":""RFl+RMo(R,g) = m and M3(R,g) =

0satisfy (2.5). Lemma 3 follows from (2.21) and (2.22).

Theorem 2.1 is an immediate consequence of Lemmas 1 and 3.

Page 7: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

Szego Polynomials 347

3. COMPUTATIONAL RESULTS

For a numerical experiment we chose I = 4, (.11 = :r /2, (.12 = :r /3, (.13 = 7r /6, (.14 = 311"/4,

00 = 0, 01 = 02 = 03 = 1/2 and 04 = 5 50 that (1.1) becomes x(m) = cos(m7r/2) +

cos( m7r /3) + cos( m7r /6) + 10 cos(3m7r /4). To these values we added a sma.ll component

of white noise with mean zero and variance 0.02. We computed the Szego polynomials

Pk( t/1Ni z) and their zeros z(j, k, N) for 1 ~ j ~ k, 1 ~ k ~ 50 and 100 ~ N ~ 3000 (in steps

of 100 up to 2000). For each k and N we chose the 4 zeros in 1m z > 0 with largest modulus

and associated with each such z(j, k, N) the nearest point ei..,;. Graphs of Iz(j, k, N) -eilol;\

vs N in log-log scale (base 10) for k = 8,10,20,30,40,50 are shown in Figures 1-4 for

"'i = iT /6, iT /3, 1r /2, 31r / 4, respectively. Each graph appears to be roughly a straight line

with negative slope >.(j, k). Approximating A(j, k) by using the line determined by the two

endpoints of each graph, we obtain the values shown in Table 1. It can be seen that for

the three values of "'i with loil = 1, the numbers A(j, k) decrease as k increases. These

experimental results not only support the conjecture made in Section 1, but also suggest a

regular convergence rate of the form Iz(j, k, N) -ei"'i I = O(N>'(j,k»).

Table 1. Values of >'(j, k) := [Log f(j, k, 3000)- Logf(j,.I:, 100)]j[Log3000-Log 100], wheref(j, k, N) := Iz(j, k, N) -eiwj I. z(j, k, N) denotes the zero of Pk( 1/INi z) nearest toeiwj. Pk( 1/IN; z) denotes the Szego polynonlia.1 of degree .1:. N denotes the samplesize of input data.

10

-0.86 not computed-0.84 -0.8420

-0.91 -0.97 -0.96 not computed30

-1.01 not computed40 -1.03 -1.14

-1.15 -1.19 -1.07 not computed

Page 8: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

348 Jones and Sarr

= 0.5235987755982989w( j

103

A) k= 8

B) k; 10-- ~-A -A- "

-8 '~' ' ' ~ ---/ ,p \ .A -'-8/ ""8"10-1 A A

C) k= 20

D) k -30

;:) k= 40

"

-~

-; 1 0-2

Cox~

F) k= 50

"~ ~ -.,/\. ' -..c---z

~. .10-]~

N

c .~~"~~~~~~--'---

;;;-;;~ "'-

~~~~-..~~~--'" F" ~ ::

10-'

10-5102 103

N = Sample Si~e or Input Signa

Figure 1. Graphs of \z(j, k, N) -eilJj I versus N in a. log-log scale suggest the convergence ask --00 and N -..00 of zeros z(j, k, N) of Szego polynomials Pk( 'l/JN; z) to criticalpoints eilJj. For this case t.1j = 7r /6 and 21Qjl = 1.

Page 9: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

--

Szego Polynomials 349

1.0471975511965977wI j =

Figure 2. Graphs of Iz(j, k, N) -ei"'i 1 versus N in a log-log sca.\e suggest the convergence a.~

k -00 and N -00 of zeros z(j, k, N) of Szeg6 polynomials Pk( 'l/JNi z) to critical

points ei"'i. For this ca.set.Jj = 11"/3 and 210jl = 1.

Page 10: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

350 Jones and Saff

w(j) = 1.5707963267948966

I I I I I I I II I I I r-1~a

--~-1~A

I" "" 11 ~ " /\-- ~ :--

A) k= 8

---8---8---8 8---

8 ~ 8' 8 ,.

'"",

B) k = 10

C) k = 20

D) k -30

~-:--'-o---

~'E) k = 40

--

--:; 10-2

c.x~

'---"'" ~

~"/,,-,,,C! V-'""",F) k ~ 50

~~~'~,=-- O--V-~D~" ""...

-z

-". 10-3~

N

10-4

10-5 ". , , ., ,I .'"

1 .,2 1 03

N = Sample Size of Input Signal

J

Figure 3. Graphs of Iz(j, k, N) -ei"'i I versus N in a log-log scale suggest the convergence ask -00 and N -00 of zeros z(j, k, N) of Szego polynomials Pk( 'l/JN; z) to criticalpoints ei"'i. For this case f..Jj = :T /2 and 21ajl = 1.

--"c"

"c~-

Page 11: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

Szego Polynomials351

Figure 4. Graphs of Iz(j, k, N) -eiw; I vers.us N in a log-log scale suggest the convergence ask -00 and N -00 of zeros z(j, k, N) of Szego polynomials Pk( V'N; z) to criticalpoints eiw;. For this case I..Jj = 3';-/4 and 21ajl = 10.

Page 12: Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New … · 2016. 10. 4. · Approximation Theory (ed. by G. A. Anastassiou) Marce1 Dekker, Inc. New York 1992,

352 Jones and Sarr

Acknowledgement. The authors wish to thank Anne C. Jones for able assistance in

computations and graphical illustration.

REFERENCES

1. Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill Book Company,Inc., New York (1956).

2. Kumaresam, R., L. L. Scharf, A. K. Shaw, An algorithm for pole-zero modeling andspectral analysis, IEEE Trans. ASS? 34, No.3 (June 1986),637-640.

3. Jackson, D., Fourier Series and Orthogonal Polynomials, Math. Assoc. Amer. CarusMath. Mono. (1941).

4. Jones, William B., Olav Njastad, E. B. Saff, Szego Polynomials Associated with Wiener-Levinson Filters, Journal of Computational and Applied i\.1'ath. 32 (1990), 38i-406.

5. Jones, William B., Olav Njastad and W. J. Thron, Continued fractIons associated withthe trigonometric and other strong moment problems, Constroctive Approximation 2

(1986),197-211.

6. Jones, William B., Olav Njastad and W. J. Thron, Moment theory, orthogonal polyno-mials, quadrature and continued fractions associated with the unit circle, Bull. LondonMat/l. Soc. 21 (1989),113-152.

7. Jones, William B. and W. J. Thron, A constructive proof of convergence of the evenapproximants of positive PC-fractions, Rocky J\1tn. J. Math. 19, No.1 (1989), 199-210.

of Compo 26, No. 118 (April8. Paul, A. K., Anharmonic frequency analysis, Math.1972),437-447.

9. Wiener, Norbert, Extrapolation, Intef7Jolation arId Smoothing of Stationary Tirne Se-ries, Published jointly by The Technology Press of the Massachusetts Institute of Tech-nology, and John Wiley 81: Sons, Inc., New York (1949).


Recommended