+ All Categories
Home > Documents > Aromatic Compounds - Ashley Piekarski1/28/16 1 Chapter 15- Benzene and Aromaticity...

Aromatic Compounds - Ashley Piekarski1/28/16 1 Chapter 15- Benzene and Aromaticity...

Date post: 08-May-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
19
1/28/16 1 Chapter 15- Benzene and Aromaticity Ashley Piekarski, Ph.D. Aromatic Compounds What do you think the word “aroma%c” means? Back in the 19 th century, the word was used to describe fragrant substances Current definiBon: disBnguished from alipha&c compounds by electronic configuraBon What is an aliphatic compound? Examples of aromaBc compounds
Transcript

1/28/16  

1  

Chapter 15- Benzene and Aromaticity

Ashley  Piekarski,  Ph.D.  

Aromatic Compounds

•  What  do  you  think  the  word  “aroma%c”  means?  •  Back in the 19th century, the word was used to describe fragrant

substances

•  Current  definiBon:  disBnguished  from  alipha&c  compounds  by  electronic  configuraBon  •  What is an aliphatic compound?

Examples  of  aromaBc  compounds  

1/28/16  

2  

Why do I care, Dr. P?

•  ReacBvity  of  subsBtuted  aromaBc  compounds  is  Bed  to  their  structure  

 •  AromaBc  compounds  provide  a  sensiBve  probe  for  studying  relaBonship  between  structure  and  reacBvity  

•  Remember  in  organic  chemistry  we  are  always  trying  to  define  structure-­‐property  rela%onships  to  generalize  a  class  of  compounds  

Synthesis of Aromatic Hydrocarbons- not pretty L

•  From  high  temperature  (1000°C)  fracBonal  disBllaBon  of  coal  tar  

•  HeaBng  petroleum  at  high  temperature  and  pressure  over  a  catalyst  

1/28/16  

3  

Nomenclature of Aromatic Compounds

•  Many  common  names  (toluene  =  methylbenzene;  aniline  =  aminobenzene)  

•  You  must  learn  them!  They  are  in  your  textbook.  

Nomenclature of Aromatic Compounds

•  MonosubsBtuted  benzenes  systemaBc  names  as  hydrocarbons  with  –benzene  •  C6H5Br = bromobenzene •  C6H5NO2 = nitrobenzene, and C6H5CH2CH2CH3 is

propylbenzene

1/28/16  

4  

The Phenyl Group

•  When  a  benzene  ring  is  a  subsBtuent,  the  term  phenyl  is  used  (You  may  also  see  “Ph”  or  “φ”  in  place  of  “C6H5”)  

•  “Benzyl”  refers  to  “C6H5CH2”  

•  What  circumstances  do  you  think  a  benzene  ring  is  considered  a  subsBtuent?  

Nomenclature of Disubstituted Benzenes

•  RelaBve  posiBons  on  a  benzene  ring  •  ortho- (o) on adjacent carbons (1,2-substitution) •  meta- (m) separated by one carbon (1,3-substitution) •  para- (p) separated by two carbons (1,4-substitution)

•  Describes  reacBon  pa^erns  (“occurs  at  the  para  posiBon”)  

1/28/16  

5  

Nomenclature of Disubstituted Benzenes

•  RelaBve  posiBons  on  a  benzene  ring  •  ortho- (o) on adjacent carbons (1,2-substitution) •  meta- (m) separated by one carbon (1,3-substitution) •  para- (p) separated by two carbons (1,4-substitution)

•  Describes  reacBon  pa^erns  (“occurs  at  the  para  posiBon”)  

Naming Benzenes With More Than Two Substituents

•  Choose  numbers  to  get  lowest  possible  values  for  subsBtuents  

•  List  subsBtuents  alphabeBcally  with  hyphenated  numbers  •  Common  names,  such  as  “toluene”  can  serve  as  root  name  

(as  in  TNT)  

1/28/16  

6  

Learning check

•  Give  the  correct  IUPAC  name  for  the  molecule  below:  

CH3

NH2

S

Structure and Stability of Benzene: Molecular Orbital Theory

•  Benzene  reacts  slowly  with  Br2  to  give  bromobenzene  (where  Br  replaces  H)  

•   What  product  would  we  get  if  we  reacted  bromine  with  1-­‐propene?  

1/28/16  

7  

Heats of Hydrogenation as Indicators of Stability

•  The  addiBon  of  H2  to  C=C  normally  gives  off  about  118  kJ/mol  

•  Two  conjugated  double  bonds  in  cyclohexadiene  add  2  equivalents  of  H2    to  give  off  230  kJ/mol  

•  How  much  energy  would  you  expect  benzene  to  give  off?  

•  Benzene  has  3  unsaturaBon  sites  but  gives  off  only  206  kJ/mol  on  reacBng  with  3  H2  molecules  

•  Therefore  it  has  about  150  kJ  more  “stability”  than  an  isolated  set  of  three  double  bonds  

Heats of Hydrogenation as Indicators of Stability

1/28/16  

8  

Benzene’s Unusual Structure

•  All  its  C-­‐C  bonds  are  the  same  length:  139  pm  —  between  single  (154  pm)  and  double  (134  pm)  bonds  

•  Electron  density  in  all  six  C-­‐C  bonds  is  idenBcal  à  electrostaBc  map  

•  Structure  is  planar,  hexagonal  •  C–C–C  bond  angles  120°  •  What  is  the  hybridizaBon  of  each  carbon  atom  in  benzene?  

Drawing Benzene and Its Derivatives

•  The  two  benzene  resonance  forms  can  be  represented  by  a  single  structure  with  a  circle  in  the  center  to  indicate  the  equivalence  of  the  carbon–carbon  bonds  

•  This  does  not  indicate  the  number  of  π  electrons  in  the  ring  but  reminds  us  of  the  delocalized  structure  

•  We  shall  use  one  of  the  resonance  structures  to  represent  benzene  for  ease  in  keeping  track  of  bonding  changes  in  reacBons  

1/28/16  

9  

Molecular Orbital Description of Benzene

•  The  6  p-­‐orbitals  combine  to  give  •  Three bonding orbitals with 6 π electrons, •  Three antibonding with no electrons

•  Orbitals  with  the  same  energy  are  degenerate  

Aromaticity and the 4n + 2 Rule

•  Huckel’s  rule,  based  on  calculaBons  –  a  planar  cyclic  molecule  with  alternaBng  double  and  single  bonds  has  aromaBc  stability  if  it  has  4n+  2  π  electrons  (n  is  0,  1,  2,  3,  4)  

•  For  n=1:  4n+2  =  6;  benzene  is  stable  and  the  electrons  are  delocalized  

1/28/16  

10  

Compounds With 4n π Electrons Are Not Aromatic

•  Planar,  cyclic  molecules  with  4  n  π  electrons  are  much  less  stable  than  expected  (an%aroma%c)  

•  They  will  distort  out  of  plane  and  behave  like  ordinary  alkenes  •  4-­‐  and  8-­‐electron  compounds  are  not  delocalized  (single  and  

double  bonds)  •  Cyclobutadiene  is  so  unstable  that  it  dimerizes  by  a  self-­‐Diels-­‐

Alder  reacBon  at  low  temperature  

Compounds With 4n π Electrons Are Not Aromatic

•  Planar,  cyclic  molecules  with  4  n  π  electrons  are  much  less  stable  than  expected  (anBaromaBc)  

•  They  will  distort  out  of  plane  and  behave  like  ordinary  alkenes  •  4-­‐  and  8-­‐electron  compounds  are  not  delocalized  (single  and  double  

bonds)  •  Cyclobutadiene  is  so  unstable  that  it  dimerizes  by  a  self-­‐Diels-­‐Alder  

reacBon  at  low  temperature  •  Cyclooctatetraene  has  four  double  bonds,  reacBng  with  Br2,  KMnO4,  and  

HCl  as  if  it  were  four  alkenes  

What  do  you  noBce  about  the  structure  and  electron  density?  

1/28/16  

11  

Aromatic Ions

•  The  4n  +  2  rule  applies  to  ions  as  well  as  neutral  species  

•   Both  the  cyclopentadienyl  anion  and  the  cycloheptatrienyl  ca&on  are  aromaBc    

•  The  key  feature  of  both  is  that  they  contain  6  π  electrons  in  a  ring  of  conBnuous  p  orbitals  

Aromaticity of the Cyclopentadienyl Anion

•  1,3-­‐Cyclopentadiene  contains  conjugated  double  bonds  joined  by  a  CH2  that  blocks  delocalizaBon  

•  Removal  of  H+  at  the  CH2  produces  a  cyclic  6-­‐electron  system,  which  is  stable  

•  Removal  of  H-­‐  or  H•  generate  nonaromaBc  4  and  5  electron  systems  

•  RelaBvely  acidic  (pKa  =  16)  because  the  anion  is  stable  

1/28/16  

12  

Cycloheptatriene

•  Cycloheptatriene  has  3  conjugated  double  bonds  joined  by  a  CH2  

•  Removal  of  “H-­‐”  leaves  the  caBon  •  The  caBon  has  6  electrons  and  is  aromaBc  

Aromatic Heterocycles: Pyridine and Pyrrole

•  Heterocyclic  compounds  contain  elements  other  than  carbon  in  a  ring,  such  as  N,  S,  O,  P  

•  AromaBc  compounds  can  have  elements  other  than  carbon  in  the  ring  

•  There  are  many  heterocyclic  aromaBc  compounds  and  many  are  very  common  

•  Cyclic  compounds  that  contain  only  carbon  are  called  carbocycles    

•  Nomenclature  is  specialized  

1/28/16  

13  

Pyridine and Pyrimidine

•  A  six-­‐membered  heterocycle  with  a  nitrogen  atom  in  its  ring  •  π  electron  structure  resembles  benzene  (6  electrons)  •  The  nitrogen  lone  pair  electrons  are  not  part  of  the  aromaBc  system  

(perpendicular  orbital)  •  Pyridine  is  a  relaBvely  weak  base  compared  to  normal  amines  but  

protonaBon  does  not  affect  aromaBcity  

Pyrrole and Imidazole

•  A  five-­‐membered  heterocycle  with  one  nitrogen  •  π  electron  system  similar  to  that  of  cyclopentadienyl  anion  •  Four  sp2-­‐hybridized  carbons  with  4  p  orbitals  perpendicular  to  the  ring  and  

4  p  electrons  •   Nitrogen  atom  is  sp2-­‐hybridized,  and  lone  pair  of  electrons  occupies  a  p  

orbital  (6  π  electrons)  •  Since  lone  pair  electrons  are  in  the  aromaBc  ring,  protonaBon  destroys  

aromaBcity,  making  pyrrole  a  very  weak  base  

1/28/16  

14  

Learning check

•  Is  thiophene  aromaBc  or  anBaromaBc?    Explain  why  or  why  not.  

CH3

NH2

S

Why 4n +2?

•  When  electrons  fill  the  various  molecular  orbitals,  it  takes  two  electrons  (one  pair)  to  fill  the  lowest-­‐lying  orbital  and  four  electrons  (two  pairs)  to  fill  each  of  n  succeeding  energy  levels  

•  This  is  a  total  of  4n  +  2  

1/28/16  

15  

Polycyclic Aromatic Compounds

•  AromaBc  compounds  can  have  rings  that  share  a  set  of  carbon  atoms  (fused  rings)  

•  Compounds  from  fused  benzene  or  aromaBc  heterocycle  rings  are  themselves  aromaBc  

Naphthalene Orbitals

•  Three  resonance  forms  and  delocalized  electrons  

1/28/16  

16  

Learning check

•  Azulene  is  an  isomer  of  napththalene.    Is  azulene  aromaBc?    Draw  a  second  resonance  structure  of  azulene.  

Characterization of Aromatic Compounds

•  IR:  AromaBc  ring  C–H  stretching  at  3030  cm-­‐1  and  peaks  1450  to  1600  cm-­‐1  

1/28/16  

17  

Characterization of Aromatic Compounds

•  UV:  Peak  near  205  nm  and  a  less  intense  peak  in  255-­‐275  nm  range  

Characterization of Aromatic Compounds

•  1H  NMR:  AromaBc  H’s  strongly  deshielded  by  ring  and  absorb  between  δ  6.5  and  δ  8.0  •  Peak pattern is characteristic of positions of

substituents

1/28/16  

18  

Ring Currents

•  AromaBc  ring  oriented  perpendicular  to  a  strong  magneBc  field,  delocalized  π  electrons  producing  a  small  local  magneBc  field  •  Opposes applied field in middle of ring but reinforces

applied field outside of ring

13C NMR of Aromatic Compounds

•  Carbons  in  aromaBc  ring  absorb  at  δ  110  to  140  •  Shit  is  disBnct  from  alkane  carbons  but  in  same  range  as  

alkene  carbons  

1/28/16  

19  

Learning check

•  Propose  a  structure  for  an  aromaBc  compound  with  the  molecular  formula,  C8H9Br,  that  has  the  following  1H  NMR  spectra:  


Recommended