+ All Categories
Home > Documents > ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

Date post: 22-Feb-2016
Category:
Upload: elvis
View: 24 times
Download: 0 times
Share this document with a friend
Description:
ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker Professor George H. Born Lecture 21: Exam 2 Debrief and More Fun. Announcements. Homework 9 due this week. Make sure you spend time studying for the exam Homework 10 out Thursday. - PowerPoint PPT Presentation
Popular Tags:
75
CCAR Colorado Center for Astrodynamics Research University of Colorado Boulder ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker Professor George H. Born Lecture 21: Exam 2 Debrief and More Fun 1
Transcript
Page 1: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 1

ASEN 5070Statistical Orbit Determination I

Fall 2012

Professor Jeffrey S. ParkerProfessor George H. Born

Lecture 21: Exam 2 Debrief and More Fun

Page 2: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 2

Homework 9 due this week.◦ Make sure you spend time studying for the exam

Homework 10 out Thursday.◦ Give you a small reprieve to focus on HW9.

Announcements

Page 3: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 3

Quiz 17 Review

Page 4: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 4

Quiz 17 Review

Page 5: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 5

Quiz 17 Review

Page 6: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 6

Quiz 17 Review

The matrix of partials of one observation relative to the state parameters is identical to the other matrix.

Page 7: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 7

Quiz 17 Review

Page 8: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 8

Quiz 17 Review

Page 9: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 9

Quiz 17 Review

Page 10: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 10

Quiz 17 Review

Page 11: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 11

Due this Thursday

HW#9

Page 12: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 12

HW#9 Tip Try building x-hat from the data given online. If you can get

that to work then you’ll have a better chance of getting your own x-hat to match the solutions!

Grab the accumulated matrices HTWH and HTWY. Try computing inv(HTWH+P0bar)*HTWY

Page 13: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 13

HW#9 Tip Your x-hat should match to at least 1 digit of precision in

each parameter (hopefully 3). It will not be identical!◦ Different integrator◦ Different tolerance◦ Different computer◦ Different inverter

inv(HTWH+P0bar) is very poorly conditioned (e-34 I believe)

Matlab’s “inv” function will not produce the right answer.

Page 14: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 14

HW#9 Tip inv(HTWH+P0bar) is very poorly conditioned (e-34 I

believe)

R = chol( HTWH+P0bar) Inv(R) is also poorly conditioned, but only e-1.

This is far better.

If RTR = (HTWH+P0bar), what is inv( RTR )?

Page 15: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 15

Overall, the class did well. Most everyone grasped the concepts.

Nobody got 100% - so don’t worry if your grade was lower than 90. (curve TBD)

Exam 2 Debrief

Page 16: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 16

Exam 2 Debrief

Page 17: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 17

Exam 2 Debrief

Page 18: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 18

Exam 2 Debrief

Page 19: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 19

Exam 2 Debrief

Page 20: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 20

Exam 2 Debrief

Page 21: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 21

Exam 2 Debrief

Page 22: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 22

Exam 2 Debrief

Page 23: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 23

Exam 2 Debrief

Page 24: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 24

Exam 2 Debrief

Page 25: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 25

Exam 2 Debrief

Page 26: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 26

Exam 2 Debrief

Page 27: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 27

Exam 2 Debrief

i.e., High Precision but low accuracy!

Page 28: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 28

Exam 2 Debrief

Page 29: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 29

Exam 2 Debrief

Page 30: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 30

Exam 2 Debrief

Page 31: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 31

Exam 2 Debrief

Only guarantees a nonnegative definite!

Page 32: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 32

Exam 2 Debrief

Page 33: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 33

Exam 2 Debrief

Page 34: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 34

Exam 2 Debrief

Page 35: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 35

Exam 2 Debrief

4x3

Page 36: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 36

Exam 2 Debrief

Page 37: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 37

Exam 2 Debrief

[3x4]*[4x3] = [3x3] (hint: it’s always nxn)

Page 38: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 38

Exam 2 Debrief

Page 39: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 39

Exam 2 Debrief

1. one observation vector includes 4 independent pieces of information. We only need 3 pieces of information.

Page 40: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 40

Exam 2 Debrief

Page 41: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 41

Exam 2 Debrief

Then Phi, A, y, H-tildex-hat, P, x-bar, P-bar

Page 42: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 42

Exam 2 Debrief

Page 43: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 43

Exam 2 Debrief

X* (the reference trajectory)x-bar (the a priori deviation, nominally zero)P-bar (the a priori covariance)Y_i (the observations)omega and sigma (though that’s specific to this problem and it’s okay if you didn’t include that!

Page 44: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 44

Exam 2 Debrief

Page 45: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 45

Quick Break

Next up: Stuff.

◦ Prediction Residual◦ Givens◦ Householder◦ Future: Process Noise, Smoothing

Page 46: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

The Prediction Residual

Page 47: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

The Prediction Residual

Page 48: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

The Prediction Residual

Page 49: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

The Prediction Residual

This would be especially important in the case of the EKF

Page 50: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 50

Next: Orthogonal transformations: Givens, Householder

Page 51: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 52: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 53: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 54: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 55: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 56: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Page 57: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 57

So how do we select Q?

Givens, Householder, many methods

Choices from here

Page 58: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 59: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 60: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 61: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 62: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 63: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Apply the rotation across the matrix, converting it into a triangular matrix

Page 64: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 65: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens

Page 66: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Consider 1 11 11 1

H

Machine precision is such that

The normal matrix is given by

2

3 33 3 2

TH H

; exact solution

our computer will drop the and23 3

3 3 2TH H

To order , hence itis singular

0TH H

Notice that a vector of Observations is not needed.Why?

Page 67: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Consequently, the Batch Processor will fail to yield a solution. Note that thisIllustrates the problem with forming HTH, i.e. numerical problems are amplified.

The Cholesky decomposition yields: 33

30 0

R

R is singular and will not yield a solution for . x̂

Page 68: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Use the Givens transformation to determine R 1st zero element (2,1) of H 0 1 1

0 1 10 0 1 1 1

C SS C

Page 69: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Use the Givens transformation to determine R 1st zero element (2,1) of H 0 1 1

0 1 10 0 1 1 1

C SS C

1 1x 2 1x

22 21 2

12

xSx x

12 21 2

12

xCx x

3 23 3

1 2 1 2 0 1 1 2 2 2 21 2 1 2 0 1 1 0 0

0 0 1 1 1 1 1

Note that the magnitude of the columns of [H y] are unchanged.

Page 70: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Next zero element (3,1) 122

x 2 1x ,

3 23 3

1 2 1 2 0 1 1 2 2 2 21 2 1 2 0 1 1 0 0

0 0 1 1 1 1 1

1 11 2 3

S

2 2 23 6

C ,

2 6 0 1 3 2 2 2 2 3 3 30 1 0 0 0 0 0

1 11 3 0 2 6 0 2 3

Page 71: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Next zero element (3,2) 1 0x 223

x , 1S 0C ,

3 3 31 0 0 3 3 30 0 1 0 0 0 2 30 1 0 0 00 2 3

2 6 0 1 3 2 2 2 2 3 3 30 1 0 0 0 0 0

1 11 3 0 2 6 0 2 3

Page 72: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

The Givens transformations yield

3 3 3

203

R

Which will yield a valid solution for ̂xIn fact

3 0 3 3 3

2 23 3 03 3

TR R

2

3 33 3 2

Page 73: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Accuracy Comparison for Batch and Givens – Finite Precision Computer

Which is the exact solution result for . Hence, for this example the orthogonal transformations would yield the correct solution. However, the estimation error covariance matrix would be incorrect because our computer would drop the

TH H

2 term.

Page 74: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder

Givens used rotations to null values until R became upper-triangular

Householder uses reflections to accomplish the same goal

74

Other Orthogonal Transformations

Page 75: ASEN 5070 Statistical Orbit Determination I Fall 2012 Professor Jeffrey S. Parker

CCARColorado Center for

Astrodynamics Research

University of ColoradoBoulder 75

Homework 9 due this week.◦ Make sure you spend time studying for the exam

Homework 10 out Thursday.◦ Give you a small reprieve to focus on HW9.

The End


Recommended