+ All Categories
Home > Documents > Article1379684276_Ganesha and Srinivasb

Article1379684276_Ganesha and Srinivasb

Date post: 13-Apr-2018
Category:
Upload: cafehafa
View: 214 times
Download: 0 times
Share this document with a friend
15
7/27/2019 Article1379684276_Ganesha and Srinivasb http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 1/15  Journal of Mechanical Engineering Research Vol. 3. (1), pp. 25-39, January, 2011 Available online at http://www.academicjournals.org/jmer ISSN 2141 - 2383 ©2011 Academic Journals Full Length Research Paper  E valu atio n o f th erm o d yn am ic p ro p erties o f am m onia- w a te r m ixture up to 100 bar for pow er a pplication system s N . S h a n k a r G a n e s h * an d T . S rinivas Vellore Institute of Technology, Vellore-632014, India. Accepted September 13, 2010 In K alina pow er generation, as w ell as vapor absorption and refrigeration system s am m onia-w ater m ixture has b een used as w orking fluids. In this w ork, new M atLab code w as developed to calculate the therm odynam ic properties w hich w ill be used to sim ulate K alina cycle. The progam developed in M atLab gives fast calculation of the therm odynam ic p roperties. The correlations p roposed by Z ieg ler and T repp 1984), Patek and K lo m far 1995) and S o le im ani 2007) w ere used to calculate the property diagram s in M atLab. The solved p roperties are bubble point tem perature, dew point tem perature, specific enthalpy, sp ecific entropy, specific vo lu m e and exergy. A flow chart w as developed to understan d the com putation of the p roperties. The property chart that is enthalpy-concentration, entropy-concen tration, tem perature-concentration and exergy-concen tration charts h ave b een p rep ared . T h e p re s e n t w ork can be used to sim ulate the pow er g en erating system s to get the feasibility of the proposed ideas up to 100 bar. This w ork can be used to carry out the exergy an alysis of K alina p o w er cycles. K ey  ords: Ammonia-water mixture, thermodynamic, power generation. B A C K G R O U N D In ammonia-water mixture, ammonia has got low boiling point which makes it useful for utilizing the waste heat source and makes the possibility of boiling at low temperature. Ammonia-water mixture as non-azeotropic (for a non-azeotropic mixture, the temperature and composition continuously change during boiling) nature will have the tendency to boil and condense at a range of temperatures which possess a closer match between heat source and working fluid mixture. As ammonia have got a similar molecular weight as that of water, it makes it possible to utilize the standard steam turbine components. For determining the thermodynamic properties of ammonia-water mixtures, various studies were published. *Corresponding author. E-mail: [email protected]. Ziegler and Trepp (1984) described an equation for the thermodynamic properties of ammonia-water mixture in absorption units. In his work, the Gibbs excess energy equation was utilized for determining the specific enthalpy, specific entropy and specific volume. They developed the properties up to a pressure of 50 bar and temperature of 500 K. Barhoumi et al. (2004) presents modelling of the thermodynamic properties. Feng and Yogi (1999) combine the Gibbs free energy method for mixture properties and the bubble and dew point temperature equations for phase equilibrium were used Patek and Klomfar (1995) give a fast calculation of thermodynamic properties. Senthil and Subbarao (2008 present fast calculation for determining enthalpy and entropy of the mixtures. The main objectives of the present work are to combine correlations proposed by Ziegler et al. (1984) and carried out in MatLab, which avoids numerous procedure and
Transcript

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 1/15

 Journal of Mechanical Engineering Research Vol. 3. (1), pp. 25-39, January, 2011Available online at http://www.academicjournals.org/jmerISSN 2141 - 2383 ©2011 Academic Journals

Full Length Research Paper  

E v a l u a t i o n o f t h e r m o d y n a m i c p r o p e r t i e s o f a m m o n i a -w a t e r m i x t u r e u p t o 1 0 0 b a r f o r p o w e r a p p l i c a t i o ns y s t e m sN . S h a n k a r G a n e s h * a n d T . S r i n i v a s

Vellore Institute of Technology, Vellore-632014, India.

Accepted September 13, 2010

I n K a l i n a p o w e r g e n e r a t i o n , a s w e l l a s v a p o r a b s o r p t i o n a n d r e f r i g e r a t i o n s y s t e m s a m m o n i a - w a t e rm i x t u r e h a s b e e n u s e d a s w o r k i n g f l u i d s . I n t h i s w o r k , n e w M a t L a b c o d e w a s d e v e l o p e d t o c a l c u l a t e t h et h e r m o d y n a m i c p r o p e r t i e s w h i c h w i l l b e u s e d t o s i m u l a t e K a l i n a c y c l e . T h e p r o g a m d e v e l o p e d i nM a t L a b g i v e s f a s t c a l c u l a t i o n o f t h e t h e r m o d y n a m i c p r o p e r t i e s . T h e c o r r e l a t i o n s p r o p o s e d b y Z i e g l e ra n d T r e p p 1 9 8 4 ) , P a t e k a n d K l o m f a r 1 9 9 5 ) a n d S o l e i m a n i 2 0 0 7 ) w e r e u s e d t o c a l c u l a t e t h e p r o p e r t yd i a g r a m s i n M a t L a b . T h e s o l v e d p r o p e r t i e s a r e b u b b l e p o i n t t e m p e r a t u r e , d e w p o i n t t e m p e r a t u r e ,s p e c i f i c e n t h a l p y , s p e c i f i c e n t r o p y , s p e c i f i c v o l u m e a n d e x e r g y . A f l o w c h a r t w a s d e v e l o p e d t ou n d e r s t a n d t h e c o m p u t a t i o n o f t h e p r o p e r t i e s . T h e p r o p e r t y c h a r t t h a t i s e n t h a l p y - c o n c e n t r a t i o n ,e n t r o p y - c o n c e n t r a t i o n , t e m p e r a t u r e - c o n c e n t r a t i o n a n d e x e r g y - c o n c e n t r a t i o n c h a r t s h a v e b e e np r e p a r e d . T h e p r e s e n t w o r k c a n b e u s e d t o s i m u l a t e t h e p o w e r g e n e r a t i n g s y s t e m s t o g e t t h e f e a s i b i l i t yo f t h e p r o p o s e d i d e a s u p t o 1 0 0 b a r . T h i s w o r k c a n b e u s e d t o c a r r y o u t t h e e x e r g y a n a l y s i s o f K a l i n ap o w e r c y c l e s .K e y   o r d s : Ammonia-water mixture, thermodynamic, power generation.

B A C K G R O U N DIn ammonia-water mixture, ammonia has got low boilingpoint which makes it useful for utilizing the waste heatsource and makes the possibility of boiling at lowtemperature. Ammonia-water mixture as non-azeotropic(for a non-azeotropic mixture, the temperature andcomposition continuously change during boiling) nature

will have the tendency to boil and condense at a range oftemperatures which possess a closer match betweenheat source and working fluid mixture. As ammonia havegot a similar molecular weight as that of water, it makes itpossible to utilize the standard steam turbinecomponents.

For determining the thermodynamic properties ofammonia-water mixtures, various studies were published.

*Corresponding author. E-mail: [email protected]

Ziegler and Trepp (1984) described an equation for thethermodynamic properties of ammonia-water mixture inabsorption units. In his work, the Gibbs excess energyequation was utilized for determining the specificenthalpy, specific entropy and specific volume. Theydeveloped the properties up to a pressure of 50 bar and

temperature of 500 K. Barhoumi et al. (2004) presentsmodelling of the thermodynamic properties. Feng andYogi (1999) combine the Gibbs free energy method formixture properties and the bubble and dew pointtemperature equations for phase equilibrium were usedPatek and Klomfar (1995) give a fast calculation ofthermodynamic properties. Senthil and Subbarao (2008present fast calculation for determining enthalpy andentropy of the mixtures.

The main objectives of the present work are to combinecorrelations proposed by Ziegler et al. (1984) and carriedout in MatLab, which avoids numerous procedure and

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 2/15

 

26 J. Mech. Eng. Res.

u b b l e p o i n t l i n eD e w p o i n t l i n e

S u b c o o l e d l i q u i d

S u p e r h e a t e d v a p o r

F i g u r e 1 . Equilibrium temperature-concentration curve for NH3- H2O at constant pressure.

time interval in obtaining the result. The presented workcan be used for energy and exergy solutions to powergenerating systems. The exergy details and itsconcentration graph for the ammonia-water mixtures arenot reported out in the literature, which is the gapidentified and presented at various pressures.

T H E R M O D Y N A M I C E V A L U A T I O N O F N H 3 - H 2 O M I X T U R EP R O P E R T I E SFor ammonia-water mixture, to calculate the thermodynamicproperties like specific enthalpy, specific entropy and specificvolume, the need of bubble and dew point temperatures at variouspressures and compositions are very essential and is the prior step.For estimating those temperatures, various correlations have beendeveloped. The correlation developed by Patek and Klomfar (1995)is proposed in this work which avoids tedious iterations required bythe complicated method fugacity coefficient of a component in amixture and the correlation proposed by Ibrahim and Klein (1993).

Figure1 shows the details of bubble point and dew point

temperature variations with ammonia concentration. The loci of allthe bubble points are called the bubble point line and the loci of allthe dew points are called the dew point l ine. The bubble point line isthe saturated liquid line and the region between the bubble and dewpoint lines is the two phase region, where both liquid and vapor co-exist in equilibrium (“Vapor Absorption Refrigeration SystemsBased on Ammonia-Water Pair”, 2004).

C a l c u l a t i n g b u b b l e a n d d e w p o i n t t e m p e r a t u r e sThe bubble point and dew point temperatures of the ammonia-water mixture are found from the correlations in Equations (1) and(2), developed by Patek and Klomfar (1995).

( )i

i

n

om

i

iobp

plnx1aTx)(p,T  

 

  

 −=  

  (1)

( ) ( )

i

i

n

 /4m

iiod p

po

lny1aTyp,T  

 

 

 

 −=

    (2)

Figure 2 shows the bubble and dew point temperatures developedwith the correlation by Patek and Klomfar (1995) up to pressure o100 bar using MATLAB code. A flowchart was prepared tounderstand the mathematical calculations for properties.

D e v e l o p m e n t o f e q u a t i o n sThe properties are derived from Gibbs free energy function fromZiegler and Trepp (1984).

L i q u i d p h a s eThe Gibbs free energy for both liquid and gas phases weredetermined from Equations (3) and (4), developed by Ziegler andTrepp (1984) which is the summation of contributions of the purecomponents, the ideal free energy of mixing and the free excessenergy.

( )

( )( )   ( )

( ) ( )[ ]( )

++−−

++−

=

xp,T,Egxexlogx1elogx1RT

pT,3NHlgx

pT,O

2Hlgx1

xp,T,lg

 (3) 

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 3/15

 

Ganesh and Srinivas. 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

200

250

300

350

400

450

500

550

600

Ammonia mass fraction

   T  e  m  p  e  r  a   t  u  r  e ,

   K

  550

500

1

F i g u r e 2 . Bubble and dew point temperatures up to100 bar pressure.

E q u a t i o n o f s t a t e f o r p u r e c o m p o n e n t i n l i q u i d p h a s eThe equation of state for pure components in liquid phase is givenas follows:

( )O

2H2

 2op

2p

2aopp2T

4aT

3a

1a

dTT

lpc

TdTlpcop,oT

lTsop,oTlh

pT,

lO

2H

g

 

  

 

  

  

  −

+−++

+−+−

=

  

  

  

  

  

  

 

(4)Where,

2T

3bT

2b

1b

T,polpc   ++=

   

  (5)

Similarly, the liquid heat capacity at constant pressure can beassumed to be second order in temperature according to Equation(5) (Ziegler and Trepp, 1984).On substituting (5) in Equation (4), thefollowing Equations (6) and (7) were obtained for pure componentsin liquid phase.

( )( )

( )

O2

H

2

2op

2p

2aopp2T

4aT

3a

1a

3oT

3T33b

2oT

2T22b

oTT1b

op,oTlTsop,oT

lh

pT,

lO2

Hg

 

  

 

  

  

 

  

 

 

  

 

+−++

+

+−+−

+−

=

  

  

  

  

 (6)

( )

( )   ( ) ( )   ( ) ( )

( )( )  ( )

3

oo

3

 NH

2o

2

2o2

431

3o

332o

22o1oo

gp,T

l

pT,

l NH

2

ppappTaTaa

TT3

bTT

T

bTTbp,TsTh

g

  −+−+++

−+−+−+−

=  

(7)

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 4/15

 

28 J. Mech. Eng. Res.

Start 

Input the values of

Pr, C, TP

TP1 = TP/100

newT1 = Temp1 /100

newPr = Pr/100

Temp = Tb(C, Pr)

Temp1 = Td(C, Pr)

newT = Temp/100

HL=Enthalpyl (newT, newPr, C)

SL=Entropyl (newT, newPr, C)

VL=Volumel (newT, newPr,C)

HG=Enthalpy g (C, newT1, newPr)

SG=Entropy g (newT1, newPr, C )

VG=Volume g (newT1, newPr, C )

HL1=Enthalpy l (TP1, newPr, C )

SL1=Entropy l (TP1, newPr, C )

VL1=Volume l (TP1, newPr, C)

No

Yes

Tp==Temp1

Tp>Temp1

Print regionis saturated

vapor

NoYes

Yes

No

Yes

 

Yes

Print region is

Compressed liquid

Print regionis saturated

liquid

No

Print region is

superheatedvapor

End 

Tp>=Temp

&Tp<=Temp1

Print region

is liquidvapor mixture

End

NoTp<Temp

B

HG1=Enthalpy g(C, TP1, newPr)

SG1=Entropy g (TP1, newPr, C)

VG1=Volumeg (TP1, newPr, C)

Tp==Temp

F i g u r e 3 . Flowchart to find thermodynamic properties of mixture.

L i q u i d m i x t u r e c o r r e l a t i o nThe Gibbs excess energy gE for liquid mixtures is expressed as:

( )

( )

( ) ( )

( )

 

  

 +++−

  

 +++++−

  

 +++++

=

21615

14132

2

121110987

2

654321

xp,T,E

T

e

T

epee12x

T

e3

T

eTpeepee12x

T

e

T

eTpeepee

g  

(8)

In Figure 3, the procedure carried out in calculating thethermodynamic properties enthalpy, entropy and volume in bothphases for the compressed region, saturated region, in betweenbubble and dew point region and superheated region wereexplained from the corresponding equations.

For a given pressure, concentration and temperature the bubblepoint and dew point temperatures were calculated and then thegiven temperature is compared with the bubble and dewtemperatures and identifies the respective region as represented inthe flowchart. The flowchart in Figure 3 shows the procedure focalculating the thermodynamic properties of the mixture. For agiven property value, the corresponding regions can be identifiedfrom the flowchart.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 5/15

 

E q u a t i o n o f s t a t e f o r p u r e c o m p o n e n t i n g a s p h a s eThe general equation of state for pure component in gas phase isidentified in the following equation.

( )   ( )   ( )

( ) ( )[ ]  

+−−

++−=

yylogy1logy1RT

NHyg0Hgy1g

ee

PT,3g

pT,2g

Y)P,(T,g

 

(9)

For the gas phase, the Gibbs free energy equation is given below:

( )

OH2

O2H

 12oT

T3op1111oT

3op12

11T

3p

34c

12oT

Top1111oT

op1211T

p3c

12oT

Top1111oT

op1211T

p3c4

oT

Top33oT

op43T

p2c

opp1cop

pRTln

Tdt

gopC

TdTgopCop,oT

gTsop,oT

gh

pT,gg

 

 

 

 

 

 

 

 

 

 

 

 

+−+

 

 

 

 +−

++−++−

+−   ++−+−

=

  

  

  

  

  

  

 

(10)

Where:

( )

2

321T

go

p TdTddc   ++= 

(11)

Similarly on substituting (11) in Equation (10), the pure components

in gaseous phase from ammonia and water were obtained in

Equations (12) and (13).

( )

( )

O2

H

 12oT

T3op1111oT

3op12

11T

3p

34c

12oT

Top1111oT

op1211T

p3c

4oT

Top33oT

op43T

p2copp

1c

op

pelogTR

3T3

oT

3

3d2T2

oT

2

2dToT

1d

op,

oT

gsT

op,

oT

gh

pT,gg

O2H

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

+−++−+

+−+−++

−+−+−+−

=

 

  

  

  

 

  

  

 

(12)

( )

( ) ( ) ( )

( ) ( )

( )

3NH

12o

3o

11o

3o

11

3

4

12o

o

11o

o

113

4o

o

3o

o

32

o1o

e

33o

322

o2

o1oog

oog

pT,3g

T

TP11

T

P12

T

Pc

T

TP11

T

P12

T

Pc

T

TP3

T

P4

T

Pc

PPc

P

PRTlog

TT3

dTT

2

d

TTdp,TTsp,Th

NHg

 

 

 

 +−

+

 

 

 

 +−+

 

 

 

 +−

+−+

+−+−

+−+−

=  

(13)

Ganesh and Srinivas. 29

E q u a t i o n o f s t a t e f o r p u r e c o m p o n e n t sSpecific enthalpy at liquid and vapor phases

The molar enthalpy of the liquid phase and gaseous phase werespecified and simplified in Equation (14) to (19). Equation (16) isderived in MATLAB to find the liquid enthalpy in the compressedand saturated regions. Equation (19) is derived in MATLAB to findthe enthalpy in gaseous phase for the saturated and superheatedregions.

( )

xp,

T

T

xp,T,l

g

2TBRT

lh

 

 

 

  

  

 

−=  

(14)

( )

( ) ( )[ ]

( )

xp,T

xp,T,Eg

T

xe

xlogx1e

logx1RT

T

pT,3NHl

g

Tx

T

pT,O

2Hlg

Tx1

2T

BRT

lh

 

 

 

 

∂+

+−−∂

∂+

 

 

 

 

+

 

 

 

 

∂−

−=

 

(15)

( )

( )   ( )

( )

( )

( )

( )

( )( )  ( )   ( ) ( )

( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

 

  

 

  

  

  

  

  

  

  

  

 

  

 

+++−

++++−

++++

×−××××−+×

+

+−−+−

+−+−+

×××

+

+−−+−

+−+−+

×−××

=

  

  

2 T

16e 3

T15e

 2p 14 e13e21x2

2T

12e 3

T11e

 2p8e7e1x2

2T

6e3T5e 2p 2e1e

x1xBT 18x1 17x

R

3HN 

2op

2p22a

opp2T4a1a3oT

3 T33b

2oT

2 T22b

oTT1bl

 op , Toh

xBT17

R

O2

2op

2 p22a

opp2T4a1a3

oT3 T

33b

2oT

2 T22b

oTT 1bop , Tolh

x1BT18

R

lh

 

(16)

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 6/15

 

30 J. Mech. Eng. Res.

( )

yp,

yp,T,g

2B

g

T

T

g

TRTh

 

 

 

 

 

  

 ∂

−=  

(17)

( )

( ) ( )[ ]yp,

T

p,T 

3NH

gg

T

y

T

p,T

O

2

H

gg

T

 y1

2T

B RT

g h

x

e

 logxx1

e

logx1R

T

 

 

 

 

 

 

 

 

+−−

+

+

−=

 

(18)

The subscript l indicates liquidg indicates gaso indicates ideal gas stateTB = 100KPB = 10bar

( )

( )

( )

( )

( )

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

  

 

  

 

−+−

+−+−+−

+−+−+

×××−

−+−

+−+−+−

+−+−+

×−××−

=

  

  

  

  

3NH

11oT

3op

11T

3p4c411

oT

op

11T

p3c21

3oT

op

3T

p2c4opp1c

3oT

3T33d

2oT

2T22d

oTT1dg

poTo,h

yBT17

R

O2

H11oT

3op

11T

3p4c411

oTop

11Tp3c21

3oT

op

3T

p2c4opp1c

3oT

3T33d

2oT2T

22d

oTT1dg

po,Toh

y1BT18

R

gh

  (19)

The coefficients used in Equations 15,17,20,23, 26 and 29 aregiven in (Table 1) and (Table 2).

Specific entropy at liquid and vapor phases

The molar entropy of the liquid and gaseous phases were specifiedand simplified in Equation (20) to (25). Equation (22) is derived inMATLAB to find the liquid entropy in the compressed and saturatedregions. Equation (25) is derived in MATLAB to find the entropy ingaseous phase for the saturated and superheated regions.

( )

( )xp,

xp,T,l

l

T

gRs

 

  

 

∂−=  

(20)

( )( )   ( )

( ) ( )[ ]( ) ( )xp,xp,T,Egxelogxx1elogx1RT

pT,3NHlxg

pT,O

2H

lgx1Rls

 

 

 

 

++−−+

+−

∂−=

 

(21)

On reduction, the above equation becomes:

( )( )

( )( )

( )

( )( )

( ) ( )  ( ) ( )( )

( )  ( )( )

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

++−××

−+

++−−×−+

×−+

−−−+−+

−++

×

+

−−−+−+

−++

−×

 

  

 

 

  

 

3

se

2

se

1

sex1x

.18x1x.17

R

xexlogx1elogx1.18x1x.17

R

.18x1x.17

R

3NH

oppT4

2a3

a2oT

2T23

b

oTT2

boT

Tlog1bl

poTo,s

x17

R

O2

HoppT

42a

3a2

oT2T

23

b

oTT2boT

Tlog1b

lpoTo,

s

x118

R

ls

 

(22)

Where:

3

6

2

5431

T

2e

T

epeese   ++−−=  

( )    

  

 ++−−−=

3

12

2

111092

T

2e

T

epee12xse  

( )  

 

 

 

 +−=

3

16

2

1523

T

2e

T

e12xse  

( )

( )yp,

yp,T,g

g

T

gRs

 

  

 

∂−=  

(23)

( )( ) ( )

( ) ( )[ ]( ) ( )yp,yp,T,E

gye

ylogy1e

logy1RT

pT,3NH

ggy

pT,O

2H

ggy1

TR

gs

 

 

 

 

++−−+

+−

∂−=

 

(24)

( )( )

( )( )

( ) ( )  ( ) ( )( )

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

  

 

  

 

+−−×−+

×−+

−+−+−

++−++

×−

+

−+−+−

++−++

−×−

=

  

  

  

  

yeylogy1elogy1.18y1y.17

R

.18y1y.17

R3

NH12T

311p

12oT

3o11p

34c

12T

11p

12oT

o11p3c4T

3p

4oT

o3p2c

po

pelog

18

R2T2oT

2

3d2T-oT22

2d

oT

Telog1d-

gpoTo,

s-

y17

R

O2

H12T

311p

12oT

3o11p

3

4c

12T

11p

12oT

o11p3c4T

3p

4oT

o3p2c

po

plog

18

R2T2oT

2

3d2T-oT222d

oT

Tlog1d-

gpoTo,

s-

y118

R

gs

 

(25)

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 7/15

 

T a b l e 1 . Coefficients for the equations for the pure components.

C o e f f i c i e n t A m m o n i a w a t e ra1  3.971423.10

-2  2.748796. 10

-2 

a2  -1.790557.10-5

  -1.016665.10-5

 

a3  -1.308905.10-2

  -4.452025.10-3

 

a4  3.752836.10-3

  8.389246.10-4

 

b1  1.634519.101  1.214557.10

b2  -6.508119 -1.898065

b3  1.448937 2.911966.10-1

c1  -1.049377.10-2

  2.136131.10-2

 

c2  -8.288224 -3.169291.101 

c3  -6.647257.102  -4.634611.10

c4  -3.045352.103  0.0

d1  3.673647 4.019170

d2  9.989629.10-2

  -5.175550.10-2

d3  3.617622.10-2

  1.951939.10-2

hl  4.878573 21.821141h

g  26.468879 60.965058

sl  1.644773 5.733498

sg  8.339026 13.453430

To  3.2252 5.0705

po  2.0000 3.0000

T a b l e 2 . Coefficients for the Gibbs excess energy function.

e1  -4.626129.101 

e2  2.060225.10-2

 

e3  7.292369

e4  -1.032613.10-2

 

e5  8.074824.101 

e6  -8.461214.101 

e7  2.452882.101 

e8  9.598767.10-3

 

e9  -1.475383

e10  -5.038107.10-3

e11  -9.640398.101 

e12  1.226973.102 

e13  -7.582637

e14  6.012445.10-4

e15  5.487018.101

 e16  -7.667596.10

1

Specific volume of liquid and vapor phases  

The specific volume of the liquid and gaseous phases, werespecified and simplified in Equation (26) to (31). Equation (28) isderived in MATLAB to find the liquid volume in the compressed andsaturated regions. Equation (31) is derived in MATLAB to find thevolume in gaseous phase for the saturated and superheatedregions.

Ganesh and Srinivas. 31

( )

( )xT,

xp,T,l

B

Bl gpp

RTv

 

  

 

∂=  

(26)

( ) ( )

( ) ( )[ ]

xT,

xp,T,EgP

xexlogx1elogx1RTP

xp,T,3

NHlg

Px

xp,T,O2H

lgP

x1

Bp

BRTlv

 

 

 

 

 

 

 

 

∂++−−

+∂

∂+

∂−

=

 

(27)

In the same manner specific volumes were solved.

( )

( )

( )  ( ) ( ) ( )( )

−++−++×−××−+

  

  +++×××

  

 +++×−××

=

142

10842

B

B

NH

24321

B

B

OH

24321

B

B

l

e12xTee12xTeex1x100p

T

.18x1x.17

R

TaTapaa(x)100p

T

17

R

TaTapaax)(1100p

T

18

R

v

3

2

(28)

( )

( )yT,

yp,T,g

B

Bgg

pp

RTv

 

  

 

∂=  

(29)

( ) ( )

( ) ( )[ ]

 

 

 

 

 

 

 

 

+−−∂

+

∂+

∂−

=

yT,

yeylogy1elogy1RTP

yp,T,3NH

gg

P

y

yp,T,O2H

gg

P

y1

BpBRTg

v

  (30)

 

  

 ++++

 

  

 ××××

+

 

  

 ++++

 

  

 ××−××

=

3

2

NH

11

24

11

3

3

21

B

B

OH

11

24

11

3

3

21

B

B

g

T

pc

T

c

T

cc

p

T

18

Ry

100p

T

71

R

T

pc

T

c

T

cc

p

T

18

Ry)(1

100p

T

18

R

v  

(31)

R E S U L T S A N D D I S C U S S I O NIn this study, from the simplified Equations 17 and 19 theliquid and vapor enthalpies were calculated and coded inMatLab. Similarly, Equations 22 and 25 were used tocalculate the liquid and vapor entropies. The resultsgenerated using these equations were programmed inMatLab. With MatLab, the graphs were plotted andcompared with the graphs from the Feng and Yog(1999). The graphs obtained from this work, show a veryclose trend of comparison, Feng and Yogi (1999)

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 8/15

 

32 J. Mech. Eng. Res.

F i g u r e 4 . Bubble and dew point temperatures a 34.47 bar.

Figure 4 shows a plot between the temperature and

ammonia mass fraction. Here, the data in the sense ofthe values of temperature at a particular concentration.The temperatures at a particular concentration obtainedfrom Macriss and Goswami (1999) are very close with theproduced result using MatLab. Figure 4 shows the bubblepoint temperature and dew point temperature curves at aspecified pressure and for different concentrations. Thebubble point temperature and dew point temperaturevalues are identical at initial and final concentrationsensuring a closed curve. The differences between ourcomputed values and the data are less than 0.5%.Thesimulated works were carried out in MATLAB, which

shows a closer match with the literature. This work

requires less calculation and can be utilized for thethermodynamic properties.(Table 3) gives the property values at different regions

For a given pressure, temperature and concentration thebubble and dew point temperatures were calculated andthe given temperature will be compared with those twotemperatures and determine in which region the giventemperature lies. If the given temperature is less than thebubble point temperature then region will be acompressed liquid region and for which thecorresponding enthalpy, entropy and volumes wereobtained using MATLAB. In calculating the dryness

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 9/15

 

Ganesh and Srinivas. 33

T a b l e 3 . Thermodynamic properties value at different regions (p = 65 bar, x = 0.6, T = 125 °C, Tb = 138 °C and Td = 228°C).

T ° C C o n d i t i o n h lk J / k gh gk J / k g

h  k J / k g  s lk J / k g - K

s gk J / k g - Ks

k J / k g - Kv lm 3 / k g

v gm 3 / k gV

m 3 / k g125 Compressed liquid 366.68 - - 1.40 - - 0.0015 - -

138 Saturated liquid curve 435.95 - - 1.57 - - 0.0016 - -

215 Two phase region- - - 1775.94 - - 4.59 - - 0.008

228 Saturated vapor curve - 1978.23 - - 5.04 - - 0.011 -

250 Superheated - 2049.47 - - 5.18 - - 0.012 -

fraction, the ammonia mole fraction of vapor phase isobtained from correlation by Soleimani (2007).

y(x,P) = 1− exp[aPbx + (c +d /P) x

2] (32)

The present results found a closer match with the existingresults in the plots at a temperature less than 500

°C and

100 bar. In finding the values of enthalpy, entropy andvolume in between Tb and Td regions the drynessfraction is calculated from the equation developed in (19).

The liquid enthalpy and vapor enthalpy plots wereshown in (Figure 5) and (Figure 6). From (Figure 5), thevariation in the liquid enthalpy decreases first and thenincreases with increase in concentration at a specifiedpressure. The results obtained were validated and showsa closer match with the compared results. Thedifferences are less than 3% for all the data. (Figure 6)shows the variation in the vapor enthalpy curve. The

enthalpy value decreases continuously with the increasein the concentration. The enthalpy concentration withrespect to the parameters pressure and concentration isshown in (Figure 7). The liquid enthalpy plot is obtainedby considering the bubble point temperature andammonia mole fraction of liquid phase. For plotting theauxiliary curve the liquid enthalpy is considered as afunction of bubble point temperature and ammonia molefraction of vapor phase. (Figure 7) of the present workhas got similar curves at saturated liquid and vaporconditions as compared with existing graph by Zieglerand Trepp (1984). The values of enthalpies at anyconcentration and pressure from the result (22) iscompared with the present values and got similar values.

The ammonia mole fraction of vapor phase is obtained bycorrelation by Soleimani (2007). With the utilization ofthese correlations the result shows good agreement withthe previous work. With the combination of correlationsstated in the abstract, the present work was carried outusing a new program code MatLab and shows the similartrends in all the graphs. Work is the properties from thecombination of the three correlations and obtained inMatLab. (Figure 8) shows the entropy of saturated liquidat a specified temperature and various concentrations.

(Figure 8) shows the entropy of saturated liquid at a

specified temperature and various concentrations. Theentropy decreases and increases with the increase inconcentration. The plot obtained is validated with theexisting results and produces a good match. Whereas inthe entropy of saturated vapor from (Figure 9) at a

specified temperature, the plot decreases continuouslywith the increase in concentration. (Figure 10) shows theentropy concentration diagram for ammonia - watermixture at various pressures and concentrations. The gapon the left hand side between the liquid curves is lesscompared with the gap on the right side of the plot whichcan even be extended to 150 bar with the samecorrelations. The values obtained by this plot can beutilized for any thermodynamic cycle. Upon increasingthe pressures vapor curve and auxiliary curve areembedded one over the other forming a close gapbetween each other.

Figures (11 and 12) shows the liquid volume and vapor

volume which has been derived utilizing bubble pointtemperature. With both the plots at a specified pressurethe volume decreases with the increase in theconcentration. Exergy analysis is the maximum usefuwork obtained during an interaction of a system withequilibrium state. The total exergy of a system becomesa summation of physical exergy and chemical exergy.

E = Ech + Eph  (33)

Eph = (h-ho)-To(s-so)  (34)

Ech = ( )O2H

2

3NH

3

,e

M

x1,e

M

xch

o

OH

ich

o

NH

i

  −+

 

(35)

Where eo

ch,  NH3 and eoch,  H2O are chemical exergies o

ammonia and water. The standard chemical exergy ofammonia and water are taken from Ahrendts (1980).

The exergy concentration plot for ammonia-water mixtureat various pressures is shown in (Figure 13). The liquidexergy curve decreases to certain concentration andapproaches a near constant relation. The vapor exergy

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 10/15

 

34 J. Mech. Eng. Res.

Ammonia mass fraction

F i g u r e 5 . Enthalpy of saturated liquid at P=34.47 bar.

Ammonia mass fraction

F i g u r e 6 . Enthalpy of saturated vapor at 34.47 bars.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 11/15

 

Ganesh and Srinivas. 35

Ammonia mass fraction

   E  n   t   h  a   l  p  y ,

   K   J   /   k  g

 

F i g u r e 7 .  Ammonia-water enthalpy concentration diagram.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 10.9

Ammonia mass fraction

0.25

0.45

0.55

0.65

0.20

0.30

0.40

0.50

0.60

0.35   E  n   t  r  o  p  y ,

   k   j   /   k  g .   k

 

F i g u r e 8 . Entropy of saturated liquid at 37°C.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 12/15

 

36 J. Mech. Eng. Res.

Ammonia mass fraction

   E  n   t  r  o  p  y ,  g

  Vapor entropy for ammonia-water mixture

F i g u r e 9 .  Entropy of saturated vapor at 37 °C.

Ammonia mass fraction

F i g u r e 1 0 .   Entropy concentration diagram forammonia-water mixture.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 13/15

 

Ganesh and Srinivas. 37

Ammonia mass fraction

F i g u r e 1 1 .  Volume of saturated liquid at P=34.47 bar.

Ammonia mass fraction

F i g u r e 1 2 .  Volume of saturated vapor at P=34.47 bar.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 14/15

 

38 J. Mech. Eng. Res.

F i g u r e 1 3 . Exergy concentration diagram for ammonia-water mixture. 

curve decreases continuously with the increase inconcentration. The gap on the left hand side between theliquid curves is wider than the right hand side. Theauxiliary lines are contracting at low ammonia fractionswhereas the same lines are expanding at high ammoniafractions. The vapor exergy curve and auxiliary curveshave identical values at initial and final concentrationswhich results in a closed loop. The space between theliquid exergy and the closed loop is reduced with theincrease in pressures.

C o n c l u s i o nTo develop thermodynamic properties of ammonia-watermixtures various correlations were analyzed. In this workthree different correlations were utilized for developingthe results. Bubble and dew point temperatures wereobtained utilizing the correlation of Patek and Klomfar(1995), which reduces iterations, which is been utilizedfor finding the properties enthalpy, entropy and volume.The properties were derived using relations Ziegler andTrepp (1984). The mole fraction of ammonia in vaporphase was solved with the correlation by Soleimani

(2007). With the utility of these correlations, the need otedious iterations used in fugacity method was reducedThe results obtained in this work were validated bycomparing with the published data and found closermatching. Here, the results of the graphs obtained fromMatLab are compared with the existing results andproves the similar trends, which is the evidence and thatis why it was mentioned, as found to have close matchThe exergy for the ammonia-water system have beensimulated with the help of the derived properties, to carryout the second law analysis to power systems.

N o m e n c l a t u r e : a i , b i , c i , d i , e i ,   m i , n i ,   Coefficients; hspecific enthalpy, kJ/kg; s ,   specific entropy, kJ/kg-K; vspecific volume, m

3 /kmol; T ,  temperature, K; p, pressure

bar; ,  Gibbs free energy, kJ/kmol; p ,   specific heacapacity at constant pressure, kJ/kmol-K; R ,   universagas constant, kJ/kmol-K; x ,   ammonia mole fraction inliquid phase; y ,  ammonia mole fraction in vapor phase.  S u p e r s c r i p t s : g ,  Gas phase; l , liquid phase; o ,  ideal gasstate.

S u b s c r i p t s :   b ,  Bubble point; d ,   dew point; o ,   referencestate.

7/27/2019 Article1379684276_Ganesha and Srinivasb

http://slidepdf.com/reader/full/article1379684276ganesha-and-srinivasb 15/15

 

R E F E R E N C E SAhrendts J (1980). Reference states , Energy, 5: 667-668.Abovsky V (1996). “Thermodynamics of ammonia-water mixture”, Fluid

Phase Equilibria, 116: 170-176.Barhoumi M, Snoussi A, Ben EN, Mejbri K, Bellagi A (2004). “Modeling

of the thermodynamic properties of the ammonia/water mixture. Int. J.Refrig., 27: 271-283.

Feng X, Yogi GD (1999). “Thermodynamic properties of ammonia-watermixtures for power-cycle applications” Energy, 24: 525-536.

Hasan O, Stanley I, Sandler (1995). “On the combination of equationofstate and excess free energy models”, Fluid Phase Equilibria, 111:53-70.

Ibrahim OM, Klein SA, (1993). “Thermodynamic Properies of ammonia-water mixture”, ASHRAE Trans., 99: 1495-1502

Eric W, Lemmon, Reiner T (1999). “A Helmholtz energy equation ofstate for calculating the thermodynamic properties of fluid mixtures”,Fluid Phase Equlibria, 165: 1-21.

Mejbri KH, Bellagi A (2006). “Modelling of the thermodynamic propertiesof the water-ammonia mixture by three different approaches, Int. J.Refrig., 29: 211-218.

Mishra RD, Sahoo PK, Gupta A (2006). “Thermoeconomic evaluationand optimization of an aqua-ammonia vapour-absorption refrig.system” Int. J. Refrig., 29: 47-59.

Nowarski A, Friend DG (1998). “Application of the extendedcorresponding states method to the calculation of the ammonia-watermixture thermodynamic surface”, Int. J. Thermophys., 19: 1133-1141.

Patek J, Klomfar J (1995). “Simple functions for fast calculations ofselected thermodynamic properties of the ammonia-water system”,Refrig., 18: 228-234.

Ganesh and Srinivas. 39

Reid RC, Prausnitz JM, Poling BE (1987). The Properties of Gases andLiquids. Fourth edition. New York, USA: McGraw-Hill. 667. ISBN 007-051799-1.

Renon H, Guillevic JL, Richon D, Boston J, Britt H (1985). “A cubicequation of state representation of ammonia-water vapor-liquidequilibrium data” Refrig., 9: 70-73.

Ruiter JP (1990). “Simplified thermodynamic description of mixtures andsolutions”, 13: 223-236.

Raj S, Diwakar S, Ranjana G, Ashish D (1999). “Potential applicationsof artificial neural networks to thermodynamics: Vapor-liquidequilibrium predictions, Comput. Chem. Eng., 23: 385-390.

Senthil R, Murugan PMV, Subbarao(2008) “Thermodynamic Analysis oRankine-Kalina Combined Cycle”, Int. J. Thermodyn., 11: 133-141.

Soleimani G, Alamdari (2007). “Simple functions for predicting thethermodynamic properties of ammonia-water mixture”, 20(1): 95-104.

Tillner-Roth R, Friend DG (1998). “A Helmholz free energy formulationof the thermodynamic properties of the mixture, American Institute oPhysics and American Chemical Society.

“Vapor Absorption Refrigeration Systems Based on Ammonia-WatePair” (2004). Version 1. ME, IIT.

Weber LA, (1999). “Estimating the virial coefficients of the ammonia-water mixture” Fluid Phase Equlibria, 162: 31-49

Yousef SH, Najjar (1997). “Determination of thermodynamic propertiesof some engineering fluids using two-consant equations of stateThermochim. Acta, 303: 137-143.

Ziegler B, Trepp CH (1984). “Equation of state for ammonia-watemixtures” Refrig., 7: 101-106. 


Recommended