+ All Categories
Home > Documents > Article1379670771_Doust Et Al

Article1379670771_Doust Et Al

Date post: 07-Jul-2018
Category:
Upload: rio-ananda-putra
View: 212 times
Download: 0 times
Share this document with a friend

of 15

Transcript
  • 8/18/2019 Article1379670771_Doust Et Al

    1/15

     

    Journal of Petroleum and Gas Engineering Vol. 3(6), pp. 99-113, November 2012Available online at http://www.academicjournals.org/JPGEDOI: 10.5897/JPGE11.056ISSN 2141-2677 ©2012 Academic Journals

     

    Full Length Research Paper  

    Simulation, control and sensitivity analysis of crude oildistillation unit

    Akbar Mohammadi Doust, Farhad Shahraki and Jafar Sadeghi*

    Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran.

    Accepted 23 April, 2012

    Steady-state and dynamic simulation play important roles in investigation of refinery units. Therefore,simulation can help this investigation and behavior assessment. In this paper, simulation was done by

    commercial software. In fact, because of solving many state equations simultaneously and usingcontrol theory, dynamic simulation has more significant impact than steady-state simulation. Flow,pressure, temperature and level (FPTL) were controlled by Proportional-Integral-Derivative (PID)controllers in the unit. The case study is Kermanshah Refinery. The behavior of the FPTL controllers indynamic regime were observed after the changing of the crude oil feed flow rate by 3% for 5 h. ASTMD86 boiling points (compositions) of two simulations were compared with experimental data. Finally,system sensitivity to inputs variables was investigated in the MATLAB®/Simulink

    TM by transferring the

    dynamic results. Transient responses to changes such as feed temperature, feed flow rates, steam flowrates and the duties of the reboilers of columns in Gasoline unit were plotted. Among of alldisturbances, the system is more sensitive to changes in the feed temperature, the duties of thereboilers of columns in gasoline unit and simultaneous combination of above changes.

    Key words:  Steady-state, dynamic, PID controller, ASTM D86, Sensitivity, MATLAB simulink, transition

    responses.

    INTRODUCTION

    Today, distillation of crude oil is an important process inalmost all of the refineries. Simulation of the process andanalysis of the resulting data in both steady-state anddynamic conditions are fundamental steps in decreasingof the energy costs and controlling the quality of the oilproducts. The dynamic simulation when adding someProportional-Integral-Derivative (PID) controllers andsetting them to have desired responses, has moresignificant impacts and challenges than steady-statesimulation in crude oil distillation units. A PID controller isa controller that includes three elements (Araki, 2002).PID control systems have exactly the same structure asdepicted in Figure 1, where the PID controller is used as

    *Corresponding author. E-mail: [email protected]: +989155494265.

     

    the compensator C(s). The transfer function of a PIDcontroller is:

    1( ) 1P D

     I 

    C s K ss

    τ  τ  

    = + +

      (1)

    All the three elements are kept in action. Here, PK 

     I τ   and   Dτ   are positive parameters, which are

    respectively referred to as proportional gain, integral timeand derivative time, and as a whole, as PID parametersThese parameters can be adjusted using some empiricamethods. One of them, which is an extension to Ziegler-Nichols method and uses the ultimate gain and frequencyfor adjustment of the parameters, is Tyreus-Luybenmethod (Almudena, 2001).

  • 8/18/2019 Article1379670771_Doust Et Al

    2/15

     

    100 J. Petroleum Gas Eng.

    Figure 1. Conventional feedback control system.

    Crude oil is a mixture of many thousands ofcomponents varying from light hydrocarbons such asmethane, ethane, propane, etc., to very high molecularweight components. The compositions of crude oil

    depend also on the location of exploitation. In the presentwork, the feed flow rate is 0.046 m

    3 /s (25,000 bbl/day)

    that is provided by the blending of Crude oils of Ahwaz(60%), Naft-I-Shah (24%) and Maleh-Kuh (16%).Therefore, the feed has very complex compositions. Alsothe design and optimization of the oil fractionators arevery important and complex. In petroleum refining theboiling point ranges are used instead of mass or molefractions. Four types of boiling point analysis are known:ASTM D86, ASTM D1160, ASTM D158 and TBP (TrueBoiling Point). Six streams of product were investigatedby ASTM D86 from initial boiling point (IBP) to finalboiling point (FBP). We studied the system behavior by

    changing the feed flow rate in the dynamic conditions andMATLAB®/Simulink

    TM. MATLAB software is very flexible

    for this work, therefore, it was used.The aims of this work are to investigate the results in

    steady-state and dynamic simulations, FPTL control whilechanging the crude oil feed flow rate and comparison ofASTM D86 boiling points (compositions) in twosimulations with the correspondent experimental data. Atlast, sensitivity analysis of crude oil distillation unit in theMATLAB®/Simulink

    TM was done by transferring dynamic

    files to it as the basis aim. Directions of transferring filesto sensitivity analysis were:

    Steady state files Dynamic filesMATLAB®/SimulinkTM

     

    Physical-mathematical model of the distillationcolumn

    In the problems of multiple-stage separation for systemsin which different phases and different components play a

    part, we have to resort to the simultaneous or iterativesolution of hundreds of equations. This means that it isnecessary to specify a sufficient number of designvariables so that the number of unknown quantities

    (output variables) is exactly the same as the number oequations (independent variables). This number oequation can be found and counted in a mathematicamodel.

    The usual method to mathematically model a distillationprocess in refining columns is the theoretical stagemethod. To find the number of the theoretical stages ofan existing column, the real number of stages might bemultiplied by column efficiency. For each theoreticastage, the mass balance of individual components orpseudo components, energy balance, and vapor-liquidequilibrium equation can be written. The set of theseequations creates the mathematical model of a

    theoretical stage. The mathematical model of a column iscomposed with models of individual theoretical stagesFinally, thermodynamic model Braun K10 “BK10” wasused for the unit, because it is a model suitable formixtures of heavier hydrocarbons at pressures under 700kPa and temperatures from 170 to 430°C. The values oK10 can then be obtained by the Braun convergencepressure method using tabulated parameters for 70hydrocarbons and light gases (Aspen Physical PropertySystem, 2009). At low pressures, the Braun K10 model isstrictly applicable to predict the properties of heavyhydrocarbon systems. Using the Braun convergencepressure method by the model at, given the norma

    boiling point of a component, K value is calculated asystem temperature and 10 psia. The K10 value is thencorrected for pressure using pressure correction chartsUsing the modified Antoine equation one can find the Kvalues for any components that are not covered by thecharts at 10 psia and corrected to system conditionsusing the pressure correction charts (Aspen PhysicaProperty System, 2009).

    In existence of a large amount of acid gases or light

  • 8/18/2019 Article1379670771_Doust Et Al

    3/15

     

    Figure 2. Scheme of a column stage.

    hydrocarbons, the accuracy has encountered someproblems with this model. All three phase calculationsassume that the aqueous phase is pure H2O and thatH2O solubility in the hydrocarbon phase can be described

    using the kerosene solubility equation from the API databook (Aspen Physical Property System, 2009).

    The above model was solved by commercial softwareto select BK10 model in the software space. Theobtained model was solved by Newton numerical methodthat is:

    ( )

    ( )1   '

    n

    n n

    n

     f X  X X 

     f X +

      = −

      (2)

    Mass balance

    The following is a representative sketch of any of thesestages (Figure 2):

    Dynamic general mass balance of stage n :

    1 1

    nn n n n n n

    d M  L V F L V S 

    d t   + −

    = + + − − −   (3)

    Doust et al. 101

    Liquid holdup on stage n can be calculated as:

    ( ), , , , ,n L n T n T n D n D n M A h A h ρ = +  (4)

    In the steady-state space, the left side of Equation (3) isequal zero:

    1 10 n n n n n n L V F L V S + −= + + − − −   (5)

    Dynamic component mass balance of stage n :

    ,

    1 1, 1 1, , , , ,

    ( )n n j

    n n j n n j n n j n n j n n j n n j

    d M x L x V y F z L x V y S x

    dt   + + − −= + + − − −

      (6)

    In the steady-state space, the left side of equation (6) isequal zero (Lee et al., 1975):

    1 1, 1 1, , , , ,0

    n n j n n j n n j n n j n n j n n j L x V y Fz L x V y S x

    + + − −= + + − − −

      (7)

    Energy balance

    Dynamic general energy balance of stage n :

    1 1 1 1

    ( )n nn n n n n f n n n n n n M s loss

    d Mh L h V H Fh Lh VH Sh Q Q Q

    dt   + + − −= + + − − − + − −

     (8)

    The changes in the specific enthalpy of the liquid phaseare generally very small compared to the total enthalpy othe stage. This means that, normally, the energy balancecan be reduced to an algebraic equation which is used asthe basis to calculate the flow of vapor from the stagewhich is made a steady-state space. Finally, the energybalance is as follows (Lee et al., 1975):

    1 1 1 10

    n n n n n f n n n n n n M s loss L h V H Fh Lh VH S h Q Q Q

    + + − −= + + − − − + − −

     (9)

    Vapor-liquid equilibrium

    Vapor-liquid equilibrium of component  j   for theoreticastage n :

    , ,

    , ,

    ,

    s a t 

    n j n j

    n j n j

    n n j

    P y x

    P

    γ  =

    Φ  (10)

  • 8/18/2019 Article1379670771_Doust Et Al

    4/15

     

    102 J. Petroleum Gas Eng.

    Table 1. The Mass flows of the atmospheric column products.

    Product Mass flow (Kg/s)

    Naphtha 19.43

    Blending naphtha 0.25

    Kerosene 6.55

    Atmosphere gas oil 6.38Atmospheric residue 15.68

    Table 2. The Mass flows of the debutanizer column products.

    Product Mass flow (Kg/s)

    To fuel 0.38

    To LPG unit 0.72

    Bottom product 8.2

    Table 3. The Mass flows of the splitter column products.

    Product Mass flow (Kg/s)

    To flare 0.01

    To LSRG Merox 2.1

    HSRG to platforming 6.1

    This equation is the equilibrium and in real state. If each

    of vapor or liquid phase is ideal then,n j

    Φ  or,n j

    γ    is unit,

    respectively. If both phases are ideal then ,n jΦ  and ,n jγ    are unit. Therefore, the above equation is converted toRaoult’s equation:

    , , ,

    sa t 

    n j n n j n j y P x P=   (11)

    Pressure

    1n nP P P

    += + ∆

      (12)

    20V P

    K  ∆ =  

    (13)

    Where0

    V  the volumetric flow is rate of live stream in

    m3 /h and K  is the proportionality constant in m3 /bar0.5.h.

    The value of K for each geometry is different and hasspecific value which is chosen by software (Almudena,2001; Lee et al., 1975).

    Steady-state simulation

    In this work, distillation unit of Kermanshah Refinery wassimulated. The three assays of crude oil werecharacterized by the TBP (True Boiling Point) data, APgravity and light components.

    The unit consists of 5 heat exchangers, 2 coolers, 2heaters, atmospheric column, debutanizer columnsplitter column, valves and pumps. The atmosphericcolumn as the main part of the unit had three sidestrippers and two pumparounds. Important parametersfor the pumparound specification are the drown off andthe return stages, mass flow rate and temperature dropFor the side strippers, beside the product flow rate, thespecification of the steam flow and parameters, thedrown off and the return stages, and the number ostripper stages were entered. The feed flow rate of 0.046m

    3 /s (25,000 bbl/day) of crude oil was preheated. Then, i

    was entered to the 35th stage of the atmospheric column

    with 38 theoretical stages. Temperature of the feed was328.11°C (622.6°F). Products of the column are naphthablending naphtha, kerosene, atmospheric gas oil andatmospheric residue. Table 1 shows their mass flowrates.

    The product of kerosene, atmospheric gas oil andatmospheric residue played an important role inpreheating of the feed, because they had hightemperatures, hence energy optimization was done.

    To purify the naphtha, firstly it was cooled to 26.67°C(80°C). Then the naphtha stream was entered to a two-phase separator and splitter. Fifty percent of the flow wasreturned as the reflux stream and the other half waspreheated and entered to the debutanizer column. The

    bottom product preheated the feed and entered to splittecolumn.

    Tables 2 and 3 show the mass flow rates of theproducts (Tables 2 and 3). Also, Figure 3 illustrates thesteady-state simulation scheme of the above steps incontinuous forms.

    Dynamic simulation

    After steady-state simulation to observation the effects ofchanges the crude oil feed in the products of unit andinvestigation of results in real processes, we exported thestead-state simulation to dynamic simulation.

    Before transferring the steady-state files, dynamicsimulation requirements should be entered. In additionthe pressure changers (valves, pumps, etc.) arenecessary and sensitive to exporting of steady-statesimulation to dynamic simulation by “export dynamic(pressure driven)”.

    For example dynamic requirements of column arecolumn diameter, tray spacing, tray active area, wei

  • 8/18/2019 Article1379670771_Doust Et Al

    5/15

     

    Doust et al. 103

    Figure 3.  Steady-state simulation scheme of distillation unit; (a) preheating; (b) atmospheric distillationcolumn; (c) Gasoline unit (light and heavy).

  • 8/18/2019 Article1379670771_Doust Et Al

    6/15

     

    104 J. Petroleum Gas Eng.

    length, weir height, reflux drum length and diameter, andsump length and diameter. A “tray sizing” tool can beused to calculate the tray sizes based on flow conditionsin the column. Of course, all of dynamic simulationrequirements were provided by Research andDevelopment (R&D) Bureau of Kermanshah Refinery.

    After entering data and exporting to dynamic simulationin order to control the flow, pressure, temperature andlevel of streams, especially all products than changing ofcrude oil feed, controllers should be added in right placesin the dynamic space. Dynamic space provides a numberof different types of controllers. The PID Incr. model wasused for all controllers in the dynamic space. Theparameters of each controller (gain, integral time andderivative time) were set to optimal values using theassistance of the “tuning” tool and Tyreus-Luybenmethod (Luyben, 2006; Juma and Tomáš, 2009). Figure4 illustrates the dynamic simulation scheme of continuousforms (Figure 4). Streams ID are corresponding to thesteady-state simulation scheme.

    RESULTS AND DISCUSSION

    Distillation temperature ASTM D86 

    After changing the crude oil feed flow rate, ASTM D86 ofsix streams ((“52-1”, light gasoline), (“56-1”, heavygasoline), the feed of debutanizer column (V-106, DE),blending naphtha, kerosene and atmospheric gas oil) inthree spaces of experimental, steady-state and dynamicwere compared. Experimental data were provided byR&D Bureau of Kermanshah Refinery.

    Figures 5 to 10 show a comparison between theexperimental ASTM D86 curves with the results of thesteady-state and the dynamic simulations. Curves of thefeed of debutanizer column (V-106, DE) and atmosphericgas oil stream were in better agreement with theexperimental data than the other streams. Of course,maximum difference of other streams was around 12°C. Totally, results of simulations were in good agreementwith the experimental data (Kermanshah Refinery, 2009).

    2- Sensitivity analysis in the MATLAB simulink

    The behaviors of the FPTL controllers in dynamicsimulation were observed by increasing the crude oil feedflow rate (+3%). The FPTL were controlled byconventional PID controllers. Set points were set basedon Kermanshah Refinery. Twenty-three controllers wereapplied to control of FPTL of the unit. We tried to set thecontroller parameters and solved of fluctuations bydifferent control methods to reach a new steady-state. Toset the controller parameters, Tyreus-Luyben method

    was employed. At last, we investigated of dynamic resultsby transferring the dynamic files to MATLAB®/Simulink

    TM

    Figure 11. The first steady-state then system sensitivitywas observed by step changes. Input variables were:

    1. Feed temperature (+10°C).

    2. Feed flow rates: Ahwaz (+1%), Maleh-Kuh (+1%)Naft-I-Shah (+1%)3. Steam flow rates: STEAM (interring to atmosphericcolumn, +20%), blending naphtha, steam (+50%)kerosene steam (+30%), atmospheric gas oil (AGOsteam (+30%).4. The duty of Reboilers: debutanizer column (V-106-DE+3%), splitter column (V-108- SP, +3%).5. Mixed of above changes simultaneously.

    And outputs were: Stream flow rates: “46” (interring to V-106-DE), blending naphtha, kerosene, atmospheric gasoil (AGO), “39-1” (bottom of atmospheric column), “52-1”(light gasoline, up of V-108-SP column), “56-1” (heavygasoline, bottom of V-108-SP column), “47-1” (to LPGunit).

    Because we wanted to increase the products, increasingof inputs were investigated. After performing abovechanges, we observed that the major sensitivity wasrelated to feed temperature, the duties of the reboilers ofcolumns in gasoline unit and simultaneous combinationof above changes (Figures 12-16). Rest of input changeswas not significant to steady-state.

    Conclusions

    Steady-state and dynamic simulations performed a goodinvestigation into the process and discussing thecalculated results. Control of variables in dynamicsimulation as a flexible simulator like a pilot, was donevery well.

    Steady-state and dynamic simulations were inagreement with the experimental data. Any Increment ocrude oil feed flow rate, made a complex fluctuations inthe FPTL controllers that must be rejected by set ocontroller parameters and different control methodsBecause the feed was a mixture of 3 crude oils and manycomponents, control of system was very complex. The

    dynamic space demonstrated that temperaturecontrollers were faster and more sensitive than the othercontrollers. Control of temperature can be replaced bycontrol of the product compositions. In this controstructure, small control errors in the FPTL controllerswere observed. Therefore, some limitations in dynamicsimulation were observed. Because of more flexibility ochanging the inputs, disturbances and easier handling ographs, dynamic files results transferred to

  • 8/18/2019 Article1379670771_Doust Et Al

    7/15

     

    Doust et al. 105

    Figure 4. Dynamic simulation scheme of distillation unit; (a) preheating; (b) Atmosphericdistillation column; (c) Gasoline unit (light and heavy).

  • 8/18/2019 Article1379670771_Doust Et Al

    8/15

     

    106 J. Petroleum Gas Eng.

    0 20 40 60 80 100100

    120

    140

    160

    180

    200

    220

    240

    260

    280

    Amount distillated(%)

       D   i  s   t   i   l   l  a   t   i  o  n   t  e  m  p  e  r  a   t  u  r  e   A   S   T   M    D

       8   6   (   F   )

     

    Experimental

    Steady-state

    Dynamic

     

    Figure 5. Steady-state, dynamic and experimental ASTM D86curves of “52-1” stream.

    0 20 40 60 80 100180

    200

    220

    240

    260

    280

    300

    320

    340

    Amount distillated(%)

       D   i  s   t   i   l   l  a   t   i  o  n   t  e  m  p  e  r  a   t  u  r  e   A   S   T   M    D

       8   6   (   F   )

     

    Experimental

    Steady-state

    Dynamic

     

    Figure 6.  Steady-state, dynamic and experimental ASTM D86curves of “56-1” stream. 

    MATALB®/SimulinkTM

    . Figures 12 to 16 show that moresensitive disturbances were feed temperature, the dutiesof the reboilers of columns in gasoline unit andsimultaneous combination of above changes. Rest ofinput changes was not significant in transient responses.Therefore, above variables play important roles in thedesign of distillation units.

    0 20 40 60 80 10050

    100

    150

    200

    250

    300

    350

    Amount distillated(%)

       D   i  s   t   i   l   l  a   t   i  o  n   t  e  m  p  e  r  a   t  u  r  e   A   S   T   M

        D   8   6   (   F   )

     

    Experimental

    Steady-state

    Dynamic

    Figure 7.  Steady-state, dynamic and experimental ASTM D86curves of column feed (V-106, DE).

    0 20 40 60 80 100260

    280

    300

    320

    340

    360

    380

    400

    420

    440

    Amount distillated(%)

       D   i  s   t   i   l   l  a   t   i  o  n   t  e  m  p  e  r  a   t  u  r  e   A   S   T   M    D

       8   6   (   F   )

     

    Experimental

    Steady-state

    Dynamic

     

    Figure 8.  Steady-state, dynamic and experimental ASTM D86curves of Blending Naphtha (B_NAPHTHA Stream).

    ACKNOWLEDGMENT

    The financial support provided by the Kermanshah OiRefining Company is gratefully acknowledged.

  • 8/18/2019 Article1379670771_Doust Et Al

    9/15

     

    Doust et al. 107

    0 20 40 60 80 100250

    300

    350

    400

    450

    500

    550

    600

    Amount distillated(%)

       D   i  s  t   i   l   l  a  t   i  o  n  t  e  m  p  e  r  a  t  u  r  e   A   S   T   M   D  8  6   (   F   )

     

    Experimental

    Steady-State

    Dynamic

     

    Figure 9. Steady-state, dynamic and experimental ASTM D86 curves of Kerosene.

    0 20 40 60 80 100

    400

    450

    500

    550

    600

    650

    700

    Amount distillated(%)

       D   i  s  t   i   l   l  a  t   i  o  n  t  e  m  p  e  r  a  t  u  r  e   A   S   T   M   D  8  6   (   F   )

     

    Experimental

    Steady-state

    Dynamic

     

    Figure 10.  Steady-state, dynamic and experimental ASTM D86 curves ofatmospheric gas oil (AGO stream).

    Figure 11. Scheme of Distillation unit in the MATLAB simulink with inputs and outputs.

  • 8/18/2019 Article1379670771_Doust Et Al

    10/15

     

    108 J. Petroleum Gas Eng.

    0 5 10 15 20 25 30 35 404737.65

    4737.7

    4737.75

    4737.8

    4737.85

    4737.9

    Time(h)

       A   G   O    F

       l  o  w   (   b   b   l   /   d  a  y   )

    AGO

    0 5 10 15 20 25 30 35 401764

    1764.5

    1765

    1765.5

    1766

    1766.5

    1767

    1767.5

    Time(h)

       S   t  r  e  a  m   (   "   5   2  -   1   "   )   F

       l  o  w   (   b   b   l   /   d  a  y   )

    Stream("52-1")

    0 5 10 1.4395

    1.4396

    1.4397

    1.4398

    1.4399

    1.44

    1.4401

    1.4402

    1.4403x 10

    4

       S   t  r  e  a  m   (   "   3   9   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 401962

    1963

    1964

    1965

    1966

    1967

    1968

    1969

    1970

    Time(h)

       S   t  r  e  a  m   (   "   5

       6  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("56-1")

    0 5 10 15 20 25 30 35 401153

    1154

    1155

    1156

    1157

    1158

    1159

    1160

    1161

    Time(h)

       S   t  r  e  a  m   (   "   4

       7  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("47-1")

    0 5 10 15 20 25 30 35 40193.791

    193.7915

    193.792

    193.7925

    193.793

    193.7935

    193.794

    Time(h)

       B   N  a  p   h   t   h  a   F   l  o  w

       (   b   b   l   /   d  a  y   )

    BNaphtha

    0 5 10 15 20 25 30 35 405279.06

    5279.08

    5279.1

    5279.12

    5279.14

    5279.16

    5279.18

    5279.2

    5279.22

    Time(h)

       K  e  r  o  s  e  n  e   F   l  o  w

       (   b   b   l   /   d  a  y   )

    Kerosene

    0 5 106921

    6922

    6923

    6924

    6925

    6926

    6927

    6928

       S   t  r  e  a  m   (   "   4   6   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Figure 12. Steady-state curves of stream: 46, B_Naphtha, Kerosene, AGO, (39-1), (52-1), (56-1) and (47-1).

  • 8/18/2019 Article1379670771_Doust Et Al

    11/15

     

    0 5 10 15 20 25 30 35 406895

    6900

    6905

    6910

    6915

    6920

    6925

    6930

    6935

    Time(h)

       S   t  r  e  a  m   (   "   4   6   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("46")

    0 5 10 4737.8

    4738

    4738.2

    4738.4

    4738.6

    4738.8

    4739

    4739.2

    4739.4

    4739.6

    4739.8

       A   G   O   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 1750

    1755

    1760

    1765

    1770

    1775

    1780

       S   t  r  e  a  m   (   "   5   2  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 40193.79

    193.795

    193.8

    193.805

    193.81

    193.815

    193.82

    193.825

    193.83

    Time(h)

       B   N  a  p   h   t   h  a   F   l  o  w   (   b   b   l   /   d  a  y   )

    BNaphtha

    0 5 10 15 20 25 30 35 405278.5

    5279

    5279.5

    5280

    5280.5

    5281

    Time(h)

       K  e  r  o  s  e  n  e   F   l  o  w

       (   b   b   l   /   d  a  y   )

    Kerosene

    0 5 10 15 20 25 30 35 401.434

    1.436

    1.438

    1.44

    1.442

    1.444

    1.446x 10

    4

    Time(h)

       S   t  r  e  a  m   (   "   3   9   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("39")

    0 5 10 15 20 25 30 35 401930

    1940

    1950

    1960

    1970

    1980

    1990

    2000

    Time(h)

       S   t  r  e  a  m   (   "   5   6  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("56-1")

    0 5 10 15 20 25 30 35 401120

    1130

    1140

    1150

    1160

    1170

    1180

    Time(h)

       S   t  r  e  a  m   (   "   4   7  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("47-1")

    Figure 13. Curves of stream with change of feed temperature (+ 10°C): 46, B_Naphtha, Kerosene, AGO, (39-1), (52-1),

  • 8/18/2019 Article1379670771_Doust Et Al

    12/15

     

    110 J. Petroleum Gas Eng.

    0 5 10 15 20 25 30 35 406900

    6905

    6910

    6915

    6920

    6925

    6930

    6935

    Time(h)

       S   t  r  e  a  m   (   "   4   6   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("46")

    0 5 10 15 20 25 30 35 40193.791

    193.792

    193.793

    193.794

    193.795

    193.796

    193.797

    193.798

    193.799

    193.8

    Time(h)

       B   N  a  p   h   t   h  a   F

       l  o  w   (   b   b   l   /   d  a  y   )

    BNaphtha

    0 5 10 5279

    5279.1

    5279.2

    5279.3

    5279.4

    5279.5

    5279.6

    5279.7

    5279.8

    5279.9

       K  e  r  o  s  e  n  e   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 404737.3

    4737.4

    4737.5

    4737.6

    4737.7

    4737.8

    4737.9

    4738

    Time(h)

       A   G

       O   F   l  o  w   (   b   b   l   /   d  a  y   )

    AGO

    0 5 10 15 20 25 30 35 401.439

    1.44

    1.441

    1.442

    1.443

    1.444

    1.445

    1.446x 10

    4

    Time(h)

       S   t  r  e  a  m   (   "   3   9   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("39")

    0 5 101720

    1730

    1740

    1750

    1760

    1770

    1780

    1790

    1800

       S   t  r  e  a  m   (   "   5

       2  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 401860

    1880

    1900

    1920

    1940

    1960

    1980

    2000

    2020

    2040

    2060

    Time(h)

       S   t  r  e  a  m

       (   "   5   6  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("56-1")

    0 5 10 15 20 25 30 35 40800

    850

    900

    950

    1000

    1050

    1100

    1150

    1200

    Time(h)

       S   t  r  e  a  m   (   "   4   7  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("47-1")

    Figure 14. Curves of stream with change of Reboiles’duty,V-106-DE (+ 3%): 46, B_Naphtha, Kerosene, AGO, 39, (52-1),

  • 8/18/2019 Article1379670771_Doust Et Al

    13/15

     

    0 5 10 15 20 25 30 35 406921

    6922

    6923

    6924

    6925

    6926

    6927

    6928

    Time(h)

       S   t  r  e  a  m   (   "   4   6   "   )   F   l  o  w

       (   b   b   l   /   d  a  y   )

    Stream("46")

    0 5 10 15 20 25 30 35 40193.791

    193.7915

    193.792

    193.7925

    193.793

    193.7935

    193.794

    Time(h)

       B   N  a  p   h   t   h  a   F   l  o  w   (   b   b   l   /   d  a  y   )

    BNaphtha

    0 5 10 5279.06

    5279.08

    5279.1

    5279.12

    5279.14

    5279.16

    5279.18

    5279.2

    5279.22

       K  e  r  o  s  e  n  e   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 404737.65

    4737.7

    4737.75

    4737.8

    4737.85

    4737.9

    Time(h)

       A   G   O

       F   l  o  w   (   b   b

       l   /   d  a  y   )

    AGO

    0 5 10 15 20 25 30 35 401.4395

    1.4396

    1.4397

    1.4398

    1.4399

    1.44

    1.4401

    1.4402

    1.4403x 10

    4

    Time(h)

       S   t  r  e  a  m   (   "   3   9   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("39")

    0 5 10 15 1450

    1500

    1550

    1600

    1650

    1700

    1750

    1800

    T

       S   t  r  e  a  m   (   "   5   2  -   1   "   )   F

       l  o  w   (   b   b   l   /   d  a  y   )

    Strea

    0 5 10 15 20 25 30 35 401950

    2000

    2050

    2100

    2150

    2200

    2250

    2300

    Time(h)

       S   t  r  e  a  m   (   "   5

       6  -   1   '   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("56-1")

    0 5 10 15 20 25 30 35 401153

    1154

    1155

    1156

    1157

    1158

    1159

    1160

    1161

    Time(h)

       S   t  r  e  a  m   (   "   4   7  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("47-1")

    Figure 15. Curves of stream with change of Reboiles ’duty,V-108-SP (+ 3%): 46, B_Naphtha, Kerosene, AGO, 39 , (5

  • 8/18/2019 Article1379670771_Doust Et Al

    14/15

     

    112 J. Petroleum Gas Eng.

    0 5 10 15 20 25 30 35 406908

    6910

    6912

    6914

    6916

    6918

    6920

    6922

    6924

    6926

    6928

    Time(h)

       S   t  r  e  a  m   (   "   4   6   "   )   F   l  o  w

       (   b   b   l   /   d  a  y   )

    Stream("46")

    0 5 10 15 20 25 30 35 40193.79

    193.795

    193.8

    193.805

    193.81

    193.815

    193.82

    193.825

    193.83

    Time(h)

       B   N  a  p   h   t   h  a   F   l  o  w   (   b   b   l   /   d  a  y   )

    BNaphtha

    0 5 5279

    5279.5

    5280

    5280.5

    5281

    5281.5

       K  e  r  o  s  e  n  e   F   l  o  w   (   b   b

       l   /   d  a  y   )

    0 5 10 15 20 25 30 35 404737.5

    4738

    4738.5

    4739

    4739.5

    4740

    Time(h)

       A   G   O

       F   l  o  w   (   b   b   l   /   d  a  y   )

    AGO

    0 5 10 15 20 25 30 35 401.439

    1.4395

    1.44

    1.4405

    1.441

    1.4415

    1.442

    1.4425

    1.443

    1.4435

    1.444x 10

    4

    Time(h)

       S   t  r  e  a  m   (   "   3   9   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("39")

    0 5 10 1400

    1450

    1500

    1550

    1600

    1650

    1700

    1750

    1800

       S   t  r  e  a  m   (   "   5   2  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    0 5 10 15 20 25 30 35 401950

    2000

    2050

    2100

    2150

    2200

    2250

    2300

    2350

    Time(h)

       S   t  r  e  a  m   (   "   5   6  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("56-1")

    0 5 10 15 20 25 30 35 40800

    850

    900

    950

    1000

    1050

    1100

    1150

    1200

    Time(h)

       S   t  r  e  a  m   (   "   4   7  -   1   "   )   F   l  o  w   (   b   b   l   /   d  a  y   )

    Stream("47-1")

    Figure 16. Curves of stream with simultaneous combination of above changes: 46, B_Naphtha, Kerosene, AGO, 39, (52-1),

  • 8/18/2019 Article1379670771_Doust Et Al

    15/15

     

    Nomenclature

    , D n A

    : surface area of the downcomer [ ]

    ,T n A

    :  active surface area of the stage n [ ]bbl:

     barrel

     

    C(s): Controller transfer functionD: Load or disturbanceE: Error signal

    nF 

    :  molar feed flow onto stage n [ ]

    nh

    : molar enthalpy of the liquid on stage n  [ ]

    1nh + : molar enthalpy of the liquid from stage n+1 [ ]

    n H 

    : molar enthalpy of the vapor on stage n [ ]

    1n H 

    − : molar enthalpy of the vapor from stage n-1 [ ]

     f h : molar enthalpy of feed [ ]

    ,T nh

    : liquid height on the stage n [ ]

    , D nh

    :  liquid height on the downcomer [ ]

    PK 

    : controller gain

    1n L

    + : the molar liquid that overflows onto stage n  from

    stage n+1 [ ]

    n L : molar liquid flowing from stage n [ ]

    n M 

    :  the liquid mole accumulated on stage n (liquid

    holdup on stage n ) [ ]P(s): process transfer function

    :  pressure on stage n

     M Q

    :  heat of mixing [ ]

    sQ

    :  external heat source [ ]

    loss

    Q:  heat losses [ ]

    r:  desired valueR&D: Research and Development

    Doust et al. 113

    nS 

    :  molar side stream from stage n [ ]

    :  Temperature on stage n [   C o

    U:  Manipulated value

    1n

    V −

    : the molar vapor flow from stage n-1 [ ]

    nV 

    : molar vapor flow flowing from stage n [ ]

    ,n j x : molar fraction of component j in the liquid onstage n  

    1,n j x + : molar fraction of component j in the liquidcurrent from stage n+1 Y: Output value

    1 ,n j y

    − : molar fraction of component j in the vaporcurrent from stage n-1 

    ,n j y : molar fraction of component j in the vapor currenfrom stage n  

    ,n j z : molar fraction of component  j in the feed currenton stage n  

    , L n ρ 

    : liquid density at stage n

     Dτ   : Controller derivative time [s]

     I τ   : Controller integral time [s]

    REFERENCES

    Almudena RF (2001). Dynamic Modelling and Simulation with Ecosimpof an Ethanol Distillation Column in the Sugar Industry, Madrid, 1150-200.

    Araki M (2002). Control systems, Robotics and Automation. KyotoUniversity, Japan, 1: 235-376. 

    Aspen Physical Property System (2009). Physical property methodsand models. Aspen Technol. 1: 356-739.

    Juma H, Tomáš P (2009). Steady-State and Dynamic Simulation oCrude Oil Distillation Using Aspen Plus and Aspen Dynamics. PetCoal. J. 51(2): 100-109.

    Kermanshah Refinery (2009). Operating data of Distillation unit.Lee BI, Kesler MG (1975). A generalized thermodynamic correlation

    based on three Parameter corresponding states. AIChE. J. 21(3)

    510-527.Luyben WL (2006). Distillation Design and Control Using AspenSimulation. John Wiley & Sons. New York, 1: 10-283. 


Recommended