+ All Categories
Home > Documents > ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe...

ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe...

Date post: 10-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
12
SUPPORTING INFORMATION Self-Assembled 3D hierarchical MnCO 3 /NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions Rajmohan Rajendiran a , Nallal Muthuchamy b , Kang Hyun Park b , Oi Lun Li c *, Hee-Je Kim a , Kandasamy Prabakar a * a Department of Electrical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea. b Department of Chemistry, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea. c School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea Figure S1 XPS survey of Ni-FeLDH, Ni-MnCO , and Ni-
Transcript
Page 1: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

SUPPORTING INFORMATION

Self-Assembled 3D hierarchical MnCO3/NiFe layered

double hydroxides as a superior electrocatalysts for the

oxygen evolution reactions

Rajmohan Rajendirana, Nallal Muthuchamyb, Kang Hyun Parkb, Oi Lun Lic*, Hee-Je Kima,

Kandasamy Prabakara*

aDepartment of Electrical Engineering, Pusan National University, 2 Busandaehak-ro

63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea.

bDepartment of Chemistry, Pusan National University, 2 Busandaehak-ro 63beon-gil,

Geumjeong-gu, Busan-46241, Republic of Korea.

c School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-

ro 63beon-gil, Geumjeong-gu, Busan-46241, Republic of Korea

Figure S1 XPS survey of Ni-FeLDH, Ni-MnCO3, and Ni-FeLDH@MnCO3.

Page 2: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Figure S2 (a) Polarization curves and (b) Tafel plot for all samples and standard Ir/C before iR-correction.

Page 3: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Figure S3. LSV curve normalized by mass loading and bar graph of mass activity of Ni-FeLDH, Ni-MnCO3 and Ni-FeLDH@MnCO3 at 1.58 V vs. RHE.

Page 4: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Figure S4 Cyclic voltammograms in the region of 0.05 – 0.15 V for Ni-FeLDH, Ni-MnCO3, and Ni-FeLDH@MnCO3

Page 5: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Figure S5. OER plot Ni-FeLDH@MnCO3 powder coated glassy carbon disk and Pt ring electrode in RRDE setup

Page 6: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Table S1 EIS analysis of Ni-FeLDH@MnCO3 at various potential vs. RHE in 1M KOH

Potential V

vs RHE

Rs Rct Cdl (F s(a-1)) Rads Cads (F s(a-1))

1.52 0.685 2.337 0.042 0.170 0.173

1.54 0.683 1.017 0.016 0.133 0.188

1.56 0.684 0.562 0.035 0.156 0.163

1.58 0.687 0.381 0.028 0.139 0.165

1.60 0.689 0.298 0.015 0.108 0.185

1.62 0.691 0.249 0.017 0.081 0.181

1.64 0.686 0.134 0.017 0.162 0.111

Page 7: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Table S2: Comparison of various earth abundant metal based electrocatalysts

CatalystOver-

potential (mV)

Geometrical

Electrode area (cm2)

J (mA cm-2)

Tafel slope (mV decade-1)

Electrode Electrolyte Method Ref

Ni-FeLDH@MnC

O3

275 1 10 45 Ni foam 1 M KOH Hydrothermal

This work

Ni-FeLDH@MnC

O3

309 1 50 45 Ni foam 1 M KOH Hydrothermal

This work

Ni-FeLDH@MnC

O3

328 1 100 45 Ni foam 1 M KOH Hydrothermal

This work

Page 8: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Pa-NiFe LDH NS/NIF 326 2 100 157 Ni foam 1 M KOH Hydrothe

rmal [1]

NiFe-LDH/NiCo2O4

350 - 50 53 Ni foam 1 M KOH Hydrothermal [2]

Ni2.5Co0.5Fe LDH/NF 275 2 10 99 Ni foam 0.1 M

KOH

Electrode depositio

n[3]

CQD/NiFe-LDH 305 0.94 10 35

Powder coated on

Glassy carbon

1 M KOH Hydrothermal [4]

NiCo-LDH 430 - 50 40 Carbon paper

0.1 M KOH

Hydrothermal

continuous flow

synthesis

[5]

MCNTs@ (Ni,Co)3Si2O5(

OH)4440 0.94 10 96 Glassy

carbon0.1 M KOH

solvothermal [6]

MnFe2O4/NiCo2O4

334 1.57 10 46 Glassy carbon

0.1 M KOH

Thermal decompo

sition[7]

NiCo-NiCoO2@NC 318 0.94 10 76 Glassy

carbon 1 M KOH Hydrothermal [8]

CoFe-LDH 360 - 50 92 Ni foam 1 M KOHElectro-depositio

n[9]

Page 9: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

LiFe-LDH 380 - 50 104 Ni foam 1 M KOHElectro-depositio

n[9]

NiFe-LDH 300 - 50 52 Ni foam 1 M KOHElectro-depositio

n[9]

Ni-Fe LDH nanoplatelets 360 0.25 10 - Ni foam 1 M KOH

Precipitation

method[10]

Fe-CoOOH/G 330 0.196 10 37 Glassy carbon 1 M KOH Reflux

method [11]

References

[1] J. Xie, H. Qu, F. Lei, X. Peng, W. Liu, L. Gao, P. Hao, G. Cui, B. Tang, Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis, J. Mater. Chem. A. 6 (2018) 16121–16129. doi:10.1039/c8ta05054f.

[2] Z. Wang, S. Zeng, W. Liu, X. Wang, Q. Li, Z. Zhao, F. Geng, Coupling Molecularly Ultrathin Sheets of NiFe-Layered Double Hydroxide on NiCo2O4 Nanowire Arrays for Highly Efficient Overall Water-Splitting Activity, ACS Appl. Mater. Interfaces. 9 (2017) 1488–1495. doi:10.1021/acsami.6b13075.

[3] X. Zhu, C. Tang, H.F. Wang, B.Q. Li, Q. Zhang, C. Li, C. Yang, F. Wei, Monolithic-structured ternary hydroxides as freestanding bifunctional electrocatalysts for overall water splitting, J. Mater. Chem. A. 4 (2016) 7245–7250. doi:10.1039/c6ta02216b.

[4] D. Tang, J. Liu, X. Wu, R. Liu, X. Han, Y. Han, H. Huang, Y. Liu, Z. Kang, Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation, ACS Appl. Mater. Interfaces. 6 (2014) 7918–7925. doi:10.1021/am501256x.

[5] F. Meng, L. Li, H. Liang, L. Xiu, A. Forticaux, Z. Wang, M. Cabán-Acevedo, S. Jin, Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis, Nano Lett. 15 (2015) 1421–1427. doi:10.1021/nl504872s.

[6] C. Qiu, J. Jiang, L. Ai, When Layered Nickel-Cobalt Silicate Hydroxide Nanosheets Meet Carbon Nanotubes: A Synergetic Coaxial Nanocable Structure for Enhanced

Page 10: ars.els-cdn.com · Web viewSupporting information Self-Assembled 3D hierarchical MnCO 3 / NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions

Electrocatalytic Water Oxidation, ACS Appl. Mater. Interfaces. 8 (2016) 945–951. doi:10.1021/acsami.5b10634.

[7] Y.-Q. Zhang, M. Li, B. Hua, Y. Wang, Y.-F. Sun, J.-L. Luo, A strongly cooperative spinel nanohybrid as an efficient bifunctional oxygen electrocatalyst for oxygen reduction reaction and oxygen evolution reaction, Appl. Catal. B Environ. 236 (2018) 413–419. doi:10.1016/j.apcatb.2018.05.047.

[8] Y. Xiao, P. Zhang, X. Zhang, X. Dai, Y. Ma, Y. Wang, Y. Jiang, M. Liu, Y. Wang, Bimetallic thin film NiCo-NiCoO2@NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media, J. Mater. Chem. A. 5 (2017) 15901–15912. doi:10.1039/c7ta03629a.

[9] M. Wei, H. An, Z. Wang, S. Xu, X. Duan, Z. Li, M. Shao, D.G. Evans, Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions, Chem. Sci. 6 (2015) 6624–6631. doi:10.1039/c5sc02417j.

[10] S. Jaśkaniec, C. Hobbs, A. Seral-Ascaso, J. Coelho, M.P. Browne, D. Tyndall, T. Sasaki, V. Nicolosi, Low-temperature synthesis and investigation into the formation mechanism of high quality Ni-Fe layered double hydroxides hexagonal platelets, Sci. Rep. 8 (2018) 4179. doi:10.1038/s41598-018-22630-0.

[11] X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, J. Qiu, Ultrasensitive Iron-Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution, Adv. Energy Mater. 7 (2017). doi:10.1002/aenm.201602148.


Recommended