+ All Categories
Home > Documents > ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive...

ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive...

Date post: 12-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
10
Supporting Information Revealing the Interrelation between Hydrogen Bonds and Interfaces in Graphene/PVA Composites towards Highly Electrical Conductivity Lijun Yang, Wei Weng, Xiang Fei*, Liang Pan, Xinao Li, Wenting Xu, Zexu Hu, Meifang Zhu* State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Author information* Corresponding author. E-mails: [email protected] (Meifang Zhu). [email protected] (Xiang Fei) First author: [email protected](Lijun Yang) S1
Transcript
Page 1: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Supporting Information

Revealing the Interrelation between Hydrogen Bonds and Interfaces in Graphene/PVA

Composites towards Highly Electrical Conductivity

Lijun Yang, Wei Weng, Xiang Fei*, Liang Pan, Xinao Li, Wenting Xu, Zexu Hu, Meifang Zhu*

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science

and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China;

Author information:* Corresponding author.

E-mails: [email protected] (Meifang Zhu).

[email protected] (Xiang Fei)

First author: [email protected](Lijun Yang)

S1

Page 2: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Figure S1. SEM images of loosely bound blocks after pre-aggregation treated. (a,b) SRGO; (c,d) HRGO.

S2

Page 3: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Figure S2. The FT-IR spectrum of different filler content in the PVA matrix.

S3

Page 4: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Figure S3. The variable temperature infrared spectrum of PVA/HRGO.

S4

Page 5: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Figure S4. Variable temperature FT-IR spectrum of PVA.

S5

Page 6: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Table S1. The fitting results of various kinds of hydrogen bonds in PVA-SRGO nanocomposite.

Temperature(C)

Hydrogen bond typeWavenumber

(cm1 )Peak area

Relative strength (%)

Standard deviation

65

Cyclic OH Ⅰ 3214 43.50 26.7 0.20OH…ether O Ⅱ 3304 43.65 26.8 1.75

Self-associated OH Ⅲ 3408 74.08 45.5 3.21OH…π Ⅳ 3513 1.47 0.9 0.13

85

Cyclic OH Ⅰ 3216 41.76 26.4 0.10OH…ether O Ⅱ 3303 38.76 24.5 2.01

Self-associated OH Ⅲ 3408 76.07 48.1 1.57OH…π Ⅳ 3514 1.64 1.0 0.22

105

Cyclic OH Ⅰ 3219 38.89 25.3 2.45

OH…ether O Ⅱ 3302 30.79 20.0 2.02Self-associated OH Ⅲ 3409 81.57 53.0 3.30

OH…π Ⅳ 3514 2.69 1.8 0.62

Table S2. The fitting results of various kinds of hydrogen bonds in PVA-HRGO nanocomposite.

Temperature(C)

Hydrogen bond typeWavenumber

(cm1)Peak area

Relative strength (%)

Standard deviation

65

Cyclic OHOH…ther O

Self-associated OHOH…π

ⅠⅡⅢⅣ

3218 3304 3410 3512

59.3174.66113.322.73

23.729.945.31.1

0.431.263.051.01

85

Cyclic OHOH…ether O

Self-associated OHOH…π

ⅠⅡⅢⅣ

3220 3303 3410 3513

56.6565.17116.883.56

23.426.948.21.5

1.323.862.240.80

105

Cyclic OHOH…ether O

Self-associated OHOH…π

ⅠⅡⅢⅣ

3221 3299 3408 3511

54.7654.03122.173.82

23.323.052.01.6

2.163.982.740.95

S6

Page 7: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Table S3. Comparison on conductivity between this work and the graphene and rGO-containing nanocomposite.

Filler Matrix*Maximum Loading

(wt%)Maximum

conductivity (S m1)Ref.

rGO

PVDF 7 ~10 [S1]PS 6.4 ~1 [S2]

PVA 7.5 ~10 [S3]PVA 14 5.92 [S4]PVA 50 ~1 [S5]

Epoxy 14 ~1 [S6]Epoxy 3 0.9 [S7]

Chitosan 6 1.2 [S8]Epoxy 6.6 0.16 [S9]

Graphene

PET 2.4 0.074 [S10]

SBR 15 3.7 [S11]HDPE 18 0.1 [S12]PVDF 4 0.031 [S13]

PU 10 0.25 [S14]PMMA 5 3.11 [S15]

UHMWPE 40 9.09 [S16]Epoxy 2 0.01 [S17]

PU 40 0.18 [S18]

S7

* PET: polyethylene glycol terephthalatePS: polystyrene PVDF: poly(vinylidene fluoride) HDPE: high-density polyethylene UHMWPE: Ultrahigh molecular weight polyethylene.

PVA: poly (vinyl alcohol); PMMA: polymethyl methacrylate; PU: polyurethane;SBR: styrene butadiene rubber;

Page 8: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Figure S5. The relationship between drawing temperature and maximum drawing ratio and conductivity.

S8

Page 9: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

Reference[S1] V. Eswaraiah, K. Balasubramaniam, S. Ramaprabhu, One-pot synthesis of conducting

graphene–polymer composites and their strain sensing application, Nanoscale 4 (2012) 1258-

1262.

[S2] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D.

Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature 442 (2006) 282-286.

[S3] H.J. Salavagione, G. Martínez, M.A. Gómez, Synthesis of poly(vinyl alcohol)/reduced

graphite oxide nanocomposites with improved thermal and electrical properties, Journal of

Materials Chemistry 19 (2009) 5027-5032.

[S4] J.-H. Yang, Y.-D. Lee, Highly electrically conductive rGO/PVA composites with a network

dispersive nanostructure, Journal of Materials Chemistry 22 (2012) 8512-8517.

[S5] S. Mo, L. Peng, C. Yuan, C. Zhao, W. Tang, C. Ma, J. Shen, W. Yang, Y. Yu, Y. Min, A.J.

Epstein, Enhanced properties of poly(vinyl alcohol) composite films with functionalized graphene,

RSC Advances 5 (2015) 97738-97745.

[S6] Y. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, Highly Electrically

Conductive Nanocomposites Based on PolymerInfused Graphene Sponges, Scientific Reports 4

(2014) 4652.

[S7] N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.-K. Kim, Highly

Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-

Performance Electromagnetic Interference Shielding, Adv. Mater. 26 (2014) 5480-5487.

[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong

biomimetic chitosan/reduced graphene oxide composite films, Journal of Materials Chemistry 20

(2010) 9032-9036.

[S9] G. Tang, Z.-G. Jiang, X. Li, H.-B. Zhang, Z.-Z. Yu, Simultaneous functionalization and

reduction of graphene oxide with polyetheramine and its electrically conductive epoxy

nanocomposites, Chinese Journal of Polymer Science 32 (2014) 975-985.

[S10] H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu,

Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt

compounding, Polymer 51 (2010) 1191-1196.

[S11] F. Wang, J. Mao, The self-aligning behaviour of graphene nanosheets in the styrene

butadiene rubber by controlling curing temperature, Fullerenes, Nanotubes and Carbon

Nanostructures 26 (2018) 61-68.

[S12] D. Xiang, L. Wang, Y. Tang, C. Zhao, E. Harkin-Jones, Y. Li, Effect of phase transitions on

the electrical properties of polymer/carbon nanotube and polymer/graphene nanoplatelet

composites with different conductive network structures, Polymer International 67 (2018) 227-

235.

[S13] Y.C. Li, S.C. Tjong, R.K.Y. Li, Electrical conductivity and dielectric response of

poly(vinylidene fluoride)–graphite nanoplatelet composites, Synthetic Metals 160 (2010) 1912-

S9

Page 10: ars.els-cdn.com · Web view[S8] X. Wang, H. Bai, Z. Yao, A. Liu, G. Shi, Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films,

1919.

[S14] Q. Zhang, X. Xu, H. Li, G. Xiong, H. Hu, T.S. Fisher, Mechanically robust honeycomb

graphene aerogel multifunctional polymer composites, Carbon 93 (2015) 659-670.

[S15] H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough Graphene−Polymer

Microcellular Foams for Electromagnetic Interference Shielding, ACS Applied Materials &

Interfaces 3 (2011) 918-924.

[S16] M.H. Al-Saleh, Electrical and electromagnetic interference shielding characteristics of

GNP/UHMWPE composites, J. Phys. D: Appl. Phys. 49 (2016) 195302.

[S17] S. Chandrasekaran, C. Seidel, K. Schulte, Preparation and characterization of graphite nano-

platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties, European

Polymer Journal 49 (2013) 3878-3888.

[S18] Y. Ding, J. Zhu, C. Wang, B. Dai, Y. Li, Y. Qin, F. Xu, Q. Peng, Z. Yang, J. Bai, W. Cao, Y.

Yuan, Y. Li, Multifunctional three-dimensional graphene nanoribbons composite sponge, Carbon

104 (2016) 133-140.

S10


Recommended