+ All Categories
Home > Documents > Array Structured Memories

Array Structured Memories

Date post: 01-Jan-2016
Category:
Upload: kuame-wong
View: 18 times
Download: 0 times
Share this document with a friend
Description:
Array Structured Memories. STMicro/Intel UCSD CAD LAB Weste Text. Memory Arrays. Feature Comparison Between Memory Types. Array Architecture. 2 n words of 2 m bits each If n >> m, fold by 2 k into fewer rows of more columns Good regularity – easy to design - PowerPoint PPT Presentation
74
EE141 1 Memory STMicro/Intel/UCSD/THNU Array Structured Memories STMicro/Intel UCSD CAD LAB Weste Text
Transcript
Page 1: Array Structured Memories

EE1411

MemorySTMicro/Intel/UCSD/THNU

Array Structured Memories

STMicro/Intel

UCSD CAD LAB

Weste Text

Page 2: Array Structured Memories

EE1412

MemorySTMicro/Intel/UCSD/THNU

Memory ArraysMemory ArraysMemory Arrays

Random Access Memory Serial Access Memory Content Addressable Memory(CAM)

Read/Write Memory(RAM)

(Volatile)

Read Only Memory(ROM)

(Nonvolatile)

Static RAM(SRAM)

Dynamic RAM(DRAM)

Shift Registers Queues

First InFirst Out(FIFO)

Last InFirst Out(LIFO)

Serial InParallel Out

(SIPO)

Parallel InSerial Out

(PISO)

Mask ROM ProgrammableROM

(PROM)

ErasableProgrammable

ROM(EPROM)

ElectricallyErasable

ProgrammableROM

(EEPROM)

Flash ROM

Page 3: Array Structured Memories

EE1413

MemorySTMicro/Intel/UCSD/THNU

Feature Comparison Between Feature Comparison Between Memory TypesMemory Types

Page 4: Array Structured Memories

EE1414

MemorySTMicro/Intel/UCSD/THNU

Array ArchitectureArray Architecture 2n words of 2m bits each If n >> m, fold by 2k into fewer rows of more columns

Good regularity – easy to design Very high density if good cells are used

row decoder

columndecoder

n

n-kk

2m bits

columncircuitry

bitline conditioning

memory cells:2n-k rows x2m+k columns

bitlines

wordlines

Page 5: Array Structured Memories

EE1415

MemorySTMicro/Intel/UCSD/THNU

Memory - Real OrganizationMemory - Real OrganizationS0

SR-1

RowDecoder

Log2RAddress

Lines

- - - - KxM bits - - - -

C of M bit words row 0

C of M bit words row 1

C of M bit words row 2

C of M bit words row N-2

C of M bit words row N-1

Array of N x K words------------- columns ------------ KxM

------------- rows R

------------

Log2CAddress

LinesColumn Select

M bit data word

Page 6: Array Structured Memories

EE1416

MemorySTMicro/Intel/UCSD/THNU

Hierarchical Memory ArchitectureHierarchical Memory Architecture

Global Data Bus

RowAddress

ColumnAddress

BlockAddress

Block Selector GlobalAmplifier/Driver

I/O

Control

Circuitry

Advantages:1. Shorter wires within blocks2. Block address activates only 1 block => power savings

Page 7: Array Structured Memories

EE1417

MemorySTMicro/Intel/UCSD/THNU

Array Organization Design IssuesArray Organization Design Issues aspect ratio should be relative square

Row / Column organisation (matrix) R = log2(N_rows); C = log2(N_columns) R + C = N (N_address_bits)

number of rows should be power of 2 number of bits in a row need not be…

sense amplifiers to speed voltage swing 1 -> 2R row decoder 1 -> 2C column decoder

M column decoders (M bits, one per bit)– M = output word width

Page 8: Array Structured Memories

EE1418

MemorySTMicro/Intel/UCSD/THNU

Simple 4x4 SRAM MemorySimple 4x4 SRAM Memory

A0

Row

Dec

oder

BLWL[0]

A1

A2

Column Decoder

sense amplifiers

write circuitry

!BL

WL[1]

WL[2]

WL[3]

bit line precharge

2 bit width: M=2R = 2 => N_rows = 2R = 4C = 1 N_columns = 2c x M = 4N = R + C = 3Array size = N_rows x N_columns = 16

clocking and control ->

enable

read precharge

A0!

WE! , OE!

Page 9: Array Structured Memories

EE1419

MemorySTMicro/Intel/UCSD/THNU

SRAM Read Timing (typical)SRAM Read Timing (typical) tAA (access time for address): time for stable

output after a change in address. tACS (access time for chip select): time for stable

output after CS is asserted. tOE (output enable time): time for low impedance

when OE and CS are both asserted. tOZ (output-disable time): time to high-impedance

state when OE or CS are negated. tOH (output-hold time): time data remains valid

after a change to the address inputs.

Page 10: Array Structured Memories

EE14110

MemorySTMicro/Intel/UCSD/THNU

SRAM Read Timing (typical)SRAM Read Timing (typical)stable stable stable

valid valid valid

tAA tOZ

tAA

tOE

tACS

tOZ tOE

Max(tAA, tACS)

tOH

ADDR

CS_L

OE_L

DOUT

WE_L = HIGH

Page 11: Array Structured Memories

EE14111

MemorySTMicro/Intel/UCSD/THNU

SRAM Architecture and Read SRAM Architecture and Read TimingsTimings

tAA

tACS

tOE

tOZ

tOH

Page 12: Array Structured Memories

EE14112

MemorySTMicro/Intel/UCSD/THNU

SRAM write cycle timing SRAM write cycle timing

~WE controlled

~CS controlled

Page 13: Array Structured Memories

EE14113

MemorySTMicro/Intel/UCSD/THNU

SRAM Architecture and Write SRAM Architecture and Write TimingsTimings

Write driver

tWP-tDW

Setup time = tDWtDH

Page 14: Array Structured Memories

EE14114

MemorySTMicro/Intel/UCSD/THNU

SRAM Cell DesignSRAM Cell Design

Memory arrays are large Need to optimize cell design for area and

performance Peripheral circuits can be complex

– 60-80% area in array, 20-40% in periphery

Classical Memory cell design 6T cell full CMOS 4T cell with high resistance poly load TFT load cell

Page 15: Array Structured Memories

EE14115

MemorySTMicro/Intel/UCSD/THNU

Anatomy of the SRAM CellAnatomy of the SRAM Cell

Write:•set bit lines to new data value

•b’ = ~b•raise word line to “high”

•sets cell to new state•Low impedance bit-lines

Read:•set bit lines high•set word line high•see which bit line goes low•High impedance bit lines

Page 16: Array Structured Memories

EE14116

MemorySTMicro/Intel/UCSD/THNU

SRAM Cell Operating PrincipleSRAM Cell Operating Principle

•Inverter Amplifies•Negative gain•Slope < –1 in middle•Saturates at ends

• Inverter Pair Amplifies•Positive gain•Slope > 1 in middle•Saturates at ends

Page 17: Array Structured Memories

EE14117

MemorySTMicro/Intel/UCSD/THNU

Bistable ElementBistable ElementStabilityRequire Vin = V2Stable at endpoints

recover from pertubationMetastable in middle

Fall out when perturbed

Ball on Ramp Analogy

Page 18: Array Structured Memories

EE14118

MemorySTMicro/Intel/UCSD/THNU

Cell Static Noise MarginCell Static Noise MarginCell state may be disturbed by•DC

•Layout pattern offset•Process mismatches

•non-uniformity of implantation•gate pattern size errors

•AC•Alpha particles•Crosstalk•Voltage supply ripple•Thermal noise

SNM (static noise margin) = Maximum Value of Vn

not flipping cell state

Page 19: Array Structured Memories

EE14119

MemorySTMicro/Intel/UCSD/THNU

SNM: Butterfly CurvesSNM: Butterfly Curves

1 12 2

2

2

1

1

SNM

SNM

Page 20: Array Structured Memories

EE14120

MemorySTMicro/Intel/UCSD/THNU

SNM for Poly Load CellSNM for Poly Load Cell

Page 21: Array Structured Memories

EE14121

MemorySTMicro/Intel/UCSD/THNU

12T SRAM Cell12T SRAM Cell Basic building block:

SRAM Cell 1-bit/cell (noise margin

again)

12-transistor (12T) SRAM cell Latch with TM-gate write Separately buffered read

bit

write

write_b

read

read_b

Page 22: Array Structured Memories

EE14122

MemorySTMicro/Intel/UCSD/THNU

6T SRAM Cell6T SRAM Cell Cell size accounts for most of array size

Reduce cell size at cost of complexity/margins 6T SRAM Cell Read:

Precharge bit, bit_b Raise wordline

Write: Drive data onto bit, bit_b Raise wordline

bit bit_b

word

Page 23: Array Structured Memories

EE14123

MemorySTMicro/Intel/UCSD/THNU

SRAM DesignSRAM Design

TI 65nm: 0.46x1.06um2

IBM 65nm: 0.41x1.25um2

Intel 65nm: 0.46x1.24um2

* Figures courtesy A. Chatterjee et al., P. Bai et al., and Z. Luo et al., Int. Electron Device Meeting Tech. Digest, 2004

Page 24: Array Structured Memories

EE14124

MemorySTMicro/Intel/UCSD/THNU

VDD

GND

SEL

B-

Q/

B+

Q

SEL MOSFET

PMOSPull Up

NMOSPull Down

SubstrateConnection

N WellConnection

Vertical 6T Cell LayoutVertical 6T Cell Layout

Page 25: Array Structured Memories

EE14125

MemorySTMicro/Intel/UCSD/THNU

SRAM Bitcell DesignSRAM Bitcell DesignWL

Schematic Layout Micrograph

Requirements of SRAM bitcell design Stable read operation: Do not disturb data when reading Stable write operation: Must write data within a specified time Stable data retention: Data should not be lost

Typical transistor sizing Cell ratio (= I(PD) / I(PG)) = 1.5 ~ 2.5 Pull-up ratio (= I(PU) / I(PG)) = 0.5

NL NL NR NRWLWL

VDD

VDDVSS

VSSBLB

BL

PG1

PU1

PD1

PG2

PU2

PD2

VDD

VSSBLB BL

NL NR

PG1

PG2

PD2

PD1

PU2

PU1PG1

PU1

PD1

PG2

PU2

PD2

Page 26: Array Structured Memories

EE14126

MemorySTMicro/Intel/UCSD/THNU

Detailed SRAM Bitcell LayoutDetailed SRAM Bitcell Layout

– Vertical: 2 poly pitch

– Horizontal: 5 contact pitch

– Poly-to-contact space > overlay + spacer + strain_layer + CD_control

(6.4nm*) ( 8nm**) (10nm**) ( 2.6nm*) = 27nm

– 1 poly pitch = 2 poly_to_contact + poly_width + contact_width 54 + 32 + 45** = 131 nm

A pitch is a multiple of a drawing grid for fine-grain pattern placement

Ex.: 5 grid per pitch drawing grid = (131/5) = 26 nm

Ex.: 6 grid per pitch drawing grid = (131/6) = 22 nmpoly

spacer

Strain layer

CNT* From ITRS 32nm tech.** From S. Verhaegen et al., SPIE Adv. Litho., 2008

Page 27: Array Structured Memories

EE14127

MemorySTMicro/Intel/UCSD/THNU

SRAM ReadSRAM Read

Precharge both bitlines high Then turn on wordline One of the two bitlines will

be pulled down by the cell Ex: A = 0, A_b = 1

bit discharges, bit_b stays high But A bumps up slightly

Read stability A must not flip N1 >> N2

bit bit_b

N1

N2P1

A

P2

N3

N4

A_b

word

0.0

0.5

1.0

1.5

0 100 200 300 400 500 600

time (ps)

word bit

A

A_b bit_b

Page 28: Array Structured Memories

EE14128

MemorySTMicro/Intel/UCSD/THNU

bit bit_b

N1

N2P1

A

P2

N3

N4

A_b

word

SRAM Read, 0 is stored in the cell

Page 29: Array Structured Memories

EE14129

MemorySTMicro/Intel/UCSD/THNU

SRAM WriteSRAM Write Drive one bitline high, other low Then turn on wordline Bitlines overpower cell Ex: A = 0, A_b = 1, bit = 1, bit_b = 0

Force A_b low, then A rises high Writability

Must overpower feedback P2 << N4 to force A_b low, N1 turns off, P1 turns on, raise A high as desired

time (ps)

word

A

A_b

bit_b

0.0

0.5

1.0

1.5

0 100 200 300 400 500 600 700

bit bit_b

N1

N2P1

A

P2

N3

N4

A_b

word

Page 30: Array Structured Memories

EE14130

MemorySTMicro/Intel/UCSD/THNU

SRAM SizingSRAM Sizing High bitlines must not overpower

inverters during reads But low bitlines must write new value

into cell bit bit_b

med

A

weak

strong

med

A_b

word

Page 31: Array Structured Memories

EE14131

MemorySTMicro/Intel/UCSD/THNU

SRAM Column ExampleSRAM Column Example

2

MoreCells

SRAM Cell

word_q1bit_v1f

bit_b_v1f

data_s1

write_q1

Bitline Conditioningread write

Page 32: Array Structured Memories

EE14132

MemorySTMicro/Intel/UCSD/THNU

DecodersDecoders n:2n decoder consists of 2n n-input AND gates

One needed for each row of memory Build AND from NAND or NOR gate

word0

word1

word2

word3

A0A1

A1

word

A0 1 1

1/2

2

4

8

16

word

A0

A1

1

1

11

4

8

word0

word1

word2

word3

A0A1

choose minimum size to reduce load on the address lines

staticPseudo-nMOS

Page 33: Array Structured Memories

EE14133

MemorySTMicro/Intel/UCSD/THNU

Single Pass-Gate MuxSingle Pass-Gate MuxA0A1

B0 B1 B2 B3

Y

bitlines propagate through 1 transistor

Page 34: Array Structured Memories

EE14134

MemorySTMicro/Intel/UCSD/THNU

Decoder LayoutDecoder Layout

Decoders must be pitch-matched to SRAM cell Requires very skinny gates

GND

VDD

word

buffer inverterNAND gate

A0A0A1A2A3 A2A3 A1

Page 35: Array Structured Memories

EE14135

MemorySTMicro/Intel/UCSD/THNU

Large DecodersLarge Decoders For n > 4, NAND gates become slow

Break large gates into multiple smaller gates

word0

word1

word2

word3

word15

A0A1A2A3

Page 36: Array Structured Memories

EE14136

MemorySTMicro/Intel/UCSD/THNU

PredecodingPredecoding Many of these gates are redundant

Factor out common

gates into predecoder Saves area Same path effort

A0

A1

A2

A3

word1

word2

word3

word15

word0

1 of 4 hotpredecoded lines

predecoders

Page 37: Array Structured Memories

EE14137

MemorySTMicro/Intel/UCSD/THNU

Page 38: Array Structured Memories

EE14138

MemorySTMicro/Intel/UCSD/THNU

Column CircuitryColumn Circuitry

Some circuitry is required for each column Bitline conditioning Sense amplifiers Column multiplexing

Each column must have write drivers and read sensing circuits

Page 39: Array Structured Memories

EE14139

MemorySTMicro/Intel/UCSD/THNU

Column MultiplexingColumn Multiplexing

Recall that array may be folded for good aspect ratio

Ex: 2k word x 16 folded into 256 rows x 128 columns Must select 16 output bits from the 128

columns Requires 16 8:1 column multiplexers

Page 40: Array Structured Memories

EE14140

MemorySTMicro/Intel/UCSD/THNU

Typical Column AccessTypical Column Access

Page 41: Array Structured Memories

EE14141

MemorySTMicro/Intel/UCSD/THNU

Pass Transistor Based Column Pass Transistor Based Column DecoderDecoder

BL3 BL2 BL1 BL0

Data

2 in

put

NO

R d

ecod

erA1

A0

S3

S2

S1

S0

Advantage: speed since there is only one extra transistor in the signal path

Disadvantage: large transistor count

!BL3 !BL2 !BL1 !BL0

!Data

Page 42: Array Structured Memories

EE14142

MemorySTMicro/Intel/UCSD/THNU

Tree Decoder MuxTree Decoder Mux Column MUX can use pass transistors

Use nMOS only, precharge outputs One design is to use k series transistors for 2k:1 mux

No external decoder logic needed

B0 B1 B2 B3 B4 B5 B6 B7 B0 B1 B2 B3 B4 B5 B6 B7A0

A0

A1

A1

A2

A2

Y Yto sense amps and write circuits

Page 43: Array Structured Memories

EE14143

MemorySTMicro/Intel/UCSD/THNU

Ex: 2-way Muxed SRAMEx: 2-way Muxed SRAM

MoreCells

word_q1

write0_q1

2

MoreCells

A0

A0

2

data_v1

write1_q1 two bits from two cells and selected by A0

2-to-1 mux

Page 44: Array Structured Memories

EE14144

MemorySTMicro/Intel/UCSD/THNU

Bitline ConditioningBitline Conditioning

Precharge bitlines high before reads

Equalize bitlines to minimize voltage difference when using sense amplifiers

bit bit_b

bit bit_b

Page 45: Array Structured Memories

EE14145

MemorySTMicro/Intel/UCSD/THNU

Sense Amplifier: Why?Sense Amplifier: Why? Bit line cap significant for large array

If each cell contributes 2fF,– for 256 cells, 512fF plus wire cap

Pull-down resistance is about 15K

RC = 7.5ns! (assuming V = Vdd)

Cannot easily change R, C, or Vdd, but can change V i.e. smallest sensed voltage Can reliably sense V as small as <50mV

ddV

VRC

Cell pull down

Xtor resistance

Cell current

Page 46: Array Structured Memories

EE14146

MemorySTMicro/Intel/UCSD/THNU

Sense AmplifiersSense Amplifiers

Bitlines have many cells attached Ex: 32-kbit SRAM has 256 rows x 128 cols 128 cells on each bitline

tpd (C/I) V Even with shared diffusion contacts, 64C of

diffusion capacitance (big C) Discharged slowly through small transistors (small

I) Sense amplifiers are triggered on small

voltage swing (reduce V)

Page 47: Array Structured Memories

EE14147

MemorySTMicro/Intel/UCSD/THNU

Differential Pair AmpDifferential Pair Amp

Differential pair requires no clock But always dissipates static power

bit bit_bsense_b sense

N1 N2

N3

P1 P2

Page 48: Array Structured Memories

EE14148

MemorySTMicro/Intel/UCSD/THNU

Clocked Sense AmpClocked Sense Amp Clocked sense amp saves power Requires sense_clk after enough bitline swing Isolation transistors cut off large bitline capacitance

bit_bbit

sense sense_b

sense_clk isolationtransistors

regenerativefeedback

Page 49: Array Structured Memories

EE14149

MemorySTMicro/Intel/UCSD/THNU

Sense Amp WaveformsSense Amp Waveforms

200mV

2.5V

1ns / div

bit

bit’

wordline

sense clk sense clk

BIT

BIT’

wordline

begin precharging bit lines

Page 50: Array Structured Memories

EE14150

MemorySTMicro/Intel/UCSD/THNU

Write Driver CircuitsWrite Driver Circuits

Page 51: Array Structured Memories

EE14151

MemorySTMicro/Intel/UCSD/THNU

Dual-Ported SRAMDual-Ported SRAM

Simple dual-ported SRAM Two independent single-ended reads Or one differential write

Do two reads and one write by time multiplexing Read during ph1, write during ph2

bit bit_b

wordBwordA

wordA reads bit_b (complementary)

wordB reads bit (true)

Page 52: Array Structured Memories

EE14152

MemorySTMicro/Intel/UCSD/THNU

Multiple PortsMultiple Ports

We have considered single-ported SRAM One read or one write on each cycle

Multiported SRAM are needed for register files Examples:

Multicycle MIPS must read two sources or write a result on some cycles

Pipelined MIPS must read two sources and write a third result each cycle

Superscalar MIPS must read and write many sources and results each cycle

Page 53: Array Structured Memories

EE14153

MemorySTMicro/Intel/UCSD/THNU

Multi-Ported SRAMMulti-Ported SRAM Adding more access transistors hurts read stability Multiported SRAM isolates reads from state node Single-ended design minimizes number of bitlines

bA

wordBwordA

wordDwordC

wordFwordE

wordG

bB bC

writecircuits

readcircuits

bD bE bF bG

Page 54: Array Structured Memories

EE14154

MemorySTMicro/Intel/UCSD/THNU

Logical effort of RAMsLogical effort of RAMs

Page 55: Array Structured Memories

EE14155

MemorySTMicro/Intel/UCSD/THNU

Page 56: Array Structured Memories

EE14156

MemorySTMicro/Intel/UCSD/THNU

Twisted BitlinesTwisted Bitlines

Sense amplifiers also amplify noise Coupling noise is severe in modern processes Try to couple equally onto bit and bit_b Done by twisting bitlines

b0 b0_b b1 b1_b b2 b2_b b3 b3_b

Page 57: Array Structured Memories

EE14157

MemorySTMicro/Intel/UCSD/THNU

Alternative SRAM CellsAlternative SRAM Cells

Low Voltage/High Leakage/Process Variations crowd the operating margins of conventional SRAM

Alternative Sense Amplifiers, column and row arrangements, adaptive timing, smaller hierarchy, redundant and spare rows/columns have all been addressed in the literature with some success.

Some problems come from the cell design itself– modifying the cell can break conflicting demands for optimization

Page 58: Array Structured Memories

EE14158

MemorySTMicro/Intel/UCSD/THNU

10T10T Features

BL Leakage reduction Approaches

Separated Read port Stacked effect by M10

Performance 400mV@475kHz, 3.28uW 320mV W/O Read error@27℃ 380mV W/O Write error@27℃ Vmin=300mV@1% bit errors 256 bits/BL

A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation B. Calhoun & A. Chandrakasan, JSSC, 2007B. Calhoun & A. Chandrakasan, JSSC, 2007

Page 59: Array Structured Memories

EE14159

MemorySTMicro/Intel/UCSD/THNU

10T10T Features

BL leakage reduction of data Approaches

Virtual GND Replica Reverse Short Channel Effect BL Writeback

Performance 0.2V@100kHz, 2uW 1024 bits/BL 130nm process technology

A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage andA High-Density Subthreshold SRAM with Data-Independent Bitline Leakage andVirtual Ground Replica SchemeVirtual Ground Replica Scheme

Chris Kim, ISSCC, 2007Chris Kim, ISSCC, 2007

Page 60: Array Structured Memories

EE14160

MemorySTMicro/Intel/UCSD/THNU

10T10T Features

ST cell array can work @160mV 2.1x larger than 6T cell

Approaches Schmitt Trigger based cell Good stability @ LowVDD Good scalability

Performance Read SNM↑1.56x @VDD=0.4V More power saving Leakage power↓18% Dynamic power↓50% Hold SNM @150mV is 2.3x of 6T 130nm process

A 160mV Robust Schmitt Trigger Based Subthreshold SRAMA 160mV Robust Schmitt Trigger Based Subthreshold SRAM

K. Roy, JSSC, 2007K. Roy, JSSC, 2007

Page 61: Array Structured Memories

EE14161

MemorySTMicro/Intel/UCSD/THNU

9T9T Features

Modifying from 10Tcell 17% more area than 6T cell 16.5% less area than 10T cell

Approaches More leakage saving than 8T cell Separated read port

Performance 128 bits/BL @350mV ,100MHz Hold SNM=117mV @300mV Stand-by power: 6uW 65nm process

A 100MHz to 1GHz, 0.35V to 1.5V Supply 256x64 SRAM Block using A 100MHz to 1GHz, 0.35V to 1.5V Supply 256x64 SRAM Block using Symmetrized 9T SRAM cell with controlled ReadSymmetrized 9T SRAM cell with controlled Read

S. A. Verkila,et al, Conference on VLSI Design, 2008S. A. Verkila,et al, Conference on VLSI Design, 2008

Page 62: Array Structured Memories

EE14162

MemorySTMicro/Intel/UCSD/THNU

9T9T Features

Read stability enhancement Leakage power reduction

Approaches Separated read port Min. sizing of N3, N4 and negative

Vg7, and larger Node3 during stand-by mode for leakage reduction

Performance 2x R-SNM cf. 6T 22.9% leakage power reduction 65 nm PTM

High Read Stability and Low Leakage Cache Memory CellHigh Read Stability and Low Leakage Cache Memory CellZ. Liu and V. KursunZ. Liu and V. Kursun, IEEE Conference, 2007, IEEE Conference, 2007

Page 63: Array Structured Memories

EE14163

MemorySTMicro/Intel/UCSD/THNU

8T8T Features

No read disturb About 30% area penalty

Approaches Separate Read & Write WL Separated read port

Performance Larger SNM than 6T Better scalability than 6T

Stable SRM Cell Design for the 32nm Node and BeyondStable SRM Cell Design for the 32nm Node and BeyondLeland Chang et. al, Leland Chang et. al, Symp. on VLSI,2005Symp. on VLSI,2005

Page 64: Array Structured Memories

EE14164

MemorySTMicro/Intel/UCSD/THNU

8T8T Features

No read disturb Low VDD(350mV) Low subthreshold(Sub. Vt) leakage

Approaches Separate Read &Write WL Separated read port Foot-drivers reduce the sub.Vt leakage

Performance 65nm process ,128 cells/row Operating @ 25KHz 2.2uW leakage power

A 256kb 65nm 8T Subhreshold SRAM Employing Sense-Amplifier RedundancyA 256kb 65nm 8T Subhreshold SRAM Employing Sense-Amplifier RedundancyN. Verma ,and A. P. Chandrakasan, JSSC,2008N. Verma ,and A. P. Chandrakasan, JSSC,2008

Page 65: Array Structured Memories

EE14165

MemorySTMicro/Intel/UCSD/THNU

7T7T Features

23% smaller than Conv. 6T bitcell Low VDD(440mV) Not suit for low speed demand

Approaches Separate Read &Write WL Seperate Read &Write BL Data protection nMOS:N5

Performance 20ns access [email protected] 90nm process

A Read-Static-Noise-Margin-Free SRAM Cell forLow-VDD andA Read-Static-Noise-Margin-Free SRAM Cell forLow-VDD andHigh-Speed Applications NEC, JSSC, 2006High-Speed Applications NEC, JSSC, 2006

Page 66: Array Structured Memories

EE14166

MemorySTMicro/Intel/UCSD/THNU

7T7T Features

90% power saving Approaches

BL swing: VDD/6 Performance

0.35um proces Leakage not

controlled well

90% Write Power-Saving SRAM Using Sense-Amplifying Memory Cell90% Write Power-Saving SRAM Using Sense-Amplifying Memory CellT. Sakurai et. al., JSSC, 2004T. Sakurai et. al., JSSC, 2004

Page 67: Array Structured Memories

EE14167

MemorySTMicro/Intel/UCSD/THNU

7T7T Features

Low write power SNM is effected by “Read pattern” (Read 0-N2,P2,N4 & Read 1-

N1,P1,N3,N5) 17.5% larger than 6T

Approaches Reducing write power by cut off the (feedback) connection to BL

Performance 0.18um proces 49% write power saving

Novel 7T SRAM Cell For Low Power Cache DesignNovel 7T SRAM Cell For Low Power Cache DesignR. Aly, M. Faisal and A. BayoumiR. Aly, M. Faisal and A. Bayoumi

IEEE SoC Conf., 2005IEEE SoC Conf., 2005

Page 68: Array Structured Memories

EE14168

MemorySTMicro/Intel/UCSD/THNU

6T6T• Features

– Single-ended– Low VDD

• Approaches– Adjustable header/footer (virVDD,

virGND)• Performance

– VDD range: 1.2V~193mV– Vmin=170mV with 2% redundancy

BL

WL

WL

A Sub-200mV 6T SRAM in 0.13μm CMOSA Sub-200mV 6T SRAM in 0.13μm CMOSISSCC, 2007ISSCC, 2007

Page 69: Array Structured Memories

EE14169

MemorySTMicro/Intel/UCSD/THNU

5T5T• Features

– Single-ended– Single BL, Single WL– Area 23% smaller than 6T

• Approaches– BL precharge to Vpc=600mV– Asymmetric cell sizing– Differential SA is used for Read

• Performance– 75% BL leakage reduction cf. 6T– SNM is 50% lower than the 6T’s– 0.18um process

A High Density, Low Leakage, 5T SRAM for Embeded CachesA High Density, Low Leakage, 5T SRAM for Embeded CachesI. Carlson et.al., ESSCIRC, 2004I. Carlson et.al., ESSCIRC, 2004

Low-skewedInverter

High-skewedInverter

Page 70: Array Structured Memories

EE14170

MemorySTMicro/Intel/UCSD/THNU

Example Electrical Design: UCSD Example Electrical Design: UCSD 32nm prototype32nm prototype

• Butterfly (read stability)• N-curves (read and write

stability)

• Iread (read stability and access time)

• VDDHOLD (data retention)

• Ileakage (power and data retention)

• SPICE Model: – 32nm HKMG (high-K/metal-

gate) from PTM• Reference Design

– Scaled bitcell from TSMC 90nm bitcell

TSMC 90nm 32nm scaled from

TSMC 90nm(REFERENCE)

32nm proposed(for 30x12, 25x12)

L (nm) W (nm) L (nm) W (nm) L (nm) W (nm)

Pull-up 100 100 32 32 32 44

Pull-down 100 175 32 56 32 88

Pass-Gate 115 120 37 38 32 44

Page 71: Array Structured Memories

EE14171

MemorySTMicro/Intel/UCSD/THNU

Butterfly and N-CurvesButterfly and N-Curves• Measure method

– Increase VR and measure VL– Increase VL and measure VR– Make voltage transfer curve in

VR and VL axes Butterfly

– Measure Iin N-curve

Page 72: Array Structured Memories

EE14172

MemorySTMicro/Intel/UCSD/THNU

IIreadread, I, Ileakageleakage and VDD and VDDHOLDHOLD

REFERENCE32nm proposed

(for 30x12 and 25x12)

Iread 41.2 uA 66.7 uA

Ileakage 85.4 nA 142.7 nA

VDDHOLD 110 mV 118 mV

Iread

Measure bitline current when WL switches to high

ILEAKAGE

Measure VDD (or VSS) current when WL=0

VDDHOLD

Decreasing VDD voltage, while WL=0 Measure minimum VDD voltage when

| V(nl) - V(nr) | = ‘sensing margin’

A1 A2

B1 B2

C1 C2 nl nr

VDD

WL

BLb BL

‘0’‘1’

‘1’ ‘1’

(100mV is assumed)

Page 73: Array Structured Memories

EE14173

MemorySTMicro/Intel/UCSD/THNU

Corner Simulation: Butterfly and N-Corner Simulation: Butterfly and N-CurveCurve

• Three candidate layouts across operating corners show little difference

(NN, 25degC, 1.0V)(SS, 125degC, 1.0V) (FF, -40degC, 1.0V)

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 0.2 0.4 0.6 0.8 1 1.2

25x10, FF, -40degC25x12, FF, -40degC30x12, FF, -40degC

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 0.2 0.4 0.6 0.8 1 1.2

25x10, NN, 25degC25x12, NN, 25degC30x12, NN, 25degC

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 0.2 0.4 0.6 0.8 1 1.2

25x10, SS, 125degC25x12, SS, 125degC30x12, SS, 125degC

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

25x1025x1230x12

-1.5E-04

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

1.0E-041 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

25x1025x1230x12

-1.0E-04

-5.0E-05

0.0E+00

5.0E-05

1.0E-04

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101

25x1025x1230x12

Page 74: Array Structured Memories

EE14174

MemorySTMicro/Intel/UCSD/THNU

Corner Simulation: ICorner Simulation: Iread read ,, IIleakage leakage andand VDDVDDHOLD HOLD

VDDHOLD (V)

0.112

0.114

0.116

0.118

0.12

0.122

0.124

0.126

0.128

0.13

25x10 25x12 30x12 25x10 25x12 30x12 25x10 25x12 30x12

FF, -40 NN, 25 SS, 125

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

FF, -40 25x10

FF, -40 25x12

FF, -40 30x12

NN, 25 25x10

NN, 25 25x12

NN, 25 30x12

SS, 125 25x10

SS, 125 25x12

SS, 125 30x120.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

FF, -40 25x10

FF, -40 25x12

FF, -40 30x12

NN, 25 25x10

NN, 25 25x12

NN, 25 30x12

SS, 125 25x10

SS, 125 25x12

SS, 125 30x12

Iread (A) Ileakage (A)

VDD (V)


Recommended