+ All Categories
Home > Documents > ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR...

ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR...

Date post: 15-Mar-2018
Category:
Upload: vuonghanh
View: 216 times
Download: 2 times
Share this document with a friend
12
1 F2009abn fifteen steel construction: materials & beams ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN ARCH 331 DR. ANNE NICHOLS SUMMER 2014 Steel Beams 1 Lecture 15 Architectural Structures ARCH 331 lecture F2011abn Steel Beam Design American Institute of Steel Construction Manual of Steel Construction ASD & LRFD combined in 13 th ed. Steel Beams 2 Lecture 15 Foundations Structures ARCH 331 Steel Beams 3 Lecture 18 Foundations Structures ARCH 331 F2008abn Steel Materials smelt iron ore add alloying elements heat treatments iron, carbon microstructure AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331 F2008abn Steel Materials cast into billets hot rolled cold formed residual stress corrosion-resistant “weathering” steels stainless Cold Formed Hot Rolled AISC
Transcript
Page 1: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

1

F2009abn

fifteen

steel construction:

materials & beams

ARCHITECTURAL STRUCTURES:

FORM, BEHAVIOR, AND DESIGN

ARCH 331

DR. ANNE NICHOLS

SUMMER 2014

Steel Beams 1

Lecture 15

Architectural Structures

ARCH 331

lecture

F2011abn

Steel Beam Design

• American Institute of Steel Construction

– Manual of Steel Construction

– ASD & LRFD

– combined in 13th ed.

Steel Beams 2Lecture 15

Foundations StructuresARCH 331

Steel Beams 3

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Materials

• smelt iron ore

• add alloying elements

• heat treatments

• iron, carbon

• microstructure

AISC

A36 steel, JOM 1998

Steel Beams 4

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Materials

• cast into billets

• hot rolled

• cold formed

• residual stress

• corrosion-resistant

“weathering” steels

• stainless Cold Formed

Hot Rolled

AISC

Page 2: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

2

Steel Beams 5

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Materials

• steel grades

– ASTM A36 – carbon

• plates, angles

• Fy = 36 ksi & Fu = 58 ksi

– ASTM A572 – high strength low-alloy

• some beams

• Fy = 60 ksi & Fu = 75 ksi

– ASTM A992 – for building framing

• most beams

• Fy = 50 ksi & Fu = 65 ksi

Steel Beams 6

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Properties

• high strength to weight ratio

• elastic limit – yield (Fy)

• inelastic – plastic

• ultimate strength (Fu)

• ductile

• strength sensitive

to temperature

• can corrode

• fatigue

Winnepeg DOT

strain hardening

Steel Beams 7

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Structural Steel

• standard rolled shapes (W, C, L, T)

• open web joists

• plate girders

• decking

F2008abnSteel Beams 8

Lecture 18

Foundations Structures

ARCH 331

Steel Construction

• welding

• bolts

http://courses.civil.ualberta.ca

Page 3: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

3

Steel Beams 9

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Construction

• fire proofing

– cementicious spray

– encasement in gypsum

– intumescent – expands

with heat

– sprinkler system

F2008abnSteel Beams 10Lecture 18

Foundations Structures ARCH 331

Unified Steel Design

• ASD

– bending (braced) Ω = 1.67

– bending (unbraced*) Ω = 1.67

– shear Ω = 1.67

– shear (bolts & welds) Ω = 2.00

– shear (welds) Ω = 2.00

* flanges in compression can buckle

Ra ≤Rn

Ω

F2008abnSteel Beams 11Lecture 18

Foundations Structures ARCH 331

Unified Steel Design

• braced vs. unbraced

Steel Beams 12Lecture 18

Foundations Structures ARCH 331

F2008abn

LRFD

• loads on structures are

– not constant

– can be more influential on failure

– happen more or less often

– UNCERTAINTY

φ - resistance factor

γ - load factor for (D)ead & (L)ive load

nLLDDu RRRR φγγ ≤+=

Page 4: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

4

Steel Beams 13

Lecture 18

Foundations Structures

ARCH 331

F2008abn

LRFD Steel Beam Design

• limit state is yielding all across section

• outside elastic range

• load factors & resistance factors

E

1

fy = 50ksi

εy = 0.001724

f

ε

F2011abn

LRFD Load Combinations

• 1.4D

• 1.2D + 1.6L + 0.5(Lr or S or R)

• 1.2D + 1.6(Lr or S or R) + (L or 0.5W)

• 1.2D + 1.0W + L + 0.5(Lr or S or R)

• 1.2D + 1.0E + L + 0.2S

• 0.9D + 1.0W

• 0.9D + 1.0E• F has same factor as D in 1-5 and 7

• H adds with 1.6 and resists with 0.9 (permanent)Steel Beams 14Lecture 15

Foundations StructuresARCH 331

ASCE-7

(2010)

Steel Beams 15Lecture 18

Foundations Structures ARCH 331

F2008abn

Beam Design Criteria (revisited)• strength design

– bending stresses predominate

– shear stresses occur

• serviceability– limit deflection

– stability

• superpositioning– use of beam charts

– elastic range only!

– “add” moment diagrams

– “add” deflection CURVES (not maximums)

+

=

+

=

Steel Beams 16Lecture 18

Foundations Structures ARCH 331

F2008abn

Steel Beams

• lateral stability - bracing

• local buckling – stiffen, or bigger Iy

Page 5: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

5

Steel Beams 17Lecture 18

Foundations Structures ARCH 331

F2008abn

Local Buckling

• steel I beams

• flange

– buckle in

direction of

smaller radius

of gyration

• web

– force

– “crippling”

Steel Beams 18Lecture 18

Foundations Structures ARCH 331

F2008abn

Local Buckling

• flange

• web

Steel Beams 19Lecture 18

Foundations Structures ARCH 331

F2008abn

Shear in Web

• panels in plate girders or webs with large shear

• buckling in compression direction

• add stiffeners

F2008abnSteel Beams 20Lecture 18

Foundations Structures ARCH 331

Shear in Web

• plate girders and stiffeners

http:// nisee.berkeley.edu/godden

Page 6: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

6

Steel Beams 21Lecture 18

Foundations Structures ARCH 331

F2008abn

Steel Beams

• bearing

– provideadequatearea

– preventlocal yield

of flangeand web

Steel Beams 22Lecture 18

Foundations Structures ARCH 331

F2008abn

LRFD - Flexure

Mu - maximum moment

φb - resistance factor for bending = 0.9

Mn - nominal moment (ultimate capacity)

Fy - yield strength of the steel

Z - plastic section modulus*

ZFMMR ynbuii 9.0=≤=Σ φγ

Steel Beams 23Lecture 18

Foundations Structures ARCH 331

F2008abn

Internal Moments - at yield

yyy fbh

fc

IM

6

2

==

• material hasn’t failed

( )yy f

bcf

cb

3

2

6

2 22

==

Steel Beams 24Lecture 18

Foundations Structures ARCH 331

F2008abn

Internal Moments - ALL at yield

• all parts reach yield

• plastic hinge forms

• ultimate moment

• Atension = Acompression

yyp MfbcM2

32 ==

E

1

σy = 50ksi

εy = 0.001724

σ

ε

Page 7: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

7

Steel Beams 25

Lecture 18

Foundations Structures

ARCH 331

F2008abn

n.a. of Section at Plastic Hinge

• cannot guarantee at

centroid

• fy·A1= fy·A2

• moment found from

yield stress times

moment area

iian

yyp dAfdAfM.

1Σ==

Steel Beams 26

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Plastic Hinge Development

Steel Beams 27

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Plastic Hinge Examples

• stability can be effected

Steel Beams 28

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Plastic Section Modulus

• shape factor, k

= 3/2 for a rectangle

≈ 1.1 for an I

• plastic modulus, Z

y

p

M

Mk =

y

p

f

MZ =

SZk =

Page 8: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

8

F2008abnSteel Beams 29

Lecture 18

Foundations Structures

ARCH 331

LRFD – Shear (compact shapes)

Vu - maximum shear

φv - resistance factor for shear = 1.0

Vn - nominal shear

Fyw - yield strength of the steel in the web

Aw - area of the web = twd

ΣγiRi = Vu ≤ φvVn = 1.0(0.6FywAw)

F2008abnSteel Beams 30

Lecture 18

Foundations Structures

ARCH 331

LRFD - Flexure Design

• limit states for beam failure

1. yielding

2. lateral-torsional buckling*

3. flange local buckling

4. web local buckling

• minimum Mn governs

nbuii MMR φγ ≤=Σ

1.76

F2008abnSteel Beams 31

Lecture 18

Foundations Structures

ARCH 331

Compact Sections

• plastic moment can form before any

buckling

• criteria

– and

F2008abnSteel Beams 32

Lecture 18

Foundations Structures

ARCH 331

Cb = modification factor

Mmax - |max moment|, unbraced segment

MA - |moment|, 1/4 point

MB = |moment|, center point

MC = |moment|, 3/4 point

Lateral Torsional Buckling

CBAmax

maxb

MMMM.

M.C

34352

512

+++=

[ ] pbn MCM ≤= moment based on

lateral buckling

Page 9: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

9

Su2011abn

Beam Design Charts

Steel Beams 33Lecture 15

Foundations StructuresARCH 331

Steel Beams 34

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Charts & Deflections

• beam charts

– solid line is most economical

– dashed indicates there is another more economical section

– self weight is NOT included in Mn

• deflections

– no factors are applied to the loads

– often governs the design

Su2011abn

Design Procedure (revisited)

1. Know unbraced length, material, design method (Ω, φ)

2. Draw V & M, finding Mmax

3. Calculate Sreq’d

or Z

4. Choose (economical) section from section or beam capacity charts

Steel Beams 35Lecture 15

Foundations StructuresARCH 331

)MM( nbu φ≤(Ma ≤ Mn/Ω)

Steel Beams 36

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Beam Charts by Sx (Appendix A)

Page 10: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

10

F2011abn

Beam Charts by Zx

Steel Beams 37

Lecture 18

Foundations Structures

ARCH 331

Su2011abn

Beam Design (revisited)

4*. Include self weight for Mmax

– it’s dead load

– and repeat 3 & 4

if necessary

5. Consider lateral stability

Steel Beams 37Lecture 15

Foundations StructuresARCH 331

Unbraced roof trusses were blown down in 1999 at this project in

Moscow, Idaho.

Photo: Ken Carper

Su2011abn

Beam Design (revisited)

6. Evaluate shear stresses - horizontal

• or

• rectangles and W’s

• general

Steel Beams 38Lecture 15

Foundations StructuresARCH 331

web

maxvA

V

A

Vf ≈=−

2

3

Ib

VQf maxv =−

)VV( nvu φ≤(Va ≤ Vn/Ω)

Vn = 0.6 FywAw

F2008abnSteel Beams 39

Lecture 18

Foundations Structures

ARCH 331

Beam Design (revisited)

7. Provide adequate bearing

area at supports (Pa ≤ Pn/Ω)

(Pu ≤ φPn)

Page 11: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

11

Steel Beams 40

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Beam Design (revisited)

8. Evaluate torsion

• circular cross section

• rectangular

J

Tfv

ρ=

2

1abc

Tfv =

( )vv Ff ≤

Steel Beams 41

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Beam Design (revisited)

9. Evaluate deflections – NO LOAD FACTORS

allowableactualxy ∆≤∆=)(max

F2008abnSteel Beams 42Lecture 18

Foundations Structures ARCH 331

Load Tables & Equivalent Load

• uniformly distributed loads

• equivalent “w”8

2

max

LwM

equivalent=

load for live load deflection limit in RED, total in BLACK

F2008abnSteel Beams 43

Lecture 18

Foundations Structures

ARCH 331

Sloped Beams

• stairs & roofs

• projected live load

• dead load over length

• perpendicular load to beam:

• equivalent distributed load:

α

αcosww ⋅=⊥

αcos

w

.adjw =

Page 12: ARCHITECTURAL S FORM, B DESIGN ARCH 331 DR ...faculty-legacy.arch.tamu.edu/anichols/index_files/...AISC A36 steel, JOM 1998 Steel Beams 4 Lecture 18 Foundations Structures ARCH 331

12

F2008abnSteel Beams 44

Lecture 18

Foundations Structures

ARCH 331

Steel Arches and Frames

• solid sections or open web

http:// nisee.berkeley.edu/godden

Steel Beams 45

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Steel Shell and Cable Structures

Steel Beams 46

Lecture 18

Foundations Structures

ARCH 331

F2008abn

Approximate Depths


Recommended