+ All Categories
Home > Documents > ARKIVOC 2010 (i) 33-97

ARKIVOC 2010 (i) 33-97

Date post: 21-Apr-2015
Category:
Upload: edwar-cortes
View: 119 times
Download: 7 times
Share this document with a friend
65
Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97 ISSN 1551-7012 Page 33 © ARKAT USA, Inc. Tandem in situ generation and 1,5-electrocyclization of N-hetaryl nitrilimines. A facile methodology for synthesis of annulated 1,2,4-triazoles and their acyclo C-nucleosides Ahmad Sami Shawali Department of Chemistry, Faculty of Science, University of Cairo, Egypt E-mail: [email protected] Abstract This review summarizes results of literature reports concerning tandem in situ generation and 1,5-electrocyclization of N-hetaryl nitrilimines reported by us and other research groups from 1960 to mid 2009. It outlines the utility of such reactions as facile synthetic strategy for synthesis of annulated triazoles and their acyclo C-nucleosides. Keywords: Nitrilimines, 1.5-electrocyclization, heterocycles, acyclo C-nucleosides Contents 1. Introduction 2. Fused Azolo-triazoles 2.1. Pyrazolo[5,1-c][1,2,4]triazoles 2.2. Imidazo[2,1-c][1,2,4]triazoles 2.3. Thiazolo[2,3-c][1,2,4]triazoles 2.4. 1,2,4-Triazolo[5,1-c][1,2,4]triazoles 2.5. 1,2,4-Triazolo[3,4-b][1,3,4]oxadiazoles 2.6. 1,2,4-Triazolo[4,3-d]tetrazoles 3. Fused triazolo-azines 3.1. 1,2,4-Triazolo[4,3-a]pyridines 3.2. [1,2,4]Triazolo[1,5-a]pyridines 4. Fused triazolo-diazines 4.1. [1,2,4]Triazolo[4,3-b]pyridazines 4.2. [1,2,4]Triazolo[4,3-a]pyrimidines 4.3. [1,2,4]Triazolo[1,5-a]pyrimidines 4.4. [1,2,4]Triazolo[4,3-a][1,2,4]pyrazines 5. Fused triazolo-triazines
Transcript
Page 1: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 33 ©ARKAT USA, Inc.

Tandem in situ generation and 1,5-electrocyclization of N-hetaryl nitrilimines. A facile methodology for synthesis of annulated

1,2,4-triazoles and their acyclo C-nucleosides

Ahmad Sami Shawali

Department of Chemistry, Faculty of Science, University of Cairo, Egypt E-mail: [email protected]

Abstract This review summarizes results of literature reports concerning tandem in situ generation and 1,5-electrocyclization of N-hetaryl nitrilimines reported by us and other research groups from 1960 to mid 2009. It outlines the utility of such reactions as facile synthetic strategy for synthesis of annulated triazoles and their acyclo C-nucleosides. Keywords: Nitrilimines, 1.5-electrocyclization, heterocycles, acyclo C-nucleosides

Contents 1. Introduction 2. Fused Azolo-triazoles 2.1. Pyrazolo[5,1-c][1,2,4]triazoles 2.2. Imidazo[2,1-c][1,2,4]triazoles 2.3. Thiazolo[2,3-c][1,2,4]triazoles 2.4. 1,2,4-Triazolo[5,1-c][1,2,4]triazoles 2.5. 1,2,4-Triazolo[3,4-b][1,3,4]oxadiazoles 2.6. 1,2,4-Triazolo[4,3-d]tetrazoles 3. Fused triazolo-azines 3.1. 1,2,4-Triazolo[4,3-a]pyridines 3.2. [1,2,4]Triazolo[1,5-a]pyridines 4. Fused triazolo-diazines 4.1. [1,2,4]Triazolo[4,3-b]pyridazines 4.2. [1,2,4]Triazolo[4,3-a]pyrimidines 4.3. [1,2,4]Triazolo[1,5-a]pyrimidines 4.4. [1,2,4]Triazolo[4,3-a][1,2,4]pyrazines 5. Fused triazolo-triazines

Page 2: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 34 ©ARKAT USA, Inc.

5.1. [1,2,4]Triazolo[4,3-a][1,3,5]triazines 5.2. [1,2,4]Triazolo[4,3-b][1,2,4]triazines 5.3. Acenaphtho[1,2-e][1,2,4]triazolo[3,4-c][1,2,4]triazines 6. Fused triazolo-benzoazoles 6.1. [1,2,4]Triazolo[4,3-a]benzoimidzoles 6.2. [1,2,4]Triazolo[3,4-b]-1,3-benzothiazoles 7. Fused triazolo-azolo-diazines 7.1. Pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidines 7.2. [1,2,4]Triazolo[4,3-e]purines 7.3. [1,2,4]Triazolo[3,4-i]purines 8. Fused triazolo-azolo-triazines 8.1. Pyrazolo[3,4-e][1,2,4]triazolo[3,4-c][1,2,4]triazines 8.2. Bis(1,2,4-triazolo)[4,3-b : 4,3-d][1,2,4]triazines 9. Fused triazolo-benzoazines 9.1. [1,2,4]Triazolo[4,3-a]quinolines 9.2. [1,2,4]Triazolo[4,3-a]isoquinolines 10. Fused triazolo-benzodiazines 10.1. [1,2,4]Triazolo[3,4-a]phthalazines 10.2. [1,2,4]Triazolo[4,3-a]quinazolines 10.3. [1,2,4]Triazolo[4,3-c]quinazolines 10.4. 1,2,4-Triazolo[4,3-a]quinoxalines 10.5. Pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidines 11. Fused triazolo-azolo-triazines 11.1. Tris-[1,2,4-triazolo][4,3-a : 4,3-c : 4,3-e][1,3,5]triazines 11.2. [1,2,4]Triazolo[4',3' :2,3][1,2,4]-triazino[5,6-b]indoles 12. Fused triazolo-azolo-diazines 12.1. [1,2,4]Triazolo[4,3,-a]tetrazolo[5,1-c]quinoxalines 13. Fused triazolo-thieno-diazines 13.1. Thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidines 13.2. Thieno[2,3-e][1,2,4]triazolo[3,4-b]pyrimidines 13.3. Cyclohexathieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines 13.4. Cycloheptathieno[3,2-e][1,2,4]triazolo[3,b-b]pyridines 13.5. Naphtho[1',2':4,5]thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidines 14. Fused triazolo-thieno-azino-diazines 14.1. Pyrido[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines 14.2. Quinolino[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines 15. Conclusions 16. References

Page 3: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 35 ©ARKAT USA, Inc.

1. Introduction Basically a nitrilimine 1 is a flexible system of three atoms over which four pi-electrons are distributed. Although one can write seven possible resonance structures for such a system, the 1,3-dipolar sextet structure 1A with its complementary nucleophilic and electrophilic centers will be used throughout this article, although theoretical calculations have indicated that all the octet zwitterionic structure 1B is the most stable contributor to the resonance hybrid.

N N R' N N R'

_+ _

1A

+

1B

R-C R-C

As very authorative reviews1-10 of the chemistry of the precursors of nitrilimines exist, brief sketches will be given here for the various methods of the generation of nitrilimines as depicted below. The various methods used for generation of nitrilimines include: 1. Thermal11-13 and photochemical14-17 extrusion of nitrogen from tetrazoles. 2. Thermal extrusion of carbon dioxide from 1,3,4-oxadiazol-5-ones.18-20 3. Thermal extrusion of sulfur dioxide from 1,2,3,4-oxathiadiazol-2-oxide.21-22 4. Base induced elimination of hydrogen halide from hydrazonoyl halides.23-28 The mechanism of this 1,3-elimination reaction has been studied.26-32 Dehydrohalogenation reaction of the hydrazonyl halides can also be effected by silver nitrate.28, 33,34 5. Oxidation of aldehyde N-acyl or N-heteroaryl-substituted hydrazones with lead tetra-acetate,35-38 iron(III) chloride,39 bromine in acetic acid in the presence of sodium acetate,36, 40-42 trifluroboron-etherate solution in acetic acid.43 Also, nitrilimines can be generated electrolytically by anodic oxidation of aldehyde N-susbtituted hydrazones,37, 44-47 heating them with sulfur,38 nitrobenzene39, 48 or stirring with HNO3 in DMF.49

6. Thermolysis of sodium salt of α-nitrohydrazones.50, 51

7. Photolysis of sydnones.52-59

8. Thermal decomposition of 5-aryl-4-arylazoisoxazoles.60, 61 Nitrilimines having a double bond at the N-terminus are prone towards the 1,5-electrocyclization as depicted in equation 1. If the double bond is a part of the heterocyclic moiety, such 1,5-electrocyclization will lead to fused ring system as shown in equation 2. Nitrilimines having both α,β- and γ,δ-double bonds are also susceptible to 1,7-electrocyclization of the 8-pi electron system to give the respective triazepine, oxadiazepine or thiadiazepine derivatives according to the nature of Z as shown in equation 3.

Page 4: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 36 ©ARKAT USA, Inc.

NN

XR

R'

zN

N

R

R'

z

H

+

-N

N

R

R'

zEq. 1

NN

XRz

NN

Rz

H

+

-N

N

Rz

X = Halogen; Hydrogen

Eq. 2

NN

XR

R'

R''

z

H

+

-

Eq. 3R''

NN

R

R'

z

NN

R'

R R''z

Z =R''N; O; S

Z =R'''N; O; S

2. Fused azolo-triazoles 2.1. Pyrazolo[5,1-c][1,2,4]triazoles 1H-3-Substituted-aryl-6-methyl-7-ethoxycarbonyl-pyrazolo[5,1-c][1,2,4]-triazoles 2 were obtained by the action of lead tetraacetate or bromine in acetic acid on 1H-2-methyl-3-ethoxycarbonyl-4-arylidenehydrazinopyrazole 1.62, 63 Hydrolysis of 2 and decarboxylation of the resulting carboxylic acids gave the corresponding 1H-3-substituted-aryl-pyrazolo-[5,1-c][1,2,4]triazoles 3.63

Page 5: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 37 ©ARKAT USA, Inc.

Br2 / AcOH

or LTA

1 2

conc. H2SO4

heat

3A

a) X = 2-NO2, Y = H; b) X = 4-NO2,Y =H; c) X = 2-Cl, Y=H; d) X = 4-CH3 Y=H; e) X= 2-OCH3,Y=H; f) X=2-OH, Y=H;g) X= 4-OH,Y = H; h) X = 3-OH, Y=H;i) X = 2-OH, Y = 4-OH; j) X = 4-OCH3 , Y = H; k) X = 2-OCH3, Y = 4-OCH3; l) X = 4-OH, Y = 3,5-(t-C4H9)2; m) X = 2-OCH3, Y = H, Brn = 3,5-Br2; n) X = 2-OH, Y = H, Brn = 3,5-Br2; o) X = 4-OH, Y = H, Brn = 3,5-Br2; p) X = 3-OH, Y = H, Brn = 2,4,6-Br3; q) X = 2-OH, Y = 4-OH, Brn = 3,5-Br2; r) X = 4-OCH3, Y = H, Brn = 3-Br, s) X = 2-OCH3, Y = 4-OCH3, Brn = 5-Br.

X

Y

3B

Brn

Ar =

NNH

Me

NH

N

Ar H

COOEt

NH

MeN

NN

Ar

COOEt

N MeN

NNH

Ar

COOEt

N MeN

NNH

ArNH

MeN

NN

Ar

Other pyrazolo[5,1-c][1,2,4]triazoles 5(7) were prepared by either treatment of the hydrazone 4 with bromine in acetic acid in presence of sodium acetate63 or by treatment of the hydrazonoyl chloride 6 with triethylamine.64

Page 6: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 38 ©ARKAT USA, Inc.

4

5(7)

NNH

R-CH=NHN R''

R'

Br2 / AcOH

AcONa

NH

R''

R'N

NN

R

NNH

R-C(Br)=NHN R''

R'

- HBr

6

NNH

R-C(Cl)=NHN

R'

R''Et3N

- HCl

R = OC2H5; Me; COMe; NH(p-MeOC6H4)

R'' = H; COOEt

R' = H; Me

2.2. Imidazo[2,1-c][1,2,4]triazoles Imidazo[2,1-c][1,2,4]triazoles 9 were prepared by Scott et al65, 66 via heating the hydrazonoyl chloride 8 in aqueous dioxane containing catalytic amount of triethylamine.

N

NH

NHN=C(Cl)Ar

NH

N

NN

Ar

89

Et3N

- HCl

Ar = 4-XC6H4 X = H; CH3; i-C3H7; Cl; Br; NO2

2.3. Thiazolo[2,3-c][1,2,4]triazoles Treatment of the acid hydrazide 10 with POCl3 gives the hydrazonoyl chloride 11A. The latter was reported to undergo, upon treatment with a base, in situ tandem dehyrochloronation and 1,5-electrocyclization of the resulting nitrilimine to yield the corresponding thiazolo[2,3-

Page 7: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 39 ©ARKAT USA, Inc.

c][1,2,4]triazoles 12.67-69 Also, bromination of the hydrazone 13 afforded the hydrazonoyl bromide 11B which underwent in situ dehydrobromination to yield the respective thiazolo[2,3-c][1,2,4]triazoles 14.

N

S NHNHCOR

S

N

NN

R

N

S NH

N

RBr

Br

N

S NN

R

Br

N

S NHN=CHR

S

N

NN

R

Br

N

S NH

N

RClN

S NN

R

Br2

POCl3

12

13

- HCl

+

_

- HBr

+

_11A

11B10

14R = CH3; Ph

2.4. 1,2,4-Triazolo[5,1-c][1,2,4]triazoles Treatment of aldehyde N-(1,2,4-triazol-3-yl)hydrazones 15 with lead tetraacetate gave a mixture of 3-aryl-6-phenyl-1,2,4-triazolo[5,1-c][1,2,4]triazoles 17 and the N-acetylated hydrazide 16.35,

70-71

Page 8: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 40 ©ARKAT USA, Inc.

NH

NN

Ph

NHN=CHAr

NH

N

Ph

N

NN

Ar

NH

NN

Ph

N-NHCOArAc

NH

NN

Ph

NN

Ar

NN

Ph

N

NNH

Ar

LTA

15

17

16

Ar = Ph; p-MeOC6H4; p-ClC6H4; P-NO2C6H4; m-NO2C6H4; p-MeC6H4; p-BrC6H4

+

_+

Treatment of the hyrazonoyl bromide 18 with bases was reported to give a mixture of 3-aryl-6-phenyl-1,2,4-triazolo[5,1-c][1,2,4]triazoles 19 and 3-aryl-5-phenyl-1,2,4-triazolo[3,4-c][1,2,4] triazoles 20 with the former being predominant products.72 However, treatment of 18 with sodium acetate in acetic acid yielded mainly 19 as end products.73

NN

NH

NHN=C(Br)ArPh

Base

-HBr

NN

NH

Ph N-N=C-Ar

+_

18

N

NH

Ph

N

NN

Ar

19

+

NH

N

Ph N

NN

Ar20

Ar = Ph; p-MeOC6H4; p-ClC6H4; P-NO2C6H4; m-NO2C6H4; p-MeC6H4; p-BrC6H4; p-(CH3)2CH-C6H4.

Page 9: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 41 ©ARKAT USA, Inc.

Similiar treatment of 21 with a base forces the cyclization to take place at the less nucleophilic N-4 to give 1,2,4-triazolo[4,3-c][1,2,4]triazoles 22.74

NN

N NHN=C(Cl)ArPh

RNN

NPh

R

NN

Ar

NN

Ph N

NN

Ar

R

Base

-HCl

+

_

21

22Ar = Ph; p-ClC6H4; p-MeC6H4; p-MeOC6H4; p-NO2C6H4

R = H; CH3

2.5. 1,2,4-Triazolo[3,4-b][1,3,4]oxadiazoles 1,2,4-Triazolo[3,4-b][1,3,4]oxadiazoles 25 have been prepared by treatment of the hydrazonoyl bromides 23 with triethylamine.75, 76 The same products were also obtained by oxidative cyclization of the parent hydrazones 24 by heating them in nitrobenzene.48

NN

O NHN=C(Br)ArPh

NN

O NHN=CHArPh

23

NN

OPh NN

Ar

+_

24

Base - HBr - H2

N

OPh

N

NN

Ar

25

Ar = Ph; p-ClC6H4; m-BrC6H4; p-BrC6H4; p-NO2C6H4

Page 10: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 42 ©ARKAT USA, Inc.

2.6. 1,2,4-Triazolo[4,3-d]tetrazoles Treatment of N-(tetrazol-5-yl)hydrazones 26 with bromine in acetic acid in the presence of sodium acetate afforded the respective 1,2,4-trizolo[4,3-d]tetrazole derivatives 28 via in situ 1,5-electrocyclization of the respective nitrilimines generated from dehydrohalogenation of the hydrazonoyl bromide 27. Attempts to prepare 28 by oxidative cyclization of the hydrazone 26 with lead tetraacetate gave a mixture of 28 and the N-acetyl derivatives 30 of the parent hydrazones.77-81

N

NNN NHN=CHAr

Me

Pb(OAc)4Br2/AcOH

N

NNN NHN=C(Br)HAr

Me

N

NNN

Me

N(Ac)N=CHAr + 28

NaOAc

N

NNN

Me

NN

Ar

_

+

N

NN

NN

N

Ar

Me

28

26

30 27

Ar = Ph; p-ClC6H4; p-BrC6H4; 2-thienyl

3. Fused triazolo-azines 3.1. 1,2,4-Triazolo[4,3-a]pyridines Aldehyde N-(pyrid-2-yl)hydrazones 31 have been cyclized into the respective 1,2,4-triazolo[4,3-a]pyridine derivatives 32 upon chemical oxidation with either lead tetraacetate,35,38,82,83 ferric chloride,39, 83 iodobenzene-diacetate (IBD),84 CuCl2

85 or mercuric acetate.86 Also treatment of 31 with either bromine in acetic acid in presence of sodium acetate,40, 83 sulfur38 or with boron trifluride etherate in acetic acid43 gave the respective 32. An evidence was presented to indicate that such conversion proceeds via the initial formation of nitrilimines as intermediate which then undergo 1,5-electrocyclization to give 32 as end products.22, 87,88 The latter products were also

Page 11: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 43 ©ARKAT USA, Inc.

obtained by either anodic oxidation of the parent hydrazones 31 or by refluxing them in nitrobenzene.39, 44

N NHN=CHR N

NN

R

N

N

N

R

i

3132

R = Ph; 4-MeC6H4; 2-MeOC6H4; 4-MeOC6H4; 3-NO2C6H4; 4-NO2C6H4; 4-BrC6H4; 4-ClC6H4; 2-ClC6H4; 2,4-Dichlorophenyl; 3,4-Methylenedioxyphenyl; 2-Carboxyphenyl; 2-Hydroxyphenyl; Furyl.

i = Pb(OAc)4 ; IBD / CH2Cl2; FeCl3; Br2 / AcOH / AcONa; CuCl2 or BF3-etherate.

-

+

Nitrilimines generated by thermolysis of 3-(2-pyridyl)tetrazole 33 yielded 1,2,4-trizolo-[4,3-a]pyridine 34.89

N

NN

NN

O2N

Ph

N

O2N

N

N

Ph

O2N

N

NN

Ph

heat

- N2

34

33

+

_

Recently, it was reported that treatment of aldose N-(2-pyridyl)hydrazones 35 with bromine in methanol resulted in the formation of the respective 3-(polyhydroxyalkyl)-1,2,4-triazolo-[4,3-a]pyridine derivatives 36.90 Acetylation of the latter acyclo C-nucleosides afforded the acetylated derivatives 37.90

Page 12: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 44 ©ARKAT USA, Inc.

N NHN=CHR N NH

NBr

R

N N

N

R

Br2 / MeOH

NaOAc

N

NN

R

N

NN

R'

Ac2O

pyridine

+

R = HOCH2-(CHOH)n R' = AcOCH2-(CHOAc)n

35

3637

- HBr _

n = 4, 5

NaOAc

3.2. [1,2,4]Triazolo[1,5-a]pyridines Reaction of 5-(β-D-ribofuranosyl)tetrazols 39 with 2-chloro-3-nitropyridine 38 gave a mixture of 1,2,4-triazolo[4,3-a]pyridin-3-yl 41 and 1,2,4-triazolo[1,5-a]pyridin-2-yl 42 C-nucleosides. The product 41 is formed via in situ 1,5-electrocyclization of the initially formed nitrilimines, whereas the product 42 resulted from thermally induced Dimroth like rearrangement of 41.91 Treatment of each of 41 and 42 with sodium methoxide in methanol resulted in deprotection of the sugar residue and the formation of C-nucleoside 41b and 42b respectively.91 The acyclic C-nucleoside 41 and 42 were also obtained by thermolysis of the respective acyclonucleosides 40.91

Page 13: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 45 ©ARKAT USA, Inc.

N N

N N

NR

NO2

N N

N

R

NO2

N

NN

R

NO2

O

OXXO

XO

XOO

N Cl

NO2

N N

NNH R

NN

N

R

NO2

NN

N

R'

NO2

N

NN

R'

NO2

heat

- N2+

4142

R, R'

R : X = PhOR': X = H

heat40

heat

38

39

42b 41b

NaOCH3 / MeOHNaOCH3 / MeOH

_

a

b

4. Fused triazolo-diazines 4.1. 1,2,4-Triazolo[4,3-b]pyridazines Aldehyde N-(pyridazin-3-yl) hydrazones 43 yielded the respective 1,2,4-triazolo[4,3-b]pyridazines 44 upon treatment with bromine in acetic acid92-93 or lead tetraacetate (LTA).92 The latter products were formed via in situ 1,5-electrocyclization of the corresponding

Page 14: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 46 ©ARKAT USA, Inc.

nitrilimines. It is interesting to find that similar oxidative cyclization of the hydrazones 45 with lead tetraacetate afforded 6-azido-1,2,4-triazolo[4,3-b]pyradazines 46.94

NN

NHN=CHR

NN

NN

R

NN

R

NN

NNN

NN3

R

NN

NNN

NHN=CHR

43a +

_

[O]

44a

[O]

45 46

R = Me; Ph

When a solution of each of the hydrazones 43b was refluxed with CuCl2 in dimethylformamide (DMF), the respective 6-chloro-3-(4-chlorophenyl)-[1,2,4]triazolo[4,3-b]pyridazines 44b were produced in 62-70% yields.95 In addition, it was reported that aldehyde N-(pyridazin-3-yl)hydrazones 43c have been cyclized upon treating with any of the oxidizing agents including: Pb(OAc)4, Br2 / Na2CO3, FeCl3, NaOCl or Pd / C.96, 97

Page 15: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 47 ©ARKAT USA, Inc.

NN NHN=CHAr

RN

N

NN

Ar

R

R

i

i = Pb(OAc)4 ; Br2 / Na2CO3 ; FeCl3; NaOCl; CuCl2 / DMF or Pd / C

44b(44c)43b(43c)

Ar = 4-ClC6H4 ; 3,4-(MeO)2C6H3

43b, 44b

43c, 44c H

Cl

Also, treatment of the hydrazones 43d(43e) with bromine in methanol afforded the corresponding (2R,3S)-3-(6-chloro-1,2,4-triazolo[4,3-b]pyridazine-3-yl)-2,3-diacetoxypropanoic acid methyl ester 44d(e) and (2R,3S)-3-(6-phenyl-1,2,4-triazolo[4,3-b]pyridazine-3-yl)-2,3-diacetoxy-propanoic acid methyl ester 44e.98

NN

R

NHN=CHR' Br2

MeOHNR

NN

N

R'

R : d, Cl; e, Ph

43d(43e)

R' = MeOCO(CHOAc)2

44d(44e)

Treatment of aldose N-(pyridazin-3-yl)hydrazones of the cyclic sugars 45 with bromine in methanol in the presence of sodium acetate at room temperature yielded the respective 1,2,4-triazolo[4,3-b]pyridazines 46, respectively.99 Oxidative cyclization of the hydrazone 45 with lead tetraacetate (LTA) in methylene chloride at room temperature afforded also the C-nucleoside 46.99

Page 16: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 48 ©ARKAT USA, Inc.

NN

NN

RCl

NNCl

NHN=CHR

OCH2Ph

OO

O OO

OCH3MesO

OO

O

O

OO

O

O

NNCl

NN

R

NNCl

NH

N

RBr

NNCl

NN

R

46

45

Br2 / MeOH

a b c d

NaOAc

- HBr

_

+

_

+LTA

4.2. 1,2,4-Triazolo[4,3-a]pyrimidines Aldehyde N-(4,6-dimethyl-2-pyrimidinyl)hydrazones 47 gave, upon treatment with lead tetraacetate100, 101 or with iodobenzene diacetate in dichloromethane102 the respective 3-aryl-5,7-dimethyl-1,2,4-triazolo[4,3-a]pyrimidines 48. In addition, 3-aryl-[1,2,4]triazolo[4,3-a]pyrimidines 48b were formed by refluxing the parent hydrazones 47b with CuCl2 in DMF.85

N

N

R

R NHN=CHAr

N

N

R

R N

N

Ar N

R

R N

NN

Ar48

47

+

_i

i = Pb(OAc)4 ; CuCl2 /DMF; or iodobenzene diacetate

Ar = p-ClC6H4 ; m-ClC6H4 ; p-MeC6H4 ; p-(ON2)C6H4 ; m-(ON2)C6H4 ; 3,4,-(MeO)2C6H3 ; 3,4,5-(MeO)3C6H2; 2-thienyl ; 2-pyridyl ; 3-pyridyl ; 4-pyridyl

R

CH3 H

47, 48

ab

Page 17: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 49 ©ARKAT USA, Inc.

Treatment of 2-phenylidenehydrazino-6-methylpyrimidine-4(1H)-one 49 with lead tetraacetate may theoretically afford 3-phenyl-7-methyl-1,2,4-triazolo[4,3-a]pyrimidin-5-one 50 and / or 3-phenyl-5-methyl-1,2,4-triazolo[4,3-a]pyrimidin-7-one 51. Practically, however, the reaction furnished one product which was assigned structure 50 by Bower and Doyle35 and 51 by Allen et al.103 The latter authors rationalized their conclusion on the basis of obtaining 51 also from the reaction of 3-amino-5-phenyl-1,2,4-triazole 52 with ethyl acetoacetate. Evidently, this rationale is irrelevant since the last reaction may also yield 50.103

N

N

O

H

Me NHN=CHPh

N

O

H

Me

N

NN

PhO

Me

N

N

NN

H

Ph

N

N

O

H

Me N-N=C-Ph

NNNH

NH2

Ph

and / or

5051

MeCOCH2COOEt

- EtOH, H2O

49

52

+-LTA

Oxidative cyclization of 2-(arylidenehyrazino)-6-methylpyrimidin-4-one 53 with bromine in acetic acid took place with concomitant bromination of pyrimidine ring to form the respective 1,2,4-triazolo[4,3-a]pyrimidin-5-one 54.104

Page 18: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 50 ©ARKAT USA, Inc.

NH

N

O

Me NHN=CHAr

N

O

H

Me

N

NN

ArBr

NH

N

O

Me

Br

NH

N

ArBr

NH

N

O

Me

Br

NN

Ar

54

Br2 / AcOH

53

Ar = Ph; p-MeOC6H4; p-ClC6H4 ; m-N(CH3)2C6H4

NaOAc

- HBr

+

_

Refluxing the hydrazones 55 with lead tetraacetate in AcOH yielded the corresponding [1,2,4]triazolo[4,3-a]pyrimidines 56.105

NH

O

NCN

NN

Ar

Ph

NH

N

NHN=CHAr

O

NC

Ph

LTA

NH

N

O

NC

Ph NN

Ar

55

56

Ar = XC6H4

X = H; 4-NO2; 4-Cl, 2-HO; 4-MeO; 4-Me2N

+

_

Oxidative cyclization of 57 with FeCl3 gave 58. When the cyclization of 57 was carried out with Br2 in acetic acid, it gave 59 as a major product in addition to 58 as minor product. The product 59 resulted from Dimroth rearrangement of the initially formed 58. The latter was also converted into 59 by heating with KOH in ethanol.106

Page 19: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 51 ©ARKAT USA, Inc.

NH

O

Ph

NCN

N

NPh

NH

N

O

Ph

NC

NN

Ph

NH

N

NHN=CHPh

O

Ph

NC

NH

O

Ph

NCN

NN

Ph

FeCl3EtOH

58

59

+

_

KOH / Ethanol

57

Br2 / AcOH+

58

However, similar treatment of the hydrazones 60 with Br2/AcOH was reported to give the Dimroth rearrangement products 62 directly as end product.106 On the other hand, the cyclization of 60 with thionyl chloride gave 61 as the major isolated products. Partial Dimroth rearrangement has taken place during this cyclization, where 62 were formed as by products.

N

NR

NHN=CHAr

O

Ph

NC

NR

O

Ph

NC

N

NN

Ar

NR

O

Ph

NC

NN

N

Ar

SOCl2

Br2 / AcOH NR

O

Ph

NC

N

NN

Ar

60

61

62

R = Me; n-BuAr = XC6H4X = H; 4-NH2

+ 62

61

Page 20: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 52 ©ARKAT USA, Inc.

Also, oxidative cyclization of the hydrazones 57 with ferric chloride gave 59 as end product via Dimroth rearrangement of the initially formed 1,2,4-trazolo[4,3-a]pyrimidine derivative 58. Methylation of 59 with MeI gave the product 63 which was found different from the product 62 which was produced by oxidation of 57b. Similar oxidation of 64 with FeCl3 afforded 66 via Dimroth rearrangement of the initially formed product 65.107 In this latter case the reaction seem to proceed via intramolecular addition of NH to the C=N double bond, followed by oxidation of the initially formed adduct.

NH

N

NHN=CHPh

O

NC

Ph NH

O

NCN

NN

Ph

Ph

NH

O

NCN

N

NPh

Ph

N

N

NHN=CHPh

O

NC Me

Ph

N

O

NC

N

NN

Me

Ph

Ph

N

O

NC

NN

N

Ph

Me

Ph

N

O

NCN

N

NPh

MePh

N

NH

N-N=CHPh

O

NC

Ar

Ph

N

O

NCN

NN

Ph

ArPh

N

O

NCN

N

N

Ar

Ph

PhN

O

NCN

NNH

Ph

ArPh

H

- H2

NH

N

O

NC

Ph NN

Ph

N

N

O

NC Me

Ph N

N

Ph

FeCl3

57 58

59

62

MeI

63

FeCl3

64

65 66

Ar = 4-MePh

57b

+

_

+

_

FeCl3

Page 21: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 53 ©ARKAT USA, Inc.

Oxidative cyclization of the hydrazones 67 with FeCl3 in ethanol gave the corresponding 68.108

N

N

NHPh

NHN=CHAr

Me

N NHPhMe

N

NN

Ar

N

N

NHPhMe

NN

Ar

FeCl3

Ar = 4-XC6H4; X = Cl; MeO

67

68

+

_

Attempts to cyclize the hydrazones 69 via treatment with an excess of Br2 in AcOH in presence of NaOAc gave the corresponding 8-bromo-1,2,4-triazolo[4,3-c]pyrimidines 70.108

N

N

SMe

NHN=CHAr

Me

Br

N SMeMe

N

NN

ArBr

N

N

SMe

NHN=C(Br)Ar

Me

Br

N

N

SMe

N-N=C-Ar

Me

Br

Ar = 4-XC6H4; X = Cl; NO2

69

70

Br2

AcOHNaOAc

- HBr

+_

Bitha et al109 reported that pyrimidino[1,2-b][1,2,4,5]tetrazin-6-ones 71 underwent acid catalyzed ring contraction via 1,5-electrocyclization of the generated nitrilimines to give 1,2,4-triazolo[4,3-a]pyrimidin-7-ones 72.

Page 22: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 54 ©ARKAT USA, Inc.

O

N

R''

R'

N

NN

N R'''O

N

R''

R'

N

N

NH2

N

R'''

O

R''

R'

N

N

NN

R'''

NH2

H

H

AcOH

heat -

+71

72

R'= Me; Ph

R'' / R''' = H / Me A number of 3-(alditol-1-yl)-5-methyl-7-oxo[1,2,4]triazolo[4,3-a]pyrimidines 74 were synthesized by oxidative cyclization of the respective aldose (pyrimidin-2-yl)hydrazones 73 with bromine in water.110 The other regioisomeric structure was eliminated based on finding that acetylation of 74 afforded the same acetylated acyclo C-nucleoside 76 as those obtained by oxidative cyclization of the hydrazones 75.110 Treatment of 76 with methanolic ammonia resulted in deprotection of the sugar residue and the formation of 77. It was possible to avoid nuclear bromination of 73 and 75 by performing the reaction in the absence of light.

N

NH

O

Me NHN=CH-R

O

Me

NH

N

NN

R

O

Me

N

N

NN

Ac

R'N

N

O

Me NHN=CH-R'

Ac

N

NH

O

Me NH

N

R

Br

O

Me

N

N

NN

Ac

R

Br2 / H2O

73

Ac2O / py

75

74

76

Br2 / AcONa

AcOH

R = HOCH2-(CHOH)n R' = AcOCH2-(CHOAc)n

Ac2O / pyridine

77

NH3

MeOH

n = 3, 4

- HBr

Page 23: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 55 ©ARKAT USA, Inc.

Similarly, it was indicated that poly-O-acetyl-adehydo sugar (3-acetyl)4-oxo-6-phenyl-pyrimidin-2-yl)hydrazones 75A undergo oxidative cyclization with bromine in acetic acid in the presence of sodium acetate to give the respective 8-acetyl-3-(poly-O-acetyl-alditol-1-yl)-7-oxo-5-phenyl-1,2,4-triazolo[4,3-a]pyrimidines 76A.111 Deacetylation of the latter 76A with ammonium hydroxide in methanol gave the corresponding 3-(alditol-1-yl)-7-oxo-5-phenyl-1,2,4-triazolo[4,3-a]pyrimidines 77A.

O

N

N

NN

Ac

R'

PhN

N

O

NHN=CH-R'

Ac

Ph

O

N

N

NN

Ac

R

Ph

75A

76A

Br2 / AcONa

AcOH

R = HOCH2-(CHOH)n R' = AcOCH2-(CHOAc)n

77A

NH3

MeOH

n = 3, 4 Also, it was indicated that adehydo-sugar 4-oxo-6-phenyl-pyrimidin-2-yl)hydrazones 75B undergo oxidative cyclization with bromine in water to give the respective 3-(alditol-1-yl)-7-oxo-5-substituted-1,2,4-triazolo[4,3-a]pyrimidines 76B.112 Similar treatment of 75B with bromine in acetic acid in the presence of sodium acetate followed by acetic anhydride gave the polyacetyl derivative 76B whose deacetylation with ammonium hydroxide in methanol gave the corresponding 3-(alditol-1-yl)-7-oxo-5-phenyl-1,2,4-triazolo[4,3-a]pyrimidines 77B.112

Page 24: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 56 ©ARKAT USA, Inc.

O

N

N

NN

Ac

R'

R"N

N

O

NHN=CHR

H

R"

O

N

N

NN

Ac

R

R"O

N

N

NN

H

R

R"

75B

76B

Br2 / AcONa/ AcOH

R = HOCH2-(CHOH)n

R' = AcOCH2-(CHOAc)n

77C

NH3

MeOH

n = 3, 4

1)

2) Ac2O

77B

Br2 / HOH

Thermolysis of tetrazole derivative 79, prepared from 2-chloro-4,6-disubstituted-pyrimidine 78 and 5-(2,3,5-tri-O-benzoyl-B-D-ribofuranosyl)-tetrazole 5, afforded the respective 1,2,4-triazolo[4,3-a]pyrimidine C-nucleoside 80.113

N

N

Cl

R

R

NN

NN

R'

H

NNN N

R'

N

N

R

R

OAcO

OAc OAc

OAcO

OBz

OBz

OBz

N

N

R

R N

N

R'

N

R

R N

NN

R'

+- HCl

- N2

b,R' : a,

R = H, Me

79

heat

78

_

+80

Page 25: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 57 ©ARKAT USA, Inc.

Hydrazones 81, derived from aldose monosaccharides and 2-hydrazinopyrimidine gave, upon oxidative cyclization with bromine in methanol, the corresponding 3-(alditol-1-yl)-1,2,4-triazolo[4,3-a]pyrimidines 82.98

N

N

NHN=CHR

Br2 / MeOH

N

N

NN

R

N

N

NN

R

R = HOCH 2-(CHOH) 4

81

82

+

_

4.3. [1,2,4]Triazolo[1,5-a]pyrimidines Treatment of the aldose hydrazones 83 with ferric chloride in ethanol was reported to give the acyclo C-nucleosides 85 and not the isomeric nucleosides 86. It seems in this case the initially formed 1,2,4-triazolo[4,3-a]pyrimidines 84 underwent in situ Dimroth rearrangement to give 85 as end products. Periodate oxidation of 83 afforded the aldehydes 87.114, 115

Page 26: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 58 ©ARKAT USA, Inc.

NH

N

O

NHN=CHRAr

NC

NH

O

Ar N

NN

R

NC

N

O

Ar N

HNC

NHN=CH-CHOO

Ar NH

NCN

NN

R

NaIO4

O

Ar NH

NCN

N

NR

NH

N

O

Ar

NC

NN

R

83

8684

87

85 R = (CHOH) n-CH 2OH

+

_

FeCl3 / EtOH

n = 3, 4 4.4. 1,2,4-Triazolo[4,3-a][1,2,4]pyrazines Nitrilimines, generated in situ by oxidation of aldehydes N-(pyrazin-2-yl)hydrazones 88 with lead tetra-acetate or dehydrohalogenation of the hydrazonyl chlorides 89, underwent 1,5-electrocyclization to afford the respective 1,2,4-triazolo[4,3-a][1,2-4]pyrazines 90.116

Page 27: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 59 ©ARKAT USA, Inc.

N

N NHN=CHR'R

R

N

N NHN=C(Cl)R'R

R

N

NR

R

N

N

R'

N

R

R

N

NN

R'

LTA

Base

+

90

88

89 R = H; Me; Ph

R' = H; Me; C2H5

-HCl

_

5. Fused triazolo-triazines 5.1. 1,2,4-Triazolo[4,3-a][1,3,5]triazines Nitrilimines derived from oxidative dehydrogenation of aldehyde N-(4,6-disubstituted-1,3,5-triazin-2-yl)hydrazones 91a with lead tetraacetate gave only 92a because of the symmetry of 91a.100, 117, 118 Also, treatment of aldehyde N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)hydrazones 91b with lead tetraacetate gave 92b only as a result of cyclization with the more nucleophilic nitrogen adjacent to the more electron-releasing methoxy group.118

Page 28: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 60 ©ARKAT USA, Inc.

N N

N NHN=CHPhR

R'

N

N

NN

N

R'

R

Ph

N N

NR

R'

NN

Ph

LTA

91

92R / R'

MeO / MeOMe / MeO

a b

-

+

The hydrazone 91c underwent cyclization upon treatment with lead tetraacetate in CH2Cl2 to yield [1,2,4]triazolo[4,3-a][1,3,5]triazine 92c. The latter product underwent Dimroth rearrangement upon heating in MeOH-NaOH to give 1,2,4-triazolo[1,5-a][1,3,5]triazine 93 in 95% yield.119

N

N

N

NHN=CHPhMe2N

NMe2

N

NMe2N

NMe2

N

NN

Ph

N

NMe2N

NMe2

N

N

NPh

N

N

N

Me2N

NMe2

NN

Ph

LTA

CH2Cl2

NaOH / MEOH

Reflux

93

91c

92c

+

_

5.2. 1,2,4-Triazolo[4,3-b][1,2,4]triazines

Oxidative cyclization of the hydrazone derivatives of the aldose monosaccharides 94 and concurrent acetylation was reported to occur upon treatment with bromine in acetic acid in the presence of sodium acetate and acetic anhydride and yielded products that were assigned the

Page 29: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 61 ©ARKAT USA, Inc.

structure of 6,7-diphenyl-1,2,4-triazolo[4,3-b][1,2,4]triazine acyclo C-nucleosides 95 and not the isomeric structure 97.120 Deacetylation of 95 yielded 96.

N

NN

NHN=CHR

Ph

Ph

N

NPh

Ph

N

NN

R'

NaOAc

N

NPh

Ph

N

NN

RN

NPh

Ph N

NN

R'

N

NNPh

Ph NN

R'

Br2 / AcOH / Ac2O

NH3

MeOH

94

979596

R = (CHOH) n-CH2OH R' = (CHOAc) nCH2OAc n = 3, 4

+

_

5.3. Acenaphtho[1,2-e][1,2,4]triazolo[3,4-c][1,2,4]triazines Oxidative cyclization of the hydrazone derivatives of aldose monosaccarides 98 was reported to occur upon treatment with ethanolic ferric chloride and provided 1-(alditol-1-yl)acenaphtho[1,2-e][1,2,4]triazolo[3,4-c][1,2,4]triazines 99. The cyclization occurred at N4 rather than N2 of the 1,2,4-triazine ring.121

Page 30: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 62 ©ARKAT USA, Inc.

N

NN

NHN=CHR

NN

N

NN

R

N

NN

N

N

R

FeCl3, Ethanol

98

99R = (CHOH) n-CH 2OHn = 3, 4

+

_

6. Fused triazolo-benzoazoles 6.1. 1,2,4-Triazolo[4,3-a]benozimidazoles Treatment of the hydrazonoyl chlorides 100 with a base furnished 3-substituted 1H-1,2,4-triazolo[4,3-a]benzoimidazoles 101.122

NH

NNHN=C(Cl)R

NH

NNN

R

Et3N

-HCl

100 101 6.2 1,2,4-Triazolo[3,4-b]-1,3-benzothiazoles Bower and Doyle123 reported that treatment of aldehyde N-(benzothiozole-2yl)hydrazones 102 with lead tetraacetate gave 3-aryl-1,2,4-triazolo[3,4-b]-1,3-benzothiazoles 103 via tandem generation and electrocyclization of nitrilimines.83, 124, 125 In addition, the latter conversion has been affected by other reagents such as FeCl3 in ethanol,126, 127 bromine in acetic acid and bromine in presence of sodium carbonate.128

Page 31: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 63 ©ARKAT USA, Inc.

S

N

NHN=CH-Ar S

N

NN

Ar

S

N

N

N

Ar

i+

i = a) Pb(OAc)4; b) FeCl3/EtOH; c) Br2/AcOH; or d) Br2/Na2CO3

102

103

_

Ar = p-BrC6H4; p-O2NC6H4 The hydrazonoyl chloride 104, prepared by the reaction of POCl3 on the hydrazide in DMF, cyclizes in situ to give the respective 1,2,4-triazolo[4,3-b]-1,2-benzothiazoles derivative.129 Also, 3-substituted-1,2,4-triazolo[4,3-b][1,2]benzothiazole-5,5-dioxide 106 (R = Me) was obtained upon thermolysis of 105, prepared by reaction of 3-chloro-1,2-benzothiazole-1,1-dioxide with methyltetrazole in presence of pyridine.130 Although no mechanistic rationalization was indicated, the formation of the latter products 106 may result via tandem generation and electrocyclization of the respective nitrilimine.

SN

N N

R

O O

SN

N NNN

R

OO

SN

NN

O OR

NHN=C(Cl)R

SN

OO

- HCl

+

104

105

R = Ph; Me

10672

-N2

_

Page 32: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 64 ©ARKAT USA, Inc.

7. Fused triazolo-azolo-diazines 7.1. Pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidines The hydrazones 107 were reported to cyclize upon treatment with 70% nitric acid to afford the corresponding 5-substituted-7H-pyrazolo[4,3-e]-1,2,4-triazolo[4,3-c]pyrimidines 108.49

NH

NN

NH O

NHN=CHR

NH

N

NH O

N

NN

R70% HNO3

R = Me; n-C7H15; Ph; p-FC6H4; p-ClC6H4; p-MeC6H4; p-MeOC6H4; p-NO2C6H4

107 108

Recently Shawali et al prepared a series of pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]-pyrimidines 113 via oxidative cyclization of aldehyde N-(1,3-diphenylpyrazolo-[3,4-d]pyrimidin-4-yl)hydrazones 112.134 The required aldehyde N-(1,3-diphenylpyrazolo[3,4-d]pyrimidin-4-yl)hydrazones 112 were prepared by condensation of the appropriate aldehydes 111 with 1,3-diphenyl-4-hydrazino-pyrazolo[3,4-d]-pyrimidine 110 . The latter was prepared by Dimroth type rearrangement of 5-amino-1,3-diphenyl-4-imino-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidine 109 via its treatment with excess hydrazine hydrate at room temperature.134 Dimroth rearrangement of 113 such a series yielded pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines 114.

Page 33: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 65 ©ARKAT USA, Inc.

NN N

N

NHNH2Ph

Ph

NN N

N

NHPh

Ph

NH2

NN N

N

NHN=CHRPh

Ph

NN N

Ph

Ph

N

NNR

NN N

Ph

Ph

NN

NR

ii

iii

i

iv

109

110 112

113

114

Reagents: i, H2NNH2.H2O / RT; ii, FeCl3 / EtOH / RT; iii, MeCOONa / heat; iv, RCOCl, (RCO)2O or RCOOH.

R = a) C6H5; b) 4-MeC6H4; d) 4-MeOC6H4; e) 4-O2NC6H4; f) 4-Me2NC6H4; g) PhCH=CH-; h) 1-Naphthyl; i) 2-furyl; j) 2-thienyl; k) CH3; l) H.

RCHO

111

7.2. 1,2,4-Triazolo[4,3-e]purines Stirring the hydrazone 115 with either CuCl2 in warm DMF at 100o or bromine in acetic acid yielded 3-substituted-5,7,9-trimethyl-5,9-dihydro[1,2,4]triazolo[4,3-e]purine-6,8-dione 116. 95, 135

N

N

N

N

O

OMe

NHN=CHR

MeMe N

N

N

O

OMe

MeMe

N

NN

R115

116

R = Ph; p-MeOC6H4 ; p-BrC6H4 ; p-ClC6H4 ; P-NO2C6H4 ; m-NO2C6H4 ; p-MeC6H4 ; 2-Thienyl

i = CuCl2 / DMF; Br2 / AcOH

i

Page 34: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 66 ©ARKAT USA, Inc.

7.3. 1,2,4-Triazolo[3,4-i]purines Oxidative cyclization of the hydrazones 117 was accomplished by heating with lead tetraacetate in anhydrous dioxane to afford the corresponding 5-Iodo-7-(2',3',5'-tri-O-acetyl-β-ribofuranosyl)-7H-[1,2,4]triazolo[3,4-i]purine derivatives 118.136 The latter products were also obtained by refluxing 117 with diethyl azodicarboxylate in acetonitrile.137

ON

NN

N I

OAcAcO

AcO

NHN=CHR

ON

N

N I

OAcAcO

AcO

N

NN

RLTA

Dioxane

R = H; Ph; p-F-C6H4; p-Cl-C6H4; p-Br-C6H4; p-Me-C6H4; p-MeO-C6H4; p-O2N-C6H4; 3,4-OCH2O-C6H3

117 118

Heating the hydrazones 119 with diethyl azidicarboxylate (DEAD) in acetonitrile at reflux for 5-10 h afforded the respective 5-iodo-7-(2',3',5'-tro-O-acetyl-B-ribofurano-5-yl)-7H-[1,2,4]triazolo[3,4-i]purines 120. The latter could also be obtained by heating 119 with lead tetraacetate in anhydrous dioxane.137

N

N

N

N

NHN=CHR'

I

R

N

N

I N

NN

N

R

R'

O

OAcAcO

AcO119 120

R = H, Me, Ph; XC6H4 ; X = 4-MeO; p-Br; p-Cl ; p-O2N; m-O2N; 4-Me; 4-F

i = DEAD / MeCN / heat

i

or ii

ii = Pb(OAc)4 / dioxane / heat R' =

Page 35: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 67 ©ARKAT USA, Inc.

8. Fused triazolo-azolo-triazines 8.1. Pyrazolo[3,4-e][1,2,4]triazolo[3,4-c][1,2,4]triazines Reaction of aldehyde (7-methyl-5-phenyl-5H-pyrazolo[3,4-e][1,2,4]-triazin-3-yl)hydrazones 121 with SOCl2 at reflux afforded the corresponding 1-phenyl-8-aryl-1H-pyrazolo[3,4-e][1,2,4]-triazolo[3,4-c][1,2,4]triazines 122.138

NN N

NNMe

NHN=CHArPh

NN

NNMe

PhN

NN

Ar

NN

NNMe

Ph

N

NNAr

H S O

Cl

SOCl2

- HCl, - SO

Ar = XC6H4X = H; 2-Br; 2-HO; 4-MeO; 2-O2N

122

SOCl2

121

8.2. Bis(1,2,4-triazolo)[4,3-b:4,3-d][1,2,4]triazines Treatment of aldehyde N-(1,2,4-triazolo[4,3-b]triazin-7-yl)hydrazones 123 with bromine in methanol resulted in oxidative cyclization to give the respective bis(1,2,4-triazolo)- [4,3-b:4.3-d][1,2,4]triazines 124.139

N

NN

NN

R'R

NN

NN

R'R

NNN

R''

N

NN

NN

R'

N

R

N

R''

R''CH=NHN

Br2

MeOH

123 124

R'' = 4-XC6H4 X = H; CH3; OCH3; Cl; Br; NO2

R = H; CH3; ClR' = CH3

+

_

Page 36: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 68 ©ARKAT USA, Inc.

9. Fused triazolo-benzoazines 9.1. 1,2,4-Triazolo[4,3-a]quinolines Aldehyde hydrazones 125 underwent oxidative cyclization when treated with lead tetra-acetate in CH2Cl2 to give the corresponding 3-aryl-1,2,4-triazolo[4,3-a]quinolines 126. The latter products were also obtained by the reaction of the hydrazones 125 with either Br2 in CHCl3 in the presence of Na2CO3, ethanolic FeCl3, NaOCl in dioxane or refluxing in nitrobenzene.39, 83, 84

N

Me

NHN=CHAr

Me

N

NN

Ar

N

Me

N

N

Ar

126

i = LTA / CH2Cl2 ; Br2 / CHCl3 / Na2CO3 ; FeCl3 / EtOH or NaOCl / dioxane

125

Ar = Ph; p-MeC6H4; p-ClC6H4; p-MeOC6H4; 5-NO2-2-furyl; 2-thienyl

i

+

_

Similarly, the acyclo C-nucleosides 128 were produced by oxidation of aldehyde N-(2-quinolinyl)hydrazones 127 with ferric chloride in ethanol.39, 140

Page 37: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 69 ©ARKAT USA, Inc.

N

R'

NHN=CHR

R'

N

NN

R

N

R'

N

N

R

FeCl3

EtOH

127

128

R / R' : a, (CH2OH)4 -CH2OH / CH3; b; Ar / H

+

_

Contrary to the foregoing reports, it was indicated that treatment of the aldose hydrazones 129 with lead tetraacetate in acetic acid afforded the hydrazones 130 and not the expected acyclo C-nucleoside 131.141

N NHN=CHR

CH3

Pb(OAc)4/ AcOH

CH3

N

NN

R

N NHN=C(OAc)CHO

CH3

129

131130 R = HOCH 2-(CHOH) n

Furthermore, it was indicated that treatment of 132 with ferric chloride in ethanol gave tarry material, while its treatment with sodium periodate or bromine in acetic acid afforded the aldehyde 134 and the N,N-diacetyl hydrazine derivative 133, respectively.141

Page 38: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 70 ©ARKAT USA, Inc.

N NHN=CHR

CH3

Cl

Br2 / AcOH

CH3

N NHN(Ac)2

Cl

N NHN=CHCHO

CH3

Cl

/ NaOAcNaIO4

132

133134

R = HOCH 2-(CHOH) n n =3, 4

9.2. 1,2,4-Triazolo[4,3-a]isoquinolines

Thermolysis of 135 afforded the respective 3-substituted 1,2,4-triazolo[3,4-a]isoquinolines 136 via cyclization of the initially formed nitrilimines.22

N

NN

OS

R'

O

RN

N

R

N R'

R

N

N N

R'

heat

- SO2+

-

136

135

R = H; Cl R' =Me; C6H5; p-CCC6H4; p-O2NC6H4

Page 39: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 71 ©ARKAT USA, Inc.

Similarly, nitrilimines, generated by treatment of the hydrazones 137 with ferric chloride39,

142 or thermolysis of 1-(2-tetrazolyl)isoquinolines 138143 afforded the respective 1,2,4-triazolo[3,4-a]isoquinolines 139.

N

NHN=CHR

N

N-N=C-R N

NN

NN

R

N

N N

R

FeCl3

- H2

-

+

137

138

139heat

- N2

R = CH3 ; C6H5; p-O2NC6H4 10. Fused triazolo-benzodiazines 10.1. 1,2,4-Triazolo[3,4-a]phthalazines A series of 3-substituted[1,2,4]triazolo[3,4-a]phthalazines 141 were obtained by oxidative cyclization of the respective hydrazones 140 by heating with CuCl2 in DMF95 or heating with Pd / C 144 or treatment with bromine in acetic acid in the presence of sodium acetate.145, 146

N

N

NHN=CHAr

R

N

R

N

NN

Ar

N

N

R

NN Ar

i = Pd / C / heat or CuCl2 / DMF

141

R = Ph; PhCO

Ar = C6H5 ; p-MeC6H4 ; p-MeOC6H4 ; p-NMe2C6H4 ; p-ClC6H4 ; p-BrC6H4 ; p-IC6H4 ; p-NO2C6H4

140

i+

_

Page 40: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 72 ©ARKAT USA, Inc.

A number of 3-(alditol-1-yl)-1,2,4-triazolo[3,4-a]phthalazines 143 were synthesized by thermal dehydrogenation of the respective aldose N-(phthalazin-1-yl)hydrazones 142. The formation of the latter was also obtained by catalytic dehydrogenation with palladium on charcoal.147-152 Treatment of the C-acyclonucleosides 143 with sodium metaperiodate in water resulted in the cleavage of the alditol chain and gave the 3-formyl derivative 144.153

N

N

R'

NHN=CHR

N

R'

N

NN

R

N

CH2Ph

N

NN

CHO142 143

- H2

R = (CH2OH) n-CH 2OH; n = 3, 4 R' = Ph, PhCH2

144

[O]

A series of 1,2,4-triazolo[3,4-a]pthalazine C-nucleosides 146 were prepared by thermal dehydrogenative cyclization of the respective hydrazones of lactose, maltose and melibiose 145.154 Acid hydrolysis of 146 yielded 3-(D-gluco-pentahydroxypentyl)-6-phenyl-1,2,4-triazolo[3,4-a]phthalazines 148. Furthermore, acetylation of 146 with acetic anhydride in pyridine gave the respective octa-O-acetyl derivatives 147.154

Page 41: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 73 ©ARKAT USA, Inc.

N

N

NHN=CHR

Ph

N

Ph

N

NN

R

N

Ph

N

NN

(CHOH)4

CH2OHN

Ph

N

NN

(CHOAc)2

CH(OR)-CH(OAc)-CH2OAc

Ac2O

pyridine H+

OH2

O

OH

OH

OH

HO O

OH

OH

OHHO

O

OH

OH

OH

HO

145 146

- H2

148147

R : CHOH-CHOR'-CHOH-CH2OR"

R' / R" : a, / H; b, / H; c, H /

Also, oxidative cyclization of aldose hydrazones 149 by action of ferric chloride in ethanol afforded the corresponding 3-(alditol-1-yl)-1,2,4-triazolophthalazines 150.155

N

N

NHN=CHR

O

PhN

O

N

NN

R

Ph

FeCl3

149 150

- H2

R : -(CHOH)n-CH2OH n = 3, 4 10.2. 1,2,4-Triazolo[4,3-a]quinazolines Oxidative cyclization of aldehyde N-(2-quinazolinyl)hydrazones 151 with ferric chloride was reported to give the angular 1,2,4-triazolo[4,3-a]quinazolines 152 and not the linear triazolo[3,4-b]quinazolines 153.156 The structure of 152 was confirmed by comparison of its N-ethyl derivatives 155 with an authentic sample prepared by the reaction of 154 with aroyl chloride.156

Page 42: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 74 ©ARKAT USA, Inc.

N

NH

O

NHN=CHAr

NH

O

N

NN

Ar

N

N

O

NHNH2

EtN

O

N

NN

Ar

Et

N

O

N

NN

Ar

FeCl3

ArCOCl

H

154 155

153

152151

Ar = H; Me; p-ClC6H4

(EtO)2SO2

Recently two novel series of aldehyde N-(3-phenyl-4-oxoquinazolin-2-yl)hydrazones 156A and their N-(3-cyclohexyl)- analogs 156B were prepared by condensation of each of the appropriate 2-hydrazino-3-substituted-quinazolin-4(3H)-one with the aldehydes. Treatment of each of the hydrazones 156 with equivalent amount of iron(III) chloride in ethanol gave the respective 1,4-disubstituted-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-one 157.157,158 Treatment of each of 157 with potassium hydroxide in refluxing ethanol yielded, in each case, one product that was identified as the respective 2,4-disubstituted-1,2,4-triazolo[1,5-a]quinazolin-5(4H)-one 158.157-159 This isomerization is similar to Dimroth rearrangement of 1,2,4-triazolo[4,3-a]pyrimidine into 1,2,4-triazolo[1,5-a]pyrimidine. 159

Page 43: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 75 ©ARKAT USA, Inc.

N

N

OR

NHN=CHR'

N

N

OR

NN

R'

N

OR

NNN

R'

N

OR

NNN

R'

FeCl3

KOH

+156

157 158

R = A, Ph, B, C6H11R' = 1-naphthyl, 2-furyl , 2-thienyl, 4-XC6H4

X = H, MeO, Br, O2N, Me2N Also, it was recently reported that treatment of each of the aldose N-(3-phenyl-4-oxoquinazolin-2-yl)hydrazones 159A and aldose N-(3-cyclohexyl-4-oxoquinazolin-2-yl)hydrazones 159B with equivalent amount of iron(III) chloride in refluxing ethanol was reported to afford the respective 1,4-disubstituted-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-ones 160A and 160B, respectively.160 In contrast to the behaviour of 159Aa-c and 159Ba-c, when each of the hydrazones 159Ad and 159Ae was subjected to oxidative cyclization following the same procedure, both hydrazones were found to give, one and the same product that was identified as 4-phenyl-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-one 161. Similarly, oxidative cyclization of the hydrazones 159Bd and 159Be following the same procedure above gave also one and same compound that was identified 4-cyclohexyl-1,2,4-triazolo[4,3-a]quinazolin-5(4H)-one 161. The structures of the unexpected products 161A and 161B were further evidenced by comparison with authentic samples prepared by refluxing each of 2-hydrazino-3-phenyl-quinazolin-4(3H)-one and its 3-cyclohexyl analog with ethyl orthoformate or formic acid.160

Page 44: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 76 ©ARKAT USA, Inc.

N

N

OR

NHN=CHR'

N

N

OR

NN

R'

N

OR

NNN

R'

FeCl3

N

OR

NNN

+159

160R = A, Ph, B, C6H11 R' = (CHOH)nCH2OH

159-160 , R' : a, D-galactose, b, D-Mannose, c, D-arabinose, e, D-xylose, f, D-ribose

161

Recently, it was reported that aldose hydrazones 162 were prepared by condensation of 3-substituted-2-hydrazinoquinazolin-4(3H)-one with equimolar amount of appropriate D-aldose in aqueous ethanolic solution in presence of catalytic amount of acetic acid. Treatment of each of such aldose hydrazones 163 with hot ethanolic ferric chloride resulted in an oxidative cyclization to afford the angularly annelated 1-(alditol-1-yl)-4-substituted-1,2,4-triazolo[4,3-a]quinazolin-5(4H)ones 163 rather than to the linearly annulated regioisomers 164.161

Page 45: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 77 ©ARKAT USA, Inc.

N

N

O

R

NHNH2

R'CHO

N

N

O

R

NHN=CHR'

N

O

R

N

NN

R'

N

O

N

NN

R'

FeCl3 / C2H5OH

162

163 164

R = H, C2H5

R' = (CHOH) n-CH 2OH

n = 3,4

+

10.3. 1,2,4-Triazolo[4,3-c]quinazolines Nitrilimine generated in situ from either aldehyde N-(4-quinazolinyl)hydrazone 166, N-quinazolinyl acid hydrazide 167162 or 4-(5-substituted-tetrazol-3-yl)quinazoline 165,89 underwent 1,5-electrocyclization to give the corresponding 3-substituted 1,2,4-triazolo[4,3-c]quinazoline 168.

N

N

NN

NN

Ph

N

N

NHN=CHPh

N

N

NHNHCOPh

N

N

NN Ph

N

N

NN

Ph

FeCl3

POCl3heat165

166

168

+

_

167

Page 46: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 78 ©ARKAT USA, Inc.

10.4. 1,2,4-Triazolo[4,3-a]quinoxalines Aldehyde N-(quinoxalin-2-yl)hydrazones 169 were reported to afford, upon heating with ferric chloride, or lead tetra-acetate in CH2Cl2 or refluxing in nitrobenzene the corresponding 1,2,4-triazolo[4,3-a]quinoxalines 170.163-165

N

N Me

NHN=CHR'

N

N

N

Me

N

R'

N Me

N

NN

R'

i = FeCl3 / EtOH ; or LTA / CH2Cl2

[O]

169

170

R' = Ph; 4-MeC6H4 ; 4-MeOC6H4 ; 2-MeOC6H4 ; 4-NO2C6H4 ; 4-ClC6H4 ; 3-CH3O-4-HOC6H3; 4-FC6H4; 4-Biphenyl; 3HO,4-EtC6H3

i

+

_

- H2

Aldehyde N-(quinoxalin-2-yl)hydrzones 171 afforded the respective 3-substituted-1,2,4-triazolo[4,3-a]quinoxalines 172 in 61-84% yield upon treatment wit CuCl2 in DMF.95

N

N

NHN=CHR

N

N

NN

R

CuCl2

DMF

R = p-ClC6H4; 3,4-(MeO)2C6H3171 172

In another report it was indicated that heating the hydrazones 173 in ethylene glycol and DMSO for 5-8 h afforded 174.166

Page 47: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 79 ©ARKAT USA, Inc.

N

NH

NHN=CHAr

O NH

O

N

NN

Ar

(HOCH2)2 / heat

Ar = 4-XC6H4

X = H; Cl; F; MeO 174173

10.5. Pyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidines The hydrazones 175 were reported to cyclize easily on treatment with excess thionyl chloride to give 9-aryl-2,4,6-triphenylpyrido[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(6H)-ones 176.167

N N

N

O

NHN=CHAr

Ph

Ph

Ph

SOCl2

N

N

O

Ph

Ph

Ph N

NN

Ar

N

N

O

Ph

Ph

Ph N

NN

Ar

H SOCl

Ar = XC6H4 X = H; 4-Cl; 4-MeO; 4-O2N; 2-HO

175

176

-HCl

- SO, - HCl

11. Fused triazolo-azolo-triazines 11.1. Tris-[1,2,4-triazolo][4,3-a:4,3-c:4,3-e][1,3,5]triazines Reactions of 2,4,6-trichloro-1,3,5-triazine 177 with three equivalents of 5-substituted tetrazoles 178 led to the formation of the title heterocyclic system 180.89 In this case, the initially formed substitution intermediate 179 underwent nitrogen elimination to give the respective tri-nitrilimine which cyclized in situ to give 180 as end product.

Page 48: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 80 ©ARKAT USA, Inc.

N N

N Cl

Cl

Cl

N N

NN

H

Ph

N N

N N

N

NN

NN

NN

N

NN

N

PhPh

Ph

N N

N N

N

NNN

N

Ph

Ph Ph

NN

NN

NN

N

N N

Ph

PhPh

+

+

++

- 3 HCl, - 3 N2

- 3 N2

177 178 180

179

__

_

11.2. 1,2,4-Triazolo[4',3' :2,3][1,2,4]-triazino[5,6-b]indoles

Cyclodehydrogenation of 181 with ethanolic FeCl3 was reported to give 182 and not 183. Unequivocal synthesis of 183 by condensing diaminotriazole 185 with 5-methylisatin 184. The isolated product was found different from 182 (R = Me).168

NH

N

NNMe

NHN=CHR

NH

NNMe

N

NN

R

NH

O

O

Me

NN

NNH2

NH2 Me

NH

N

NMe N

NN

Me

NH

N

NNMe

N

N

R

FeCl3

EtOH

181

182

R = Me; Ph; p-O2NC6H4

+

183185184

+

_

Page 49: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 81 ©ARKAT USA, Inc.

Similarly, oxidative cyclization of 186 with FeCl3 in ethanol or with Pd / on-charcoal was reported to give 187 and not 188. The distinction between 187 and 188 was based on alternate synthesis of 188 by either the reaction of 189 with acetic acid or the reaction of isatin 190 with diaminotriazole 191.169

N N

NN

NHN=CH-MeMe

N

NN

N

NN

MeMe

N

O

O

Me

Me

NN

NNH2

NH2 Me

N N

NN

MeNHNH2 N

NN

NHNHCOMeNMe

- H2O

- H2O

NMe

N

NN

NN

MeMe

FeCl3

187

+

or Pd / C

CH3COOH

heat

heat

186

188190 191

189

However when the hydrazones 192 were treated with bromine in acetic acid in presence of sodium acetate, they yielded 1,2,4-trizolo[3',4':2,3][1,2,4]triazino[5,6-b]indoles 193.170

Page 50: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 82 ©ARKAT USA, Inc.

N N

NN

R''

R'

NHN=CHRN N

NN

R''

R'

N

H

N

RBr

N N

N

R''

R' N

NN

R192

193R'' = Me; EtR' = H; Me

Br2 /AcOH

- HBr

NaOAc

R = 4-XC6H4 X = H; CH3; i-C3H7; Cl; Br; NO2

Oxidative cyclization of the aldose hydrazones 194a-d, derived from 3-hydrazino-5H-1,2,4-triazino[5,6-indole and aldehydes as well as aldose monosaccharides produced the 3-substituted derivatives 197a-c and the acyclo C-nucleosides 197d, respectively. Oxidative cyclization of the hydrazones 194d with with bromine in acetic acid in the presence of sodium acetate and acetic anhydride was reported to afford 196d with concurrent acetylation of the sugar residue. Treatment of each of the latter with ammonium hydroxide solution in methanol resulted in deprotection of the sugar residue and the formation of C-nucleoside 197d.168-170

Page 51: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 83 ©ARKAT USA, Inc.

N N

NN

H

R'

NH

N=CHR

N N

NN

H

R'

N

N

R

N

N

H

R' N

N

NN

RN N

NN

H

R'

NH

N=C(Br)R"

N

N

H

R' N

N

NN

R''

Br2 / AcOH /Ac2O

FeCl3

EtOH

NH3

MeOH-HBr

R' = H, Me, Et

R : a, Me, b, Ph; c, 4-O2NC6H4; d, (CHOH) n -CH 2OH

R'' = (CHOAc) n-CH 2OAc n = 3, 4

194

197

195

196

+

_

NaOAc

Later, it was reported that oxidative cyclization of both poly-O-acetyl derivatives of aldose (5-methyl-1,2,4-triazino[5,6-b]indol-3-yl)hydrazones 198A and aldose (5-ethyl-1,2,4-triazino[5,6-b]indol-3-yl)hydrazones 198B with bromine in acetic acid in the presence of sodium acetate afforded the respective linearly annelated 3-(polyacetoxyalkyl)-10-alkyl-1,2,4-triazolo[4’,3’:2,3][1,2,4]-triazino-[5,6-b]indoles 199A and 199B, respectively rather than the their sterically unfavourable angularly annelated isomers 200A and 200B.171-175 Treatment of the latter products 199 with ammonia in methanol resulted in their deacetylation and the formation of the respective acyclo C-nucleosides 201.171, 172 The regiospecific outcome of this oxidative cyclization is discussed in terms of electronic and steric factors and the assignment of structures 199A and 199B have been based on the basis of chemical as well as spectroscopic evidences.

Page 52: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 84 ©ARKAT USA, Inc.

Br2 / AcOH

NH3

MeOH

N N

NN

R'NH

N

RH

N

N

R'

N

N

NN

R

N N

NN

R'NH

N

RBr

N

N

R'N

N

NN

R

N

N

R'N

N

NN

R''

199

198

B, R = AcOCH 2 -(CHOAc) n

200

Me; Et

n = 3 : a, D-arabino; b, L-ribo-; d, D-xylo

n = 4: e, D-galacto ; f, D-gluco ; g, D-mannoR' =

A, R" = HOCH 2 -(CHOH) n

NaOAc

- HBr

201

12. Fused triazolo-azolo-diazines 12.1. 1,2,4-Triazolo[4,3,-a]tetrazolo[5,1-c]quinoxalines Several derivatives of the title ring system 203 were prepared by thermolysis of 202, prepared by reaction of 4-chloro-1,2,3,4-tetrazolo[1,5-a]quinoxaline with 5-substituted tetrazoles in presence of triethylamine.176

Page 53: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 85 ©ARKAT USA, Inc.

N

N NNN

NN N

NR N

N NNN

NN

R

N NNN

N

NN

R

- N2

heat

+_

202

203

R = CH3; Ph; p-NO2C6H4

13. Fused triazolo-thieno-diazines 13.1. Thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidines Treatment of the hydrazone 204 with exess Br2 in AcOH in the presence of NaOAc afforded thieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5-one derivatives 205.131

S N

NR'

R''

OMe

NHN=CHAr

S

NR'

R''

OMe

N

NN

Ar

S N

NR'

R''

OMe

NHN=C(Br)Ar

S N

NR'

R''

OMe

N

N

Ar

Br2 / AcOH

204

205

Ar = 4-XC6H4 X = H; Cl; MeO

R'= R'' CH3

R' - R'' (CH2)4

+

_

NaOAc- HBr

Page 54: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 86 ©ARKAT USA, Inc.

13.2. Thieno[3,2-e][1,2,4]triazolo[3,4-b]pyrimidines 3-Aryl-6-methyl-7-phenyl-5H,9H-thieno[3,2-e][1,2,4]triazolo[3,4-b]pyrimidine-5-ones 207 were obtained by treatment of the respective hydrazones 206 with Br2 in AcOH in presence of NaOAc.132

S N

NHMe

O

NHN=CHArPh S NH

MeO

Ph

N

NN

ArBr2 / AcOH

206 207Ar = Ph; p-MeC6H4

Reaction of aldehyde hydrazones 208 and 209 with ferric chloride in ethanol gave the triazolopyrimidine acyclo C-nucleosides 210 and 211 respectively.133

When 210 (R = R" = Me) was treated with potassium hydroxide in ethanol, it underwent Dimroth type rearrangement to give 212.

S NH

NR'

R''

O

NHN=CHR

S N

R'

R''

O

N

NN

R

S NH

NR'

R''

O

NN

R

S N

Me

Me

O

N

N

NR

FeCl3

EtOH

208(209)

210(211)

208 (210) R' = R'' = CH3 ; 209 (211): R', R'' = (CH2) 4R = (CHOH)n-CH2OH n = 3,4

H

+

_

212H

KOH

13.3. Cyclohexathieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidines Treatment of the hydrazones 213 with Br2 in AcOH at 45oC was reported to give a mixture of 214 and its rearrangement product 215. The latter product was the sole isolated product of the

Page 55: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 87 ©ARKAT USA, Inc.

reaction of the hydrazone when reacted with Br2 in AcOH at reflux temperature. It appears that when acetic acid is used for crystallization at reflux temperature the initial product 214 undergoes Dimroth type rearrangement to the thermodynamically more stable [1,5-c] isomer 215.177

S N

N

NHN=CHR'

R S N R

N

NN

R'

S N R

NN

NR'

Br2 / AcOH

214

H+ / Heat

215

213

R' = Ph; o-ClC6H4; m-ClC6H4; p-ClC6H4; o-BrC6H4

R = H; CH3

13.4. Cycloheptathieno[3,2-e][1,2,4]triazolo[3,4-b]pyrimidin-5-ones Recently it was reported that stirring of the sugar hydrazone 216 at room temperature in acetic anhydride–pyridine (1:1) mixture afforded the respective 3-(2',3',4',5'-O-tetraacetyl-glycosyl)-6,7,8,9,10-pentahydrocycloheptathieno[3,2-e][1,2,4]triazolo[3,4-b]pyrimidin-5-one 217.178 Deprotection of the protected acyclo-nucleosides 217 to give 3-glycosyl-6,7,8,9,10-pentahydrocycloheptathieno[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-one 218 was achieved by treatment with methanolic ammonia solution (25%) at room temperature for 24 h.178

Page 56: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 88 ©ARKAT USA, Inc.

Ac2O

PyridineNHN=CHRS N

N

OH

S NH

O

N

NN

R'

NH3

MethanolS NH

O

N

NN

R

216

R = (CHOH) n -CH 2OH

217

n = 3,4R' = (CHOAc) n-CH 2OAc

218

13.5. Naphtho[1',2':4,5]thieno[3,2-e][1,2,4]triazolo[4,3-c]pyrimidines

Oxidative cyclization of the hydrazones 219 using bromine in acetic acid afforded the O-acetylated cyclic C-nucleosides 220. Deprotection of 220 using ammonium hydroxide solution in methanol gave the target free acyclic C-nucleosides 221.179

S N

N

NHN=CHR'

NH3

Methanol

S N

N

NNR'

S N

N

NNR

219

R = (CHOH) n-CH 2OHn = 3,4

R' = (CHOAc) n-CH 2OAc

Br2 / AcOH

heat

220

221

Page 57: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 89 ©ARKAT USA, Inc.

14. Fused triazolo-thieno-azino-diazines 14.1. Pyrido[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines The reaction of 222 with SOCl2 was reported to yield 3-aryl-5,7,9-trimethyl-pyrido[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines 223.180

SNN

NMe

Me

Me

NHN=CHAr

SN

NMe

Me

Me

N

N N

Ar

SN

NMe

Me

Me

N

N N

Ar

H

SOCl

SOCl2

222

223

Ar = XC6H4 X = H; 4-MeO; 4-O2N

-SO, -HCl

-HCl

14.2. Quinolino[3',2':4,5]thieno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines The hydrazones 224 were reported to be easily cyclized upon treatment with SOCl2 to give 2-aryl-7-(p-chlorophenyl)-8,9,10,11-tetrahydroquinolino[3',2':4,5]thieno[2,3-e][1,2,4]-triazolo[1,5-c]pyrimidines 226. The formation of the latter products seem to result via Dimroth rearrangement of the initially formed fused triazoles 225.181

Page 58: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 90 ©ARKAT USA, Inc.

SNN

NAr'

NHN=CHAr

SN

NAr'

N

N N

Ar

SN

NAr'

N

NN

Ar

SN

NAr'

N

N N

Ar

H

SOCl

SOCl2

224

226

Ar = 4-XC6H4 X = H; MeO; NO2

-SO, -HCl

225

Ar' = 4-ClC6H4

15. Conclusions The present review has outlined the importance of tandem in situ generation and 1,5-electrocyclization of N-hetaryl nitrilimines as a convenient methodology for synthesis of numerous fused 1,2,4-triazoles and some of their acyclo C-nucleosides. It is hoped that it will further stimulate the interest of more chemists to explore the utility of such strategy for synthesis of other heterocycles of industrial and biological potentials.

Page 59: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 91 ©ARKAT USA, Inc.

16. References 1. Shawali, A. S.; Parkanyi, C. J. Heterocycl. Chem. 1980, 17, 833. 2. Shawali, A. S. Heterocycles 1983, 20, 2239. 3. Shawali, A. S. Chem. Rev. 1993, 93, 2731. 4. Shawali, A. S.; Abdallah, M. A. Adv. Heterocycl. Chem. 1995, 63, 277. 5. Shawali, A. S.; Elsheikh, S. M. J. Heterocycl. Chem. 2001, 38, 541. 6. Shawali, A. S.; Mosselhi, M. A. N. J. Heterocycl. Chem. 2003, 40, 1725. 7. Shawali, A. S.; Mosselhi, M. A. N. J. Sulfur. Chem. 2005, 26, 267. 8. Shawali, A. S.; Sherif, S. M. Current Org. Chem. 2007, 11, 773. 9. Shawali, A. S.; Edrees, M. M. Arkivoc 2007, ix, 293. 10. Shawali, A. S.; Gomha, S. M. Tetrahedron 2002, 58, 8559. 11. Beckett, A. H.; Spickett, A. G. W.; Wright, S. H. B. Tetrahedron 1968, 24, 2839. 12. Padwa, A.; Nahm, S.; Satu, E. J. Org. Chem. 1978, 43, 1664. 13. Konnecke, A.; Lepon, P.; Lippman, E. Z. Chem. 1978, 18, 214. 14. Angadiyavar, C. S.; Gorge, M. V. J. Org. Chem. 1971, 36, 1589. 15. Scheiner, P.; Dinda, JR., J. F. Tetrahedron 1970, 26, 2619. 16. Fraser, R. R.; Gurudata, G.; Haque, K. E. J. Org. Chem. 1964, 34, 4118. 17. Meimer, H.; Heinzelman, W.; Heimgartner, H. Chimia 1980, 34, 504, Chem. Abstr. 1981,

94, 155988. 18. Stolle', R.; Leverkus, K. O. Ber. 1913, 46, 4076. 19. Golfier, M.; Guillerez, M. G.; Milcent, R. Tetrahedron Lett. 1974, 3875. 20. Reichen, W. Helv. Chim. Acta 1976, 59, 1636. 21. Golfier, M.; Guillerez, M. G. Tetrahedron Lett. 1976, 267. 22. Reimlinger, H.; Vandewalle, J. J. M.; King, G. S. D.; Lingier, W. R. F.; Mere'nyi, R. Chem.

Ber. 1970, 103, 1918. 23. Bacchetti, T. Gazz. Chim. Ital. 1961, 91, 866. 24. Gibson, M. S. Tetrahedron 1962, 18, 1377. 25. Werber, G.; Buccheri, F.; Noto, R.; Gentile, M. J. Heterocycl. Chem. 1977, 14, 1385. 26. Huisgen, R.; Seidel, M.; Sauer, J.; Mcfarland, J. W.; Wallbillich, G. J. Org. Chem. 1959, 24,

892. 27. Huisgen, R.; Seidel, M.; Wallbillich, G. and Knupffer, H. Tetrahedron 1962, 17, 3. 28. Huisgen, R.; Weberndorfer, V. Chem. Ber. 1967, 100, 71. 29. Hegarty, A. F.; Cashman, M. P.; Scott F. L. J. Chem. Soc. Perkin 2 1972, 44. 30. Shawali, A. S.; Albar, H. A. Can J. Chem. 1986, 64, 871. 31. Ito, S.; Tanaka, Y. and Kakehi, A. Bull. Chem. Soc. Jpn. 1976, 49, 762. 32. Huisgen, R.; Adelsber, K.; Aufderaar, E.; Knupfer, H.; Wallbillich, J. Monatsch. Chem.

1967, 98, 1618. 33. Padwa, A.; Nahm, S. J. Org. Chem. 1979, 44, 4746. 34. Padwa, A.; Nahm, S. J. Org. Chem. 1981, 46, 1402.

Page 60: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 92 ©ARKAT USA, Inc.

35. Bower, J.; Doyle, F. J. Chem. Soc. 1957, 727. 36. Butler, R. N. Chem. Ind. (London) 1968, 437. 37. Butler, R. N.; Scott, F. L.; O'Mahony, T. A. F. Chem. Rev. 1973, 73, 93. 38. Kramberger, L.; Polanc, S.; Vercek, B.; Stanovnik, B.; Tisler, M. J. Heterocycl. Chem.

1975, 12, 337. 39. Naqui, S.; Srinivasan, V. R. Indian J. Chem. (B) 1965, 3, 162. 40. Gibson, M.S. Tetrahedron 1963, 19,1587. 41. Gladstone, W. A. F. J. Chem. Soc. (C) 1969, 179. 42. Sasaki, T.; Yoshioka, T. Bull. Chem. Soc. Jpn. 1970, 43, 1254. 43. Yakhontov, L. N.; Pronina, E. V.; Rozynov, B. V.; Rubtsov, M. V. Dokl. Akad. Nauk.SSSR

1968, 178, 127; Chem. Abstr. 69: 27343 (1968). 44. Tabakovic, I.; Crljenak, S. Heterocycles 1981, 16, 699. 45. Jugelt, W.; Gruber, L. Z. Chem. 1985, 25, 442. 46. Jugelt, W.; Gruber, L.; Paulas, V. Z. Chem. 1985, 25, 408. 47. Gunic, E.; Tabakovic, I. J. Org. Chem. 1988, 53, 5081. 48. Vakula, T. R.; Strinivasan, V.R. Indian J. Chem. 1971, 9, 901. CA 75, 151733 (1971). 49. Nagamastu, T.; Fujita, T. Chem. Commun. 1999, 1461. 50. Hassaneen, H. M.; Shawali, A. S. Ind. J. Chem. 1989, 28B, 133. 51. Fleige, W.; Huisgen, R.; Clovis, J. S.; Knupfer H. Chem. Ber. 1983, 116, 3039. 52. Ollis, W. D.; Ramsden, C. A. Adv. Heterocycl. Chem. 1976, 19, 1. 53. Gotthardt, H.; Reiter, F. Chem. Ber. 1979, 112, 1206. 54. Gotthardt, H.; Reiter F. Tetrahedron Lett. 1971, 2749. 55. Pfoertner, K. H.; Foricher, J. Helv. Chim. Acta 1980, 63, 653. 56. Meier, H.; Heimgartner, H.; Schim, H. Helv. Chim. Acta 1977, 60, 1087. 57. Haneda, A.; Imagawa, T.; Kawanisi, M. Bull. Chem. Soc. Jpn. 1976, 49, 748. 58. Huseya, Y.; Chinone, A .; Ohta, M. Bull. Chem. Soc. Jpn., 1971, 44, 1667. 59. Marky, M.; Hansen, H. J.; Schmid H. Helv. Chim. Acta 1971, 54, 1275. 60. Corana, F.; Coda, A. C.; Desimoni, G.; Righetti, P.; Tacconi G. Gazz. Chim. Ital. 1989, 119,

167. 61. Coda, A. C.; DeGaudenzi, L.; Desimoni, G.; Righetti, P.; Tacconi, G. Heterocycles 1987,

26, 745. 62. Bailey J. J. Chem. Soc. Perkin I. 1977, 2047. 63. Csunderlik, C.; Bercean, V.; Peter, F. ; Badea V. Arkivoc 2002 (ii) 133. 64. Elnagdi, M. H.; Elmoghayar, M. R. H.; Kandeel, E. M.; Ibrahim, M. K. A. J. Heterocycl.

Chem. 1977, 14, 227. 65. Scott, F. L.; O' Halloran, J. K. Tetrahedron Lett. 1970, 4083. 66. Scott, F. L.; O' Halloran, J. K.; O' Driscoll, J.; Hegarty, A. F. J. Chem. Soc. Perkin Trans 1

1972, 2224. 67. Potts, K. T.; Husain, S. J. Org. Chem. 1971, 36, 10. 68. Campaigne, E.; Selby, T. P. J. Heterocycl. Chem. 1978, 15, 401.

Page 61: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 93 ©ARKAT USA, Inc.

69. Goswami, B. N.; Kataky, J. C. S.; Baruah, J. N. J. Heterocycl. Chem. 1986, 23, 1439. 70. Scott, F. L.; O'Mahony, T. A. F. Tetrahedron Lett. 1970, 1841. 71. O' Mahony, T. A. F.; Butler, R. N.; Scott, F. L. J. Chem. Soc. Perkin 2 1972, 1319. 72. Hegarty, A. F.; Quain, P.; O'Mahony T. A. F.; Scott, F. L. J. Chem. Soc. Perkin 2 1974, 997. 73. Scott, F. L.; Aylward, J. B. Tetrahedron Lett. 1965, 841. 74. Wolkoff, P. Acta Chem. Scand. Ser. B. 1976, B30, 463; CA, 85, 78060 (1976). 75. Scott, F. L.; Lambe, T. M. and Butler, R. N. Tetrahedron Lett. 1971, 1729. 76. Butler, R. N.; Lambe, T. M.; Scott, F. L. J. Chem. Soc. (C) 1972, 269. 77. Scott, F. L.; Butler, R. N.; Cronin, D. A. Angew. Chem. 1965, 77, 963; CA 64, 2081(1966). 78. Scott, F. L.; Butler, R. N. J. Chem. Soc. (C) 1966, 1202. 79. Butler, R. N.; Scott, F. L. J. Chem. Soc. (C) 1967, 239. 80. Butler, R. N.; Scott, F. L. J. Chem. Soc. (C) 1968, 1711. 81. Moustafa, M. A. A.; Ismaiel, A. M.; Eisa, H. M.; El-Emam, A. A. J. Chin. Chem. Soc.

(Taipei) 1991, 38(2), 199. 82. Boehringer, C. F.; Soehne, G. M. B. H. Br. Pat. 1,131,590(1968); Chem. Abstr. 70: 28926

(1969). 83. Shaban, M. A. E.; Naser, A. Z.; Taha, M. A. M. J. Islamic Acad. Sci. 1990, 3(4), 255. 84. Sadana A. K.; Mirza, Y.; Aneja, K. R.; Prakash, O. Eur. J. Med. Chem. 2003, 38, 533. 85. Ciesielski M., Pufky, D.; Doring, M. Tetrahedron 2005, 61, 5942. 86. Butler R. N.; Johnston S. M. J. Chem. Soc., Chem. Commun. 1981, 376. 87. Gladstone, W. A. F.; Aylward, J. B.; Norman, R. O. C. J. Chem. Soc. (C) 1969, 2587. 88. Potts, K. T.; Burton, H. R. J. Org. Chem. 1966, 31, 251. 89. Huisgen, R.; Sturm, H. J.; Seidel, M. Chem. Ber. 1961, 94, 1555. 90. El-Ashry, E. S. H.; Abdul-Ghani, M. M. Nucleosides & Nucleotides 2004, 23, 567. 91. Kobe, J.; Brdar, B.; Soric, J. Nucleosides and Nucleotides 1986, 5, 135. 92. (a) Pollak, A.; Tisler, M. Tetrahedron 1966, 22, 2073. (b) Kasary, K.; Sohar, P. Acta Chim.

Acad. Sci. Hung. 1980, 103, 405. 93. (a) Stanovnik, B.; Tisler, M. Tetrahedron 1967, 23, 387. (b) Kosary, J.; Kasztreiner, E.; Soti,

M. Heterocyles 1983, 749. 94. Stanovnik, B.; Tisler, M.; Ceglar, M. and Bah, V. J. Org. Chem. 1970, 1138. 95. Ciesielski, M.; Pufky, D.; Doring, M. Tetrahedron 2005, 61, 5942. 96. Shaban, M. A. E.; Nasr A. Z.; Taha M. A. M. J. Islamic Academy of Sci. 1990, 3, 255-261. 97. Berger H.; Stach K.; Voemel W. S. Afr. Pat. 6706255 1968; Chem. Abstr. 1969, 70, 57869. 98. Svete, J.; Golic, L.; Stanovnik, B. J. Heterocycl. Chem. 1997, 34, 1115. 99. Turk, C.; Svete, J.; Golobic, A.; Golic, L.; Stanovnik, B. J. Heterocycl. Chem. 1998, 35,

513. 100. Tsujikawa, T.; Tatsuta, M. Chem. Pharm. Bull. 1977, 25, 3137. 101. Spickett R. G. W.; Wright S. H. B. J. Chem. Soc. (C) 1967, 498. 102. Prakash, O.; Bhardwaj, V.; Kumar, R.; Tyagi. P.; Aneiga, K. Eurp. J. Med. Chem. 2004,

40(11), 1073.

Page 62: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 94 ©ARKAT USA, Inc.

103. Allen, C. F. H.; Reynolds, G. A.; Tinker, J. F.; Williams, L. A. J. Org. Chem. 1960, 25, 361. 104. Abdel-Fattah, A. S. M.; Negm, A. M.; Gaafar, A. E. M. Phosphorus, Sulfur and Silicon

1992, 72, 145. 105. Khalil, Z. H.; Abdel Hafez, A. A.; Ahmed, A. A. Phosphorus, Sulfur and Silicon 1989, 45,

81. 106. El-Ashry, E. S. H.; El Kiloany, Y.; Rashed, N.; Mousaad, A.; Assafir, H. Z. Naturforsch

1998, 53, 1203. 107. Rashed, N.; Mousaad, A.; Saleh, A. J. Chin. Chem. Soc. 1993, 40, 393 108. Abdel-Fattah, A. S. M.; Sherif, S. M.; Youssef, M. M.; Ahmed, N. S., E. J. Chem. Res. (S)

1994, 412. 109. Bitha, P.; Hlavka, J. J.; Lin, Y. J. Org. Chem. 1987, 52, 2220. 110. Shaban, M. A. E.; Taha, M. A. M.; Nasr, A. Z.; Morgan, E. A. Pharmazie 1995, 50, 784. 111. Shaban, M. A. E.; Nasr, A. Z.; Morgan, A. E. A. Pharmazie 1999, 54, 87. 112. Shaban, M. A. E.; Taha, M. A. M.; Nasr, A. Z.; Morgan, A. E. A. Pharmazie 1995, 50, 784. 113. Mahmoud, S. H.; Somsak, L.; Farkas, I. Carbohydr. Res. 1994, 254, 91. 114. Rashed, N.; Mousaad, A.; Saleh, A. Alex. J. Pharm. Sci. 1993, 7, 171. 115. El-Ashry E. S.H.; El-Kilany Y.; Rashed N.; Assafir H. Advances in heterocyclic Chemistry,

Ed. Katritzky, A. R.; Academic Press, New York 1999, vol. 75, 79 – 165. 116. Nelson, P. J; Potts, K. T. J. Org. Chem. 1962, 27, 3243 117. Jelenc, M.; Kobe, J; Stanovnik, B.; Tisler, M. Monatsch. Chem. 1966, 79, 1713. 118. Kobe, J; Stanovnik, B.; Tisler, M. Tetrahedron 1970, 26, 3357. 119. Langdon, S. P.; Simmonds, R. J.; Stevens, M. F. G. J. Chem. Soc. Perkin Trans 1 1984, 993. 120. Shaban, M. A. E.; Taha, M. A. M.; Nasr, A. Z. Pharmazie 1996, 51, 707. 121. Rashed, N.; Shoukry, M.; El-Ashry, E. S. H. Bull. Chem. Soc. Jpn. 1994, 67, 149. 122. Kandeel, E. N.; Alnima, N. H. S.; El-Nagdi, M. N. Pol. J. Chem. 1983, 57, 327. 123. Bower J.; Doyle F. J. Chem. Soc. 1957, 727. 124. Butler, R. N.; O' Sullivan, P.; Scott, F. L. J. Chem. Soc. (C) 1971, 2265. 125. Deshpande, D. S. J. Indian Chem. Soc. 1979, 56, 742. 126. Rao, V. R.; Strinivasan, V. R. Experientia 1964, 20, 200; Chem. Abstr. 60: 14496 (1964). 127. Gottardi, W.; Henn, D. Monatsch. Chem. 1970, 101, 11. 128. Butler, R. N.; O' Sullivan P.; Scott, F. L. J. Chem. Soc. Perkin 1 1972, 1519. 129. Wade, P. C.; Vogt, B. R.; Kissick, T. P. U.S. Patient, 1978, 4,108,860, Chem. Abstr. 1979,

90, 87473. 130. Wade P. C.; Vogt B. R.; Kissick T. P. U.S. Pat. 4140693, 1979; Chem. Abstr. 1979, 90,

204108. 131. El-Gazzar, A. B. A.; Hassan, N. A. Molecules 2000, 5, 883. 132. Abdel Fattah, A. M.; Aly, A. S.; Abdel Motti, F. M.; Zaki, M. E. A.; Aly, H. R. H. Egypt. J.

Chem. 1995, 38, 635. 133. Hamed, A. A.; Bader, H. F.; El-Ashry, E. S. H. Z. Naturforsch 2001, 56B, 826. 134. Shawali, A. S.; Hassaneen H. M.; Shurrab N. L. Tetrahedron. 2008, 64, 10339.

Page 63: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 95 ©ARKAT USA, Inc.

135. Mosselhi, A. N. M.; Tawfik, N. M.; Shawali, A. S. Monatsch. Chem. 2003, 134, 565. 136. Zahran, M. A.; Pederson, E. P.; Nielsen, C. Monatsch. Chem. 1995, 126, 1277. 137. Nagamaatsu I.; Yamasaki H.; Akiyama T.; Hara S.; Mori K.; Kusakabe H. Synthesis 1999,

655. 138. Youssef, M. S. K.; Hassan, K. M.; Atta, F. M.; Abbady, M. S. J. Heterocycl. Chem. 1984,

21, 1565. 139. Daunis, J.; Jaquier, R.; Viallefont P. Bull. Soc. Chim. Fr. 1969, 3670. 140. Rashed, N.; Ibrahim, E. I.; El-Ashry, E. S. H. Carbohydr. Res. 1994, 254, 295. 141. Khodair, A. I.; Ibrahim , E. S. I.; Diab, A. M.; Abdelaziz, M. M.; Omar, B. M. I.; El-Ashry,

E. S. H. Pharmazie 1998, 53, 294. 142. Knyazeva, V. F.; Granik, V. G.; Glushkov, R. G.; Arutyunyan, G. S. Khim. Farm. Zh. 1981,

15,44; Chem. Abstr. 95: 115238(1981). 143. Reimlinger H.; Vandewalle J. J. M.; King G. S. D.; Lingier W. R. F.; Merenyi R. Chem.

Ber. 1970, 103, 1918 144. Shaban, M. A. E.; Taha, M. A. M.; Naser, A. Z. J. Islamic Acad. Sci. 1990, 3, 98. 145. Druey J.; Ringier B. H. Helv. Chim. Acta 1951, 34, 195. 146. Badr M. Z. A.; El-Sherief A. H.; El-Naggar G. M.; Mahgoub S. A. Bull. Fac. Sci., Assiut

Univ. 1982, 11, 25; Chem. Abstr. 1983, 98, 53807. 147. Shaban, M. A. E.; Ali, R. S.; El-Badry, S. M. Carbohydr. Res. 1981, 95, 51. 148. Shaban, M. A. E.; Nassr, M. A. M.; Taha, M. A. M. Carbohydr. Res. 1983, 113, C16. 149. Shaban, M. A. E.; Taha, M. A. M. Bull. Chem. Soc. Jpn. 1989, 62, 2701. 150. Shaban, M. A. E.; Taha, M. A. M. Internt. J. Chem. 1990, 1, 59. 151. Shaban M. A. E.; Nassr M. A. M.; Taha M. A. M. Carbohydr. Research 1983, 113, C16. 152. Shaban M. A. E.; Taha M. A. M. J. Carbohydrate Chem. 1991, 10, 757. 153. Shaban, M. A. E.; Taha, M. A. M. Internt. J. Chem. 1990, 1, 59. 154. Shaban, M. A. E.; Taha, M. A. M. Internt. J. Chem. 1990, 1, 77. 155. El-Ashry E. S. H.; Rashed N. Current Org. Chem. 2000, 4, 609. 156. Murdoch, R.; Tully, W. R.; Westwood, R. J. Heterocycl. Chem. 1986, 23, 833. 157. Shawali, A. S.; Hassaneen H. M.; Shurrab N. L. J. Heterocycl. Chem. 2008, 45, 1825. 158. Shawali, A. S.; Hassaneen H. M.; Shurrab N. L. Heterocycles 2008, 45, 1479. 159. El-Ashry E. S. H.; Rashed E. N.; Assafir H. Adv. Heterocycl. Chem. 2000, 75, 79. 160. Shawali, A. S.; Hassaneen H. M.; Shurrab N. L. J. Chem. Res. 2008, 425. 161. Saleh, M. A.; Abdel-Megeed, M. F.; Abdo, M. A. and Shkor. A. B. M. J. Heterocycl. Chem.

2003, 40, 85. 162. Sidhu G. S.; Thyarajan G.; Rao N. Naturwissenschaften 1963, 50, 732, Chem, Abstr. 1964,

60, 6841. 163. Shiho, D.; Tagami, S. J. Am. Chem. Soc. 1960, 82, 4044. 164. Aggarwal, R.; Sumran, G. Synth. Commun. 2006, 36, 1873. 165. Wagle, S.; Adhikary A. V.; Kumari N. S. Eur. J. Med. Chem. 2009, 44, 1135.

Page 64: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 96 ©ARKAT USA, Inc.

166. Rashed, N.; El Massry, A. M.; El Ashry, E. S. H.; Amer, A. J. Heterocycl. Chem. 1990, 27, 691.

167. Youssef, M. S. K.; El-Zohry, M. F.; Hassan, K. M.; El-Wafa, R. A. Phosphorus, Sulfur and Silicon 1989, 44, 197.

168. El-Ashry, E. S. H.; Rashed, N.; Abdel-Hamid, H.; Ramadan, E. S., Z. Naturforsch 1997, 52B, 873.

169. Rashed, N.; Abdel-Hamid, H.; Ramadan, E. S.; El-Ashry, E. S. H. Nucleosides and Nucleotides 1998, 17, 1373.

170. Mousaad, A.; Abdel Hamid, H.; El Nemr, A.; El-Ashry, E. S. H. Bull. Chem. Soc. Jpn. 1992, 65(2), 546.

171. Shaban, M. A. E.; Taha, M. A. M.; Morgan, A. E. A. Monatsch. Chem. 2000, 131, 487. 172. Shaban M. A. E.; Nasr A. Z.; Morgan A. E. A. Pharmazie 1999, 54, 580. 173. Mousaad A.; Abdelhamid H.; El-Nemr A.; El-Ashry E. S. H. Bull. Chem. Soc. Jpn. 1992,

65, 546. 174. Rashed N.; El-Nemr A.; El-Ashry E. S. H. Spectroscopy Lett. 1993, 26, 1817. 175. Mousaad A.; Rashed N.; Ramadan E.; El-Ashry E. S. H. Spectroscopy Lett. 1994, 27, 677. 176. Koennecke A.; Lippmann E. Z. Chem. 1978, 18, 175; CA 89, 146869 (1978). 177. Moneer A. A.; Isnail, M. M.; Osman, A. N.; Abd El-Fattah, B.; Ghoneim, K. M. Egypt. J.

Pharm. Sci. 1993, 34, 623. 178. El-Gazzar A. B. Phosphorus, Sulfur and Silicon 2005, 180, 283. 179. Rashad A. E. S.; Shamroukh A. H.; Hegab M. I.; Awad H. M. Acta Chem. Solv. 2005, 52,

429. 180. Youssef M. S. K.; Atte F. M.; Hassan K. M.; El-Dean A. M. K.; Abbday M. S. Bull. Fac.

Sci., Assiut Univ. 1991, 20(2-B), 31. 181. Awad I. M. A.; Abdel-Rahman A.; Bakhite, E. A. Phosphorus, Sulfur and Silicon 1992, 69,

213. Biographical Sketch

Prof. Ahmad Sami Shawali is presently Emeritus Professor of Physical Organic Chemistry, Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt. He graduated with B.Sc. from the University of Cairo in 1958. He received his M.Sc. and Ph.D. degrees in 1962 and 1966, respectively, from Lowell Technological Institute, presently the University of

Page 65: ARKIVOC 2010 (i) 33-97

Special Issue Reviews and Accounts ARKIVOC 2010 (i) 33-97

ISSN 1551-7012 Page 97 ©ARKAT USA, Inc.

Lowell, Massachusetts, USA. He was awarded the degree of Doctor of Science (D.Sc.) from the university of Cairo after recommendation from a British committee from the Royal Chemical Society in 1995. Prof. Shawali has been the recipient of the state award and Egypt State Medal of Science and Arts in 1977. He holds several national and international certificates of merit for his distinguished services. He was appointed Vice-Dean for student affairs in 1989 and he was elected Dean of the Faculty of Science in 1991. He was visiting professor at the university of Texas at El Paso, Texas, USA from 1979 to 1980, University of Kuwait from 1973 to 1977 and King Abdulaziz University, Jeddah, Saudi Arabia from 1982 to 1988. He has published 223 scientific papers including 10 review articles, all in international journals. At present there are more than 1800 citations of his work from 1970 until mid 2006 (i.e about 50 citations / year or 8 citations / paper). He supervised till now 45 M.Sc. and 15 Ph.D. graduate theses. He was invited to present plenary lectures at 29 conferences. His research interests are in the fields of reaction mechanisms, applications of LFERs, chemistry of hydrazonoic acid derivatives, 1,3-dipolar cycloadditions and 1,5-electrocyclizations.


Recommended