+ All Categories
Home > Documents > Aspen OLI Standard Getting Started 2006

Aspen OLI Standard Getting Started 2006

Date post: 06-Apr-2018
Category:
Upload: etiosami
View: 221 times
Download: 0 times
Share this document with a friend

of 93

Transcript
  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    1/93

    A Guide to Using The Aspen OLI Interface An Overview of the Aspen OLI Interface 1-1

    Chapter 1An Overview of theAspen OLI Interface

    History

    Dupont 25 year history using OLI electrolytes program.

    1995 switched to Aspen as their process simulator.

    Wanted the capability to use OLI electrolytes from ASPEN.

    In 1996 Aspen V-8.2 was interfaced (no Model Manager)

    In 1997 Aspen V-9.x with Model Manager.

    Currently interfacing with Aspen PLUS V7 (2008)

    Advantages of Aspen OLI User Interface

    Learn one flowsheeting system

    Multiple Property Options in same flowsheet

    Well established Non-electrolyte capability

    Sizing

    Costing

    Two Software Venders

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    2/93

    1-2 An Overview of the Aspen OLI Interface A Guide to Using The Aspen OLI Interface

    Disadvantages of Aspen OLI

    No Corrosion No Bio-reactors

    No Ion-exchange

    No Surface Complexation

    No Scaling Tendencies

    Two Software Venders

    Aspen OLI Interface Layout

    Figure 1-1 The layout of the Aspen OLI Interface

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    3/93

    A Guide to Using The Aspen OLI Interface An Overview of the Aspen OLI Interface 1-3

    Aspen OLI Unit Operations

    MIXERS

    FSPLIT

    SEP

    SEP2

    HEATER

    FLASH2

    FLASH3

    HEATX

    MHEATX

    RADFRAC

    RSTOIC

    RYIELD

    RCSTR

    RPLUG

    PUMP

    COMPR

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    4/93

    1-4 An Overview of the Aspen OLI Interface A Guide to Using The Aspen OLI Interface

    Aspen Property Set

    Figure 1-2 OLI Property Set, the circled areas show that OLI is enabled

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    5/93

    A Guide to Using The Aspen OLI Interface An Overview of the Aspen OLI Interface 1-5

    Property Route ID Property Route ID

    PHIVMX PHIVMXO1 MUVMXL MUVMXLP1

    PHILMX PHILMXO1 MUVLP MUVLP01

    HVMX HVMXO1 KVMXLP KVMXLP01

    HLMX HLMXO1 KVLP KVLP01

    GVMX GVMXO1 DHV DHV00

    GLMX GLMXO1 DHL DHL00

    SVMX SVMXO1 DHLPC DHLPC00

    SLMX SLMXO1 DGV DGV00

    VVMX VVMXO1 DGL DGL00

    VLMX VLMXO1 PHILPC PHILPC00

    MUVMX MUVMX01 DSV DSV00

    MULMX MULMX01 KVPC KVPC01

    KVMX KVMX01

    KLMX KLMX01

    DVMX DVMX01

    DLMX DLMX02

    SIGLMX SIGLMX01

    PHIV PHIV00

    PHIL PHILO1HV HV00

    HL HL00

    GV GV00

    GL GL00

    SV SV00

    SL SL00

    VV VV00

    VL VL01

    MUV MUV01

    MUL MUL01

    KV KV01

    KL KL01

    DV DV01

    DL DL01

    SIGL SIGL01

    HSMX HSMXO1

    PHIL PHIL00

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    6/93

    1-6 An Overview of the Aspen OLI Interface A Guide to Using The Aspen OLI Interface

    Property Model Set OpCodes Affected

    Properties

    PHIVMX PHVMXOLI 1 PHIVMX

    PHILMX PHLMXOLI 1 PHILMX

    HVMX HVMXOLI 1 HVMX

    HLMX HLMXOLI 1 HLMX

    GVMX GVMXOLI 1 GVMX

    GLMX GLMXOLI 1 GLMX

    SVMX SVMXOLI 1 SVMX

    SLMX SLMXOLI 1 SLMX

    VVMX VVMXOLI 1 VVMX

    VLMX VLMXOLI 1 VLMX

    MUVMXL MUV2WILK 1 MUVMX

    MUVLP MUV0CEB 1 MUVMX KVMX MUV KV

    MULMX MUL2ANDR 1 MULMX

    KVMXLP KV2WMSM 1 KVMX

    KVLP KV0STLP 1 KVMX KV

    KLMX KL2SRVR 1 KLMX

    DVMX DV1CEWL 1 DVMX

    DLMX DL1WCA 1 DLMXSIGLMX SIG2HSS 1 1 SIGLMX

    PHIV ESIG0 1 PHIV GL SL

    PHIL PHILOLI 1 PHIL

    DHV ESIG0 1 HV HL SL

    PL PL0XANT 1 HL GL SL

    DHVL DHVLWTSN 1 HL SL

    DHLPC DHLPC00 1 HL SL

    DGV ESIG0 1 GV

    PHILPC PHILPC00 1 GL SL

    DSV ESIG0 1 SV

    VV ESIG0 1 VV

    VL VL0RKT 1 VL

    MUL MUL0ANDR 1 MUL

    KVPC KV0STPC 1 KV

    VV ESRK0 1 KV

    KL KL0SR 1 KL

    DV DV0CEWL 1 DV

    DL DL0WCA 1 DL

    SIGL SIG0HSS 1 SIGL

    HSMX HSMXOLI 1 HSMX

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    7/93

    A Guide to Using The Aspen OLI Interface An Overview of the Aspen OLI Interface 1-7

    Using the Aspen OLI Interface New property option in ASPEN named OLI:

    PROPERTIES OLI CHEMISTRY=xxxxx TRUE-COMPS=YES

    The following ASPEN paragraphs are created when the chemistrymodel is generated:

    DATABANKS PROP-DATA

    COMPONENTS PROPERTIES

    CHEMISTRY PROP-SET pH

    ASPEN user is then required to add the additional paragraphs to runthe simulation

    such as:

    FLOWSHEET

    STREAMS

    BLOCKS

    ESP-NAME DB 8-CHAR ASP-ALIAS ASP-NAME

    ================ = ====== ========= ===========================

    AR P AR AR ARGON

    BCL3 V BCL3 BCL3 BORON-TRICHLORIDE

    BF3 V BF3 BF3 BORON-TRIFLUORIDE

    BR2 V BR2 BR2 BROMINE

    CLNO V CLNO CLNO NITROSYL-CHLORIDE

    CL2 P CL2 CL2 CHLORINE

    PCL3 V PCL3 CL3P PHOSPHORUS-TRICHLORIDE

    SICL4 V SICL4 CL4SI SILICON-TETRACHLORIDE

    D2 V D2 D2 DEUTERIUM

    D2O V D2O D2O DEUTERIUM-OXIDE

    F2 V F2 F2 FLUORINE

    NF3 V NF3 F3N NITROGEN-TRIFLUORIDE

    SIF4 V SIF4 F4SI SILICON-TETRAFLUORIDE

    SF6 V SF6 F6S SULFUR-HEXAFLUORIDE

    HBR V HBR HBR HYDROGEN-BROMIDE

    HCL P HCL HCL HYDROGEN-CHLORIDE

    HF P HF HF HYDROGEN-FLUORIDE

    AGION P AG+ AG+ AG+

    AGCL2ION P AGCL2- AGCL2-2 AGCL2--AGSO4ION P AGSO4- AGSO4- AGSO4-

    ALION P AL+3 AL+3 AL+++

    ALFION P ALF+2 ALF+2 ALF++

    ALF2ION P ALF2+ ALF2+ ALF2+

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    8/93

    1-8 An Overview of the Aspen OLI Interface A Guide to Using The Aspen OLI Interface

    Potential ProblemsMixing property options in the same flowsheet The user can mix

    property options in the same flowsheet, using OLI in one block and anAspen sysopt such as SYSOP3 in another block. However, the user

    must be aware of the potential problem of enthalpy mis-matches in

    switching property options. Even though the base enthalpy for bothAspen and OLI is the heat of formation of the pure component at 25 C,

    a mis-match will occur due to differences in heat capacity and excess

    enthalpy calculations. If an isothermal calculation is made at the point

    of property option change, the effect will be to have an artificial dutyon the block. An adiabatic calculation could cause major problems in

    convergence and result in erroneous results.

    Chemistry model location (xxxx.DBS file) By default ASPEN

    looks for the .DBS file in the directory where the BKP file has beencreated.

    8 Character Component Names at chemistry model generation, an 8character name will be created for each species and cross referenced to

    both OLI component names and Aspen component names. This cross

    referencing is made based on a table (OLIASP.XRF) supplied withthe installation. Do Not change the names after the chemistry model is

    created. It is okay to add additional names to the components

    paragraph providing these components will have zero flow rates forany block using the OLI property option.

    Chemistry ParagraphThe chemistry paragraph created and placed inthe Aspen input file is only used by the RADFRAC block. All other

    blocks chemistry is define by the information in the xxx.DBS file

    Added Unit Blocks (OLI)

    Four phase flash block (EFLASH)

    OLI Distillation program (EFRACH)

    Can only be used through command line (No Model Manager)

    New run command (RUNASP)

    Reads xxxx.ASP file and converts keyword input to positional input

    and outputs xxxx.INP.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    9/93

    A Guide to Using The Aspen OLI Interface An Overview of the Aspen OLI Interface 1-9

    Executes the standard Aspen run command to run the simulation.

    Figure 1-3 EFLASH unit operation

    Figure 1-4 EFRACH Block

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    10/93

    2-10 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Chapter 2ASPEN NeutralizationFlowsheet

    A Tour of the OLI-ASPEN Interface

    The following example is flowsheet simulation of an acid-base

    neutralization process. An acid stream and a base stream are mixedtogether and then caustic is added to raise the pH to 9. Solid NACL is

    added to precipitate out Na2SO4. The resulting stream is split,

    removing 75% and recycling 25%.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    11/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-11

    Generating Chemistry Model

    There are two methods to create an OLI chemistry model to be used with Aspen PLUS. These are the Chemistry Wizard

    and the OLI Engine1. We will concentrate on the OLI Chemistry Wizard.

    Use the Start Button and locate the OLI Chemistry Wizard. Typical installation paths will put the program here:

    Start > Programs > AspenTech > Aspen Engineering Suite> Aspen OLI 2006.5

    Figure 2-1 The Aspen OLI Splash Screen

    This screen will close on its own in a few seconds or you can click to clear the image.

    1 The OLI Engine chemistry generator is supplied with the OLI Alliance Suite for Aspen PLUS and is very similar to the

    chemistry generator used for ESP. This will be shown in Chapter 6.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    12/93

    2-12 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    The Chemistry Wizard information dialog is now displayed. You can enter the name of the model and change the

    location where the model files will be located. Here we will enter the nameNeutral1for the model name and change the

    location of the files.

    Figure 2-2 Specifying the model name and location

    Click theNext> button to continue

    Figure 2-3 Chemistry Model name

    specified

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    13/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-13

    Here we can select the thermodynamic framework. There are two offered by OLI. The traditional aqueous model and the

    mixed-solvent electrolyte framework. This latter framework is also known as the H3O+ (hydronium ion) framework.2We can also select databases in addition to the PUBLIC database. These databases listed contain data that limited to a

    more specific region of thermodynamic space than the PUBLIC database or contains data that is missing from the public

    database. For this example we will only use the PUBLIC database.

    Click theNext> button to continue

    2 We will discuss the MSE framework in Chapter 7

    Figure 2-4 Selecting thermodynamic framework and

    databases

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    14/93

    2-14 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-5 Adding components

    We are now ready to add the components for this example. Click theAddbutton.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    15/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-15

    Figure 2-6 Select Components

    We now need to add our components of ammonia (NH3), carbon dioxide (CO2), sulfur dioxide (SO2), hydrochloric

    acid (HCL), sulfuric acid (H2SO4) and sodium hydroxide (NAOH).

    We can scroll through the list or enter the component ID and let the software find the component. We will try the latter

    technique, enter the component ID NH3

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    16/93

    2-16 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-7 Adding NH3, ammonia

    You can see that the screen automatically scrolled as you entered letters. The current component NH3 is highlighted.

    Click theAddbutton. Repeat this action for the remaining components. Click the Close button when done.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    17/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-17

    Figure 2-8 the added components

    Click theNext> button.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    18/93

    2-18 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-9 adding redox

    On this screen we can add oxidation and reduction to the chemistry. We will not do so for this example. Click theNext>

    button.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    19/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-19

    Figure 2-10 Selecting phases, including solids

    On this screen we can enable vapor and second liquid (non-aqueous) phases. By default the vapor phase is enabled and

    the second liquid phase is disabled. We can also turn off all potential solid phases or select individual solids to exclude.

    Occasionally the user will have prior knowledge of which solid phases will be present. Eliminating solids that are not

    possible can dramatically increase the execution speed of the program.

    ClickNext> to continue.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    20/93

    2-20 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-11 Aspen Alias names

    Many times OLI will have a component that Aspen PLUS will not. For those cases an alias name has to be provided to

    allow the two programs to properly communicate. As you can see in this example, there is no AspenPLUS alias for

    NAOH. We must provide one. Enter the alias NAOH.

    Figure 2-12 Alias Entered

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    21/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-21

    Click theNext> button.

    Figure 2-13 BKP file options

    OLI initially communicates to Aspen PLUS via the BKP file. We will shortly create a flowsheet without any unit

    operations. The BKP file will initially have the same name as the chemistry model but you may change the name if youwish. A second option is to allow the solid salts to precipitate. This is the default option. Alternatively you can

    dramatically increase the speed of execution by setting the salts to be dissociated. It is recommended for OLI models that

    you accept the default choices.

    Click theNext> button.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    22/93

    2-22 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-14 Almost done

    We are almost done with the chemistry model generation. This is the summary screen of what we have selected. Please

    review it to make sure you have made the choices you require. Click the Generate Files Now button.

    If the model was successfully generated you will receive this message:

    Figure 2-15 completed

    Click the OKbutton.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    23/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-23

    Figure 2-16 Done

    We are now done with the chemistry model generation. Notice that the Generate Files Now button and theNext> button

    are gray. Click theFinish button.

    We create a BKP file and an ASP file. We will use the BKP file in a moment. The ASP file is the old Aspen INP file.We have renamed the file from INP to ASP since OLI also uses a file with extension INP.

    3Here is the contents of the

    file. It can be renamed to INP to be used with the Aspen PLUS Simulation Engine.

    File NEUTRAL.ASP

    TITLE " "

    ;

    DESCRIPTION " "

    ;

    RUN-CONTROL MAX-TIME=36000

    ;

    HISTORY MSG-LEVEL SIM-LEVEL=4 STREAM-LEVEL=4

    ;

    IN-UNITS ENG

    OUT-UNITS ENG

    ;

    DATABANKS ASPENPCD /SOLIDS /AQUEOUS /PURECOMP /INORGANIC

    ;

    COMPONENTS H2O H2O / CO2 CO2 / H2SO4 H2SO4 / HCL HCL / NH3 H3N /

    3 The INP file is used with OLIs ProChem software.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    24/93

    2-24 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    SO2 O2S / SO3 O3S / NAHCO3 NAHCO3 / H2SO4IN H2SO4 /

    NAOH NAOH / NACO3W10 "NA2CO3.10H2O" / NACO3W1 "NA2CO3.H2O" /

    NACO3W7 "NA2CO3.7H2O" / NA2CO3 NA2CO3 / NA2SO3W7 /

    NA2SO3 / NA2STW10 / NA2SO4 NA2SO4 / NA3SO4 /

    NASCO3 / NACL NACL / NAHSO4 / NANH4SW4 / NAOHW1 /

    NH42SUW1 / NH4SO3 H8N2O3S / NH4SO4 "(NH4)2SO4" /

    NH44H2 / NH4CL NH4CL / NH4HCO / NH5SO3 H5NO3S /

    H2CO3IN H2CO3 / H2SO3IN H2SO3 / HNH2CO2 / NAHSO3IN /

    NANH2CO2 / NANH4SO4 / NH42CO3 / NH4OHIN NH4OH /

    NA2CO3-S NA2CO3 / NA2SO3-S / NA2SO4-S NA2SO4 /

    NA3SO4-S / NASCO3-S / NACL-S NACL / NAHCO3-S NAHCO3 /

    NAHSO4-S / NAOH-S NAOH / NH4SO3-S H8N2O3S /

    NH4SO4-S "(NH4)2SO4" / NH44H2-S / NH4CL-S NH4CL /

    NH4HCO-S / NH5SO3-S H5NO3S / OH- OH- / CO3-2 CO3-2 /

    HCO3- HCO3- / H+ H+ / HSO3- HSO3- / HSO4- HSO4- /

    NACO3- NACO3- / NA+ NA+ / NASO4- NASO4- / NH2CO2- NH2COO- /

    NH4+ NH4+ / NH4SO4- / CL- CL- / S2O5-2 / SO3-2 SO3-2 /

    SO4-2 SO4-2

    ;

    CHEMISTRY neutral

    PARAM KBASIS=MOLALSTOIC 1 CO2 -1/H2O -1/H+ 1/HCO3- 1

    STOIC 2 HCO3- -1/H+ 1/CO3-2 1

    STOIC 3 HSO3- -1/H+ 1/SO3-2 1

    STOIC 4 HSO4- -1/H+ 1/SO4-2 1

    STOIC 5 NACO3- -1/NA+ 1/CO3-2 1

    STOIC 6 NAHCO3 -1/NA+ 1/HCO3- 1

    STOIC 7 NASO4- -1/NA+ 1/SO4-2 1

    STOIC 8 NH2CO2- -1/H2O -1/NH3 1/HCO3- 1

    STOIC 9 NH3 -1/H2O -1/NH4+ 1/OH- 1

    STOIC 10 H2SO4 -1/H+ 1/HSO4- 1

    STOIC 11 NH4SO4- -1/NH4+ 1/SO4-2 1

    STOIC 12 S2O5-2 -1/H2O -1/SO3-2 2/H+ 2

    STOIC 13 SO2 -1/H2O -1/HSO3- 1/H+ 1STOIC 14 H2O -1/H+ 1/OH- 1

    STOIC 15 SO3 -1/H2O -1/H2SO4 1

    STOIC 16 HCL -1/H+ 1/CL- 1

    DISS NAOH OH- 1/NA+ 1

    DISS NACO3W10 OH- 10/CO3-2 1/H+ 10/NA+ 2

    DISS NACO3W1 OH- 1/CO3-2 1/H+ 1/NA+ 2

    DISS NACO3W7 OH- 7/CO3-2 1/H+ 7/NA+ 2

    DISS NA2CO3 CO3-2 1/NA+ 2

    DISS NA2SO3W7 OH- 7/H+ 7/NA+ 2/SO3-2 1

    DISS NA2SO3 NA+ 2/SO3-2 1

    DISS NA2STW10 OH- 10/H+ 10/NA+ 2/SO4-2 1

    DISS NA2SO4 NA+ 2/SO4-2 1

    DISS NA3SO4 H+ 1/NA+ 3/SO4-2 2DISS NASCO3 CO3-2 1/NA+ 6/SO4-2 2

    DISS NACL NA+ 1/CL- 1

    DISS NAHSO4 H+ 1/NA+ 1/SO4-2 1

    DISS NANH4SW4 OH- 4/H+ 4/NA+ 2/NH4+ 2/SO4-2 2

    DISS NAOHW1 OH- 2/H+ 1/NA+ 1

    DISS NH42SUW1 OH- 1/H+ 1/NH4+ 2/SO3-2 1

    DISS NH4SO3 NH4+ 2/SO3-2 1

    DISS NH4SO4 NH4+ 2/SO4-2 1

    DISS NH44H2 CO3-2 3/H+ 2/NH4+ 4

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    25/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-25

    DISS NH4CL NH4+ 1/CL- 1

    DISS NH4HCO CO3-2 1/H+ 1/NH4+ 1

    DISS NH5SO3 H+ 1/NH4+ 1/SO3-2 1

    DISS H2CO3IN CO3-2 1/H+ 2

    DISS H2SO3IN H+ 2/SO3-2 1

    DISS HNH2CO2 OH- -1/CO3-2 1/NH4+ 1

    DISS NAHSO3IN H+ 1/NA+ 1/SO3-2 1

    DISS NANH2CO2 OH- -1/CO3-2 1/H+ -1/NA+ 1/NH4+ 1

    DISS NANH4SO4 NA+ 2/NH4+ 2/SO4-2 2

    DISS NH42CO3 CO3-2 1/NH4+ 2

    DISS NH4OHIN OH- 1/NH4+ 1

    DISS NA2CO3-S CO3-2 1/NA+ 2

    DISS NA2SO3-S NA+ 2/SO3-2 1

    DISS NA2SO4-S NA+ 2/SO4-2 1

    DISS NA3SO4-S H+ 1/NA+ 3/SO4-2 2

    DISS NASCO3-S CO3-2 1/NA+ 6/SO4-2 2

    DISS NACL-S NA+ 1/CL- 1

    DISS NAHCO3-S CO3-2 1/H+ 1/NA+ 1

    DISS NAHSO4-S H+ 1/NA+ 1/SO4-2 1

    DISS NAOH-S OH- 1/NA+ 1

    DISS NH4SO3-S NH4+ 2/SO3-2 1DISS NH4SO4-S NH4+ 2/SO4-2 1

    DISS NH44H2-S CO3-2 3/H+ 2/NH4+ 4

    DISS NH4CL-S NH4+ 1/CL- 1

    DISS NH4HCO-S CO3-2 1/H+ 1/NH4+ 1

    DISS NH5SO3-S H+ 1/NH4+ 1/SO3-2 1

    K-STOIC 1 274.31 -13854 -42.555 1.26650E-09

    K-STOIC 2 187.89 -10927 -30.72 9.80730E-10

    K-STOIC 3 231.43 -10086 -37.594 1.18890E-09

    K-STOIC 4 222.04 -7989.4 -35.068 1.06350E-09

    K-STOIC 5 146.5 -8492.5 -20.936 6.44280E-10

    K-STOIC 6 931.09 -26379 -159.1 .21713

    K-STOIC 7 167.69 -2587.2 -31.331 6.52430E-02

    K-STOIC 8 6.5771 -2185.6 -2.02270E-09 2.48690E-12K-STOIC 9 169.08 -8411.8 -26.647 7.67190E-10

    K-STOIC 10 -6.3869 -716.49 7.0386 -2.46280E-02

    K-STOIC 11 172.22 -7652 -26.17 7.97980E-10

    K-STOIC 12 375.49 -16207 -60.24 1.84300E-09

    K-STOIC 13 53.382 -487.64 -9.762 2.87800E-10

    K-STOIC 14 161.47 -14333 -25.56 8.03310E-10

    K-STOIC 15 214.15 -8208.5 -31.183 9.98140E-10

    K-STOIC 16 1221.6 -30089 -209.99 .30227

    ;

    PROP-DATA neutral

    PROP-LIST MW / CHARGE

    PVAL H2O 18.0154 / .00

    PVAL CO2 44.0099 / .00PVAL H2SO4 98.0796 / .00

    PVAL HCL 36.4610 / .00

    PVAL NH3 17.0307 / .00

    PVAL SO2 64.0650 / .00

    PVAL SO3 80.0642 / .00

    PVAL NAHCO3 84.0073 / .00

    PVAL H2SO4IN 98.0796 / .00

    PVAL NAOH 39.9974 / .00

    PVAL NACO3W10 286.1400 / .00

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    26/93

    2-26 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    PVAL NACO3W1 124.0050 / .00

    PVAL NACO3W7 232.0970 / .00

    PVAL NA2CO3 105.9890 / .00

    PVAL NA2SO3W7 252.1500 / .00

    PVAL NA2SO3 126.0400 / .00

    PVAL NA2STW10 322.2000 / .00

    PVAL NA2SO4 142.0400 / .00

    PVAL NA3SO4 262.1100 / .00

    PVAL NASCO3 390.0800 / .00

    PVAL NACL 58.4430 / .00

    PVAL NAHSO4 120.0620 / .00

    PVAL NANH4SW4 346.2470 / .00

    PVAL NAOHW1 58.0128 / .00

    PVAL NH42SUW1 134.1570 / .00

    PVAL NH4SO3 116.1420 / .00

    PVAL NH4SO4 132.1410 / .00

    PVAL NH44H2 254.1990 / .00

    PVAL NH4CL 53.4917 / .00

    PVAL NH4HCO 79.0560 / .00

    PVAL NH5SO3 99.1109 / .00

    PVAL H2CO3IN 62.0253 / .00PVAL H2SO3IN 82.0802 / .00

    PVAL HNH2CO2 61.0406 / .00

    PVAL NAHSO3IN 104.0620 / .00

    PVAL NANH2CO2 83.0226 / .00

    PVAL NANH4SO4 274.1840 / .00

    PVAL NH42CO3 96.0867 / .00

    PVAL NH4OHIN 35.0461 / .00

    PVAL NA2CO3-S 105.9890 / .00

    PVAL NA2SO3-S 126.0400 / .00

    PVAL NA2SO4-S 142.0400 / .00

    PVAL NA3SO4-S 262.1100 / .00

    PVAL NASCO3-S 390.0800 / .00

    PVAL NACL-S 58.4430 / .00PVAL NAHCO3-S 84.0073 / .00

    PVAL NAHSO4-S 120.0620 / .00

    PVAL NAOH-S 39.9974 / .00

    PVAL NH4SO3-S 116.1420 / .00

    PVAL NH4SO4-S 132.1410 / .00

    PVAL NH44H2-S 254.1990 / .00

    PVAL NH4CL-S 53.4917 / .00

    PVAL NH4HCO-S 79.0560 / .00

    PVAL NH5SO3-S 99.1109 / .00

    PVAL OH- 17.0074 / -1.00

    PVAL CO3-2 60.0093 / -2.00

    PVAL HCO3- 61.0173 / -1.00

    PVAL H+ 1.0080 / 1.00PVAL HSO3- 81.0722 / -1.00

    PVAL HSO4- 97.0716 / -1.00

    PVAL NACO3- 82.9993 / -1.00

    PVAL NA+ 22.9900 / 1.00

    PVAL NASO4- 119.0500 / -1.00

    PVAL NH2CO2- 60.0326 / -1.00

    PVAL NH4+ 18.0387 / 1.00

    PVAL NH4SO4- 114.1020 / -1.00

    PVAL CL- 35.4530 / -1.00

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    27/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-27

    PVAL S2O5-2 144.1290 / -2.00

    PVAL SO3-2 80.0642 / -2.00

    PVAL SO4-2 96.0636 / -2.00

    PROP-LIST PLXANT

    PVAL NA2SO3W7 -1D15

    PVAL NA2SO3 -1D15

    PVAL NA2STW10 -1D15

    PVAL NA3SO4 -1D15

    PVAL NASCO3 -1D15

    PVAL NAHSO4 -1D15

    PVAL NANH4SW4 -1D15

    PVAL NAOHW1 -1D15

    PVAL NH42SUW1 -1D15

    PVAL NH44H2 -1D15

    PVAL NH4HCO -1D15

    PVAL HNH2CO2 -1D15

    PVAL NAHSO3IN -1D15

    PVAL NANH2CO2 -1D15

    PVAL NANH4SO4 -1D15

    PVAL NH42CO3 -1D15

    PVAL NA2SO3-S -1D15PVAL NA3SO4-S -1D15

    PVAL NASCO3-S -1D15

    PVAL NAHSO4-S -1D15

    PVAL NH44H2-S -1D15

    PVAL NH4HCO-S -1D15

    PVAL OH- -1D15

    PVAL CO3-2 -1D15

    PVAL HCO3- -1D15

    PVAL H+ -1D15

    PVAL HSO3- -1D15

    PVAL HSO4- -1D15

    PVAL NACO3- -1D15

    PVAL NA+ -1D15PVAL NASO4- -1D15

    PVAL NH2CO2- -1D15

    PVAL NH4+ -1D15

    PVAL NH4SO4- -1D15

    PVAL CL- -1D15

    PVAL S2O5-2 -1D15

    PVAL SO3-2 -1D15

    PVAL SO4-2 -1D15

    ;

    PROP-SET PH PH SUBSTREAM=MIXED PHASE=L

    STREAM-REPOR PROPERTIES=PH

    ;

    ;PROPERTIES OLI CHEMISTRY=neutral TRUE-COMPS=YES

    ;

    FLOWSHEET

    PROP-SET PH PH SUBSTREAM=MIXED PHASE=L

    STREAM-REPOR PROPERTIES=PH

    ;

    ;

    PROPERTIES OLI CHEMISTRY=dea TRUE-COMPS=YES

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    28/93

    2-28 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    ;

    FLOWSHEET

    ;

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    29/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-29

    Creating the Aspen Flowsheet

    It is beyond the scope of this manual to instruct the user in how to run Aspen PLUS. We will just concentrate on the

    issues unique to OLI. Start Aspen PLUS in the normal manner.

    We first need to load the BKP file we just created.

    Figure 2-17 Locating the BKP file

    SelectMore Files and then click the OKbutton.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    30/93

    2-30 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-18 standard windows open dialog

    Locate the folder where you stored the OLI Chemistry Wizard files and the BKP file. Select the file and clickOpen.

    Accept whatever local or network setting you must to activate the Aspen PLUS program. You may see the following

    warning:

    Figure 2-19 Compatibility warning

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    31/93

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    32/93

    2-32 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Figure 2-21 Neutral 1 Process

    This process mixes a basic stream (1) with an acidic stream (2) adiabatically in block B1. The resultant vapor stream (3)

    is drawn off and the mixed liquid (4) is neutralized with a sodium hydroxide stream (5) adiabatically in block B2. A

    design specification is that stream 7 is to be held to a pH of 9.0 within 0.01 pH units.

    The following tables contain the Stream conditions:

    Stream 1 2 5

    Temperature (oC) 40 25 30

    Pressure (atm) 1 1 1

    Total flow (lbmole/hr) 200 150 100

    H2O (lbmole/hr) 55.5 55.5 55.5

    NH3 1 0 0

    CO2 0.1 0 0

    SO2 0.1 0 0

    HCL 0 0.1 0

    H2SO4 0 1.0 0

    NAOH 0 0 1

    Block B1 B2

    Duty (Btu/hr) 0 0

    Pressure (atm) 1 1

    Design Specification DS-1

    Variable Name PH

    Target 9.0

    Tolerance 0.01

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    33/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-33

    Vary Stream 5

    Vary Option Substream: Mixed

    Variable: Mole-Flow

    Lower Bound: 50

    Upper Bound: 400

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    34/93

    2-34 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

    Stream Results4

    STREAM ID 1 2 3 4 5

    FROM : ---- ---- B1 B1 ----

    TO : B1 B1 ---- B2 B2

    SUBSTREAM: MIXEDPHASE: LIQUID LIQUID VAPOR LIQUID LIQUID

    COMPONENTS: LBMOL/HR

    H2O 195.1984 147.0848 1.7495-02 342.7762 238.4520

    CO2 7.4400-05 0.0 0.2253 0.1274 0.0

    H2SO4 0.0 9.5892-11 1.2006-18 2.2351-12 0.0

    HCL 0.0 1.4492-07 1.2374-09 1.7257-08 0.0

    NH3 2.2617 0.0 4.4208-11 3.4397-08 0.0

    SO2 2.1473-11 0.0 1.5688-02 0.2787 0.0

    SO3 0.0 1.2960-14 8.8815-26 3.5616-16 0.0

    OH- 3.3320-04 4.7653-14 0.0 3.4755-12 4.2964

    CO3-2 7.0989-02 0.0 0.0 5.4107-15 0.0

    HCO3- 0.1447 0.0 0.0 1.5760-06 0.0

    H+ 2.2192-09 3.3210 0.0 0.7119 1.4728-13

    HSO3- 6.9235-04 0.0 0.0 5.8330-02 0.0HSO4- 0.0 2.2444 0.0 1.3844 0.0

    NACO3- 0.0 0.0 0.0 0.0 0.0

    NA+ 0.0 0.0 0.0 0.0 4.2964

    NASO4- 0.0 0.0 0.0 0.0 0.0

    NH2CO2- 0.1369 0.0 0.0 1.2593-14 0.0

    NH4+ 1.1288 0.0 0.0 2.9902 0.0

    NH4SO4- 0.0 0.0 0.0 0.5372 0.0

    CL- 0.0 0.2650 0.0 0.2650 0.0

    S2O5-2 5.2967-12 0.0 0.0 2.6261-08 0.0

    SO3-2 0.3520 0.0 0.0 2.2342-07 0.0

    SO4-2 0.0 0.4058 0.0 0.7286 0.0

    TOTAL FLOW:

    LBMOL/HR 199.2946 153.3210 0.2585 349.8579 247.0449

    LB/HR 3625.0069 2919.3737 11.2377 6533.1429 4467.6404

    CUFT/HR 58.1387 44.1667 105.4193 102.1074 69.2293STATE VARIABLES:

    TEMP F 104.0000 77.0000 101.6219 101.6219 86.0000

    PRES PSIA 14.6959 14.6959 14.6959 14.6959 14.6959

    VFRAC 0.0 0.0 1.0000 0.0 0.0

    LFRAC 1.0000 1.0000 0.0 1.0000 1.0000

    SFRAC 0.0 0.0 0.0 0.0 0.0

    ENTHALPY:

    BTU/LBMOL -1.2163+05 -1.2471+05 -1.6215+05 -1.2382+05 -1.2203+05

    BTU/LB -6686.9719 -6549.3512 -3730.4042 -6630.5609 -6747.8760

    BTU/HR -2.4240+07 -1.9120+07 -4.1921+04 -4.3318+07 -3.0147+07

    ENTROPY:

    BTU/LBMOL-R 17.5169 16.3523 51.5567 17.4718 16.3944

    BTU/LB-R 0.9630 0.8588 1.1861 0.9356 0.9066

    DENSITY:

    LBMOL/CUFT 3.4279 3.4714 2.4524-03 3.4264 3.5685LB/CUFT 62.3510 66.0989 0.1066 63.9831 64.5340

    AVG MW 18.1892 19.0409 43.4679 18.6737 18.0843

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***

    PH 9.3417 -1.0102-02 MISSING 1.1326 13.7227

    4 Many zero rows have been eliminated from this report.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    35/93

    A Guide to Using The Aspen OLI Interface ASPEN Neutralization Flowsheet 2-35

    6 7

    ---

    STREAM ID 6 7

    FROM : B2 B2

    TO : ---- ----

    SUBSTREAM: MIXED

    PHASE: MISSING LIQUID

    COMPONENTS: LBMOL/HR

    H2O 0.0 585.1336

    CO2 0.0 8.3178-05

    H2SO4 0.0 9.9321-28

    HCL 0.0 2.6412-16

    NH3 0.0 1.4203

    SO2 0.0 7.8798-11

    SO3 0.0 1.6100-31

    NAHCO3 0.0 8.2460-03

    OH- 0.0 4.4950-04

    CO3-2 0.0 1.9644-02

    HCO3- 0.0 8.1566-02

    H+ 0.0 1.7588-08

    HSO3- 0.0 1.2553-03

    HSO4- 0.0 4.8461-08

    NACO3- 0.0 2.3798-03

    NA+ 0.0 3.6208

    NASO4- 0.0 0.6650

    NH2CO2- 0.0 1.5469-02

    NH4+ 0.0 1.7011

    NH4SO4- 0.0 0.3904

    CL- 0.0 0.2650

    S2O5-2 0.0 6.8489-12

    SO3-2 0.0 0.3358

    SO4-2 0.0 1.5947

    TOTAL FLOW:

    LBMOL/HR 0.0 595.2559

    LB/HR 0.0 1.1001+04CUFT/HR 0.0 172.4779

    STATE VARIABLES:

    TEMP F MISSING 103.9126

    PRES PSIA 14.6959 14.6959

    VFRAC MISSING 0.0

    LFRAC MISSING 1.0000

    SFRAC MISSING 0.0

    ENTHALPY:

    BTU/LBMOL MISSING -1.2342+05

    BTU/LB MISSING -6678.2049

    BTU/HR MISSING -7.3465+07

    ENTROPY:

    BTU/LBMOL-R MISSING 17.3887

    BTU/LB-R MISSING 0.9409

    DENSITY:LBMOL/CUFT MISSING 3.4512

    LB/CUFT MISSING 63.7808

    AVG MW MISSING 18.4808

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***

    PH MISSING 9.0018

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    36/93

    2-36 ASPEN Neutralization Flowsheet A Guide to Using The Aspen OLI Interface

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    37/93

    A Guide to Using The Aspen OLI Interface ASPEN Emergency Chlorine Scrubber Flowsheet 3-37

    Chapter 3ASPEN EmergencyChlorine Scrubber Flowsheet

    A Tour of the OLI-ASPEN Interface (RADFRAC example)

    The following example is a simulation of a Chlorine scrubber. Caustic is used to remove chlorine from a gas stream.

    The caustic feed rate to the column is adjusted to reduce the chlorine in the column overhead gas to .5 moles/hr.

    Generating Chemistry Model

    Using the OLI Chemistry Wizard, create a chemistry model with the following components. We recommend the name of

    the model to be CHLORINE

    H2O, CO2, CL2, N2, NAOH

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    38/93

    3-38 ASPEN Emergency Chlorine Scrubber Flowsheet A Guide to Using The Aspen OLI Interface

    Creating the Aspen Flowsheet

    Start Aspen normally and open the Chlroine.BKP file just created.

    Create the following flowsheet using the Model Manager

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    39/93

    A Guide to Using The Aspen OLI Interface ASPEN Emergency Chlorine Scrubber Flowsheet 3-39

    Caustic Feed Stream (Stream 1)

    Feed Stream (Stream 2)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    40/93

    3-40 ASPEN Emergency Chlorine Scrubber Flowsheet A Guide to Using The Aspen OLI Interface

    RADFRAC (Block B1) configuration (5 stages)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    41/93

    A Guide to Using The Aspen OLI Interface ASPEN Emergency Chlorine Scrubber Flowsheet 3-41

    RADFRAC (Block B1) streams

    RADFRAC (Block B1) pressure

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    42/93

    3-42 ASPEN Emergency Chlorine Scrubber Flowsheet A Guide to Using The Aspen OLI Interface

    RADFRAC (Block B1) estimates

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    43/93

    A Guide to Using The Aspen OLI Interface ASPEN Emergency Chlorine Scrubber Flowsheet 3-43

    Design Specs for BLOCK B2

    Enter a value of 0.5 for the target. Now click on the Component tab.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    44/93

    3-44 ASPEN Emergency Chlorine Scrubber Flowsheet A Guide to Using The Aspen OLI Interface

    Vary flow rate of feed stream 1 to meet spec.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    45/93

    A Guide to Using The Aspen OLI Interface ASPEN Emergency Chlorine Scrubber Flowsheet 3-45

    Stream Results

    STREAM ID 1 2 3 4

    FROM : ---- ---- B1 B1

    TO : B1 B1 ---- ----

    SUBSTREAM: MIXED

    PHASE: LIQUID VAPOR VAPOR LIQUID

    COMPONENTS: KMOL/HR

    H2O 42.3882 2.2700 4.0678 41.0068

    CO2 0.0 23.5900 23.5385 4.8665-03

    CL2 0.0 2.2700 0.5000 7.7402-04

    HCLO 0.0 0.0 0.2696 1.0831

    HCL 0.0 0.0 2.1360-11 1.2358-13

    N2 0.0 26.3000 26.2998 1.1769-04

    NAHCO3 0.0 0.0 1.1913-32 1.0916-02

    OH- 2.2323 0.0 0.0 5.5139-08

    CLO- 0.0 0.0 3.3964-31 0.4163

    CO3-2 0.0 0.0 2.2146-34 9.2892-05

    HCO3- 0.0 0.0 3.2250-32 3.5561-02H+ 5.3037-15 0.0 0.0 1.5311-07

    NACO3- 0.0 0.0 8.1993-35 4.4784-05

    NA+ 2.2323 0.0 1.0213-30 2.2213

    CL- 0.0 0.0 6.4892-31 1.7692

    TOTAL FLOW:

    KMOL/HR 46.8528 54.4300 54.6759 46.5493

    KG/HR 852.9278 1976.7975 1895.5620 934.1633

    CUM/SEC 2.1555-04 0.3752 0.3926 2.3400-04

    STATE VARIABLES:

    TEMP C 24.9999 32.9999 42.6071 31.2537

    PRES ATM 1.0100 1.0100 1.0000 1.0000

    VFRAC 0.0 1.0000 1.0000 0.0

    LFRAC 1.0000 0.0 0.0 1.0000SFRAC 0.0 0.0 0.0 0.0

    ENTHALPY:

    J/KMOL -2.8099+08 -1.8051+08 -1.8734+08 -2.7385+08

    J/KG -1.5435+07 -4.9703+06 -5.4036+06 -1.3646+07

    WATT -3.6570+06 -2.7292+06 -2.8452+06 -3.5410+06

    ENTROPY:

    J/KMOL-K 6.6357+04 2.0318+05 0.0 7.7057+04

    J/KG-K 3645.1194 5594.4265 0.0 3839.7604

    DENSITY:

    KMOL/CUM 60.3776 4.0294-02 3.8677-02 55.2568

    KG/CUM 1099.1373 1.4634 1.3408 1108.9084

    AVG MW 18.2043 36.3181 34.6690 20.0682

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***

    PH 14.4320 MISSING MISSING 6.6944

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    46/93

    4-46 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Chapter 4ASPEN Amine GasCleanup Flowsheet

    A Tour of the OLI-ASPEN Interface

    The following example is a flowsheet simulation to remove H2S and

    CO2 from a hydrocarbon stream using DEA. The H2S and CO2 are

    absorbed in a column by the DEA at a pressure of 20 atmospheres.The pressure is let down to 1.5 atmospheres in a flash drum. The H2S

    and CO2 are then stripped from the DEA in a column by heating. The

    clean DEA is then recycled back to the absorber. Both water and DEAare added as make-up streams

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    47/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-47

    Generating Chemistry Model

    Create a chemistry model using the OLI Chemistry Wizard for Aspen PLUS. We recommend that the name of the

    model be called DEA. Enter the component names: H2O, CO2, H2S, CH4, C2H6, C3H8, C4H10, and DEXH5

    When done entering the component names, click theNext button to continue. You may be required to fill in some blank

    names on the AspenPlus Component ID & Alias dialog. If so, use the same name as the AspenPlus ID

    Figure 4-1 Missing Aspen Alias

    Figure 4-2 Filled in Alias

    5 This the OLI name for diethanolamine.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    48/93

    4-48 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Click theNext button until the model is complete. Click theFinish button when it presents itself.

    The Aspen backup format file will be created and will be named DEA.BKP. This file can be opened in ASPEN Model

    Manager.

    Creating the Aspen FlowsheetStart up the ASPEN PLUS by double clicking on the ASPEN icon:

    Select more files and locate the filedea.bkp and open this file.

    Select Data on the action bar, then Components should show the species created from ESP.

    Create the following flowsheet using the Model Manager

    Block B1 - RADFRAC Block B2 - RADFRAC

    Block B3 - FLASH2 Block B4 - MIXER

    Block B6 - HEATER

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    49/93

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    50/93

    4-50 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Dea Make-up Stream (Stream 12)

    Tear Stream Guess (Stream 6)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    51/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-51

    Dea Absorber RADFRAC (Block B1) configuration

    Dea Absorber RADFRAC (Block B1) streams

    The Feed and Product stages may

    appear in a different order depending on

    how you created the flowsheet.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    52/93

    4-52 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Dea Absorber RADFRAC (Block B1) pressure

    Dea Absorber RADFRAC (Block B1) estimates

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    53/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-53

    Dea Absorber RADFRAC (Block B1) convergence

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    54/93

    4-54 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Flash Tank FLASH2 (Block B3)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    55/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-55

    Dea Stripper RADFRAC (Block B2) configuration

    Dea Stripper RADFRAC (Block B2) streams

    The Feed and Product stages may

    appear in a different order depending on

    how you created the flowsheet.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    56/93

    4-56 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Dea Stripper RADFRAC (Block B2) pressure

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    57/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-57

    Dea Stripper RADFRAC (Block B2) estimates

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    58/93

    4-58 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Dea Stripper RADFRAC (Block B2) convergence

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    59/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-59

    Add Make up Water MIXER (Block B4)

    Add Make up DEA HEATER (Block B6)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    60/93

    4-60 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    We will now add a design specification to control the amount of water in the process. Open the Data Browser and find

    the Flowsheeting options. Open the Flowsheeting options toDesign Spec

    Click theNew button and enter the ID ofDS-1

    Enter the name for the water flow rate as WATFL.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    61/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-61

    Click off the variable name and then reselect it. Then click theEdit button. Make the changes as indicated:

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    62/93

    4-62 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Click the close button.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    63/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-63

    Design_Spec DS-1 spec

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    64/93

    4-64 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Design_Spec DS-1 vary

    We will now create a second design specification to control the amount of diethanolamine (DEXH) in the recycle loop.

    Click on theDesign Spec category in the tree view.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    65/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-65

    Click the Newbutton.

    Accept the default name for the design specification and then click the OKbutton. We will now define three variables

    for diethanolamine. These variables represent the three forms of diethanolamine in the process. The first is the variable

    DEXFL which is defined to be the neutral form of diethanolamine (DEXH). The second variable is DEXCO which is the

    amine which has absorbed a carbon dioxide molecule (DEXCO2-). The final variable is DEXH2 which is the protonatedform of the amine (DEXH2+). We will then control via the design specification on the sum of these three amine forms.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    66/93

    4-66 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Click on theNew button to add the first variable DEXFL

    Click OK

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    67/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-67

    ClickClose and repeat the steps to add the variable DEXCO

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    68/93

    4-68 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Finally repeat for the final variable DEXH2

    When complete, your define screen should look similar to the following:

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    69/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-69

    Design-Spec DS-2 define

    Click on the Spec tab

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    70/93

    4-70 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Design-Spec DS-2 spec

    Click on the Vary tab.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    71/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-71

    Design-Spec DS-2 vary

    We are now ready to run the simulation. Execute the process as you would normally.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    72/93

    4-72 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    Stream Results1 10 11 12 2

    ------------

    STREAM ID 1 10 11 12 2

    FROM : ---- B4 ---- ---- B1

    TO : B1 B6 B4 B6 B3

    SUBSTREAM: MIXED

    PHASE: VAPOR LIQUID LIQUID LIQUID LIQUID

    COMPONENTS: KMOL/HR

    H2O 0.0 49.9999 4.3425 9.0895-10 49.0708

    C3H8 1.0000 0.0 0.0 0.0 1.5427-04

    C4H10 0.5000 0.0 0.0 0.0 5.1136-05

    CH4 92.0000 0.0 0.0 0.0 2.4377-02

    CO2 2.0000 2.7946-06 0.0 0.0 1.5958-03

    DEXH 0.0 11.9473 0.0 9.0773-11 6.2977

    C2H6 2.0000 0.0 0.0 0.0 4.4794-04

    H2S 2.0000 6.3866-06 0.0 0.0 1.1459-02

    H2CO3IN 0.0 0.0 0.0 0.0 0.0

    OH- 0.0 7.9243-03 7.9559-09 1.3604-13 6.9206-05

    DEXCO2- 0.0 1.0001-04 0.0 0.0 1.3863

    DEXH2+ 0.0 5.6132-02 0.0 1.3604-13 4.3193HCO3- 0.0 7.7828-03 0.0 0.0 0.3622

    H+ 0.0 1.4286-10 7.9559-09 2.1881-23 2.9723-09

    HS- 0.0 4.3274-03 0.0 0.0 1.9664

    CO3-2 0.0 1.3898-02 0.0 0.0 0.2716

    S-2 0.0 4.1008-03 0.0 0.0 3.0553-02

    TOTAL FLOW:

    KMOL/HR 99.5000 62.0416 4.3425 1.0000-09 63.7431

    KG/HR 1765.3995 2164.5732 78.2330 2.5936-08 2315.3019

    L/MIN 1973.5478 22.4926 1.3072 3.0066-10 18.8597

    STATE VARIABLES:

    TEMP C 29.9999 118.3996 24.9999 24.9999 74.4951

    PRES ATM 20.1000 20.1000 20.1000 20.1000 20.0500

    VFRAC 1.0000 0.0 0.0 0.0 0.0

    LFRAC 0.0 1.0000 1.0000 1.0000 1.0000

    SFRAC 0.0 0.0 0.0 0.0 0.0ENTHALPY:

    CAL/MOL -1.9312+04 -7.2211+04 -6.8304+04 -7.1412+04 -7.5704+04

    CAL/GM -1088.4385 -2069.7305 -3791.4240 -2753.4408 -2084.2396

    CAL/SEC -5.3376+05 -1.2445+06 -8.2393+04 -1.9837-05 -1.3405+06

    ENTROPY:

    CAL/MOL-K 39.2889 61.2752 16.7171 23.6537 47.4515

    CAL/GM-K 2.2143 1.7562 0.9279 0.9120 1.3064

    DENSITY:

    MOL/CC 8.4028-04 4.5972-02 5.5367-02 5.5434-02 5.6331-02

    GM/CC 1.4909-02 1.6039 0.9974 1.4377 2.0460

    AVG MW 17.7427 34.8890 18.0154 25.9355 36.3223

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***PH MISSING 9.9257 6.9928 11.9168 8.6461

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    73/93

    A Guide to Using The Aspen OLI Interface ASPEN Amine Gas Cleanup Flowsheet 4-73

    3 4 6 7 8

    ---------

    STREAM ID 3 4 6 7 8

    FROM : B3 B2 B6 B3 B1

    TO : B2 B4 B1 ---- ----

    SUBSTREAM: MIXED

    PHASE: LIQUID LIQUID LIQUID VAPOR VAPOR

    COMPONENTS: KMOL/HR

    H2O 49.0726 45.6576 50.0180 7.8550-03 0.3249

    C3H8 4.7044-06 5.7699-29 0.0 1.4957-04 0.9998

    C4H10 1.0977-06 5.7699-29 0.0 5.0039-05 0.4999

    CH4 1.1233-03 1.1167-21 0.0 2.3253-02 91.9756

    CO2 1.5147-03 3.3900-06 4.8525-10 3.0389-03 1.1187-06

    DEXH 6.3045 11.9470 11.9451 2.6327-07 5.5279-05

    C2H6 1.8629-05 5.7699-29 0.0 4.2931-04 1.9995

    H2S 1.0544-02 7.8195-06 4.0407-08 7.7619-03 1.8738-05

    H2CO3IN 0.0 0.0 0.0 0.0 0.0

    OH- 6.9071-05 7.6970-03 5.9053-03 0.0 3.3735-33

    DEXCO2- 1.3930 6.6224-05 1.6094-02 0.0 7.3477-33

    DEXH2+ 4.3058 5.6530-02 4.2299-02 0.0 3.0679-32

    HCO3- 0.3558 7.8992-03 1.0638-04 0.0 2.3069-34

    H+ 3.0439-09 1.1810-10 2.1864-12 0.0 0.0

    HS- 1.9599 3.6159-03 7.8388-03 0.0 6.7600-33

    CO3-2 0.2683 1.3815-02 5.5807-03 0.0 5.7317-33

    S-2 3.0162-02 4.8109-03 5.9639-04 0.0 7.5195-34

    TOTAL FLOW:

    KMOL/HR 63.7036 57.6990 62.0415 4.2539-02 95.7999

    KG/HR 2314.3667 2086.3401 2164.5635 0.9352 1614.6614

    L/MIN 18.9387 21.5914 18.5628 13.4128 2013.2910

    STATE VARIABLES:

    TEMP C 74.0245 122.2721 29.9999 74.0245 43.5640

    PRES ATM 1.5000 1.5000 20.1000 1.5000 20.0000

    VFRAC 0.0 0.0 0.0 1.0000 1.0000

    LFRAC 1.0000 1.0000 1.0000 0.0 0.0

    SFRAC 0.0 0.0 0.0 0.0 0.0

    ENTHALPY:CAL/MOL -7.5733+04 -7.2505+04 -7.4676+04 -2.7951+04 -1.8047+04

    CAL/GM -2084.5677 -2005.1709 -2140.3922 -1271.2448 -1070.7509

    CAL/SEC -1.3401+06 -1.1621+06 -1.2869+06 -330.2704 -4.8025+05

    ENTROPY:

    CAL/MOL-K 47.3569 73.5384 33.4956 46.6633 0.0

    CAL/GM-K 1.3035 2.0337 0.9600 2.1223 0.0

    DENSITY:

    MOL/CC 5.6061-02 4.4538-02 5.5704-02 5.2858-05 7.9306-04

    GM/CC 2.0367 1.6104 1.9434 1.1622-03 1.3367-02

    AVG MW 36.3302 36.1589 34.8889 21.9867 16.8545

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***

    PH 8.6368 9.9748 11.7076 MISSING MISSING

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    74/93

    4-74 ASPEN Amine Gas Cleanup Flowsheet A Guide to Using The Aspen OLI Interface

    9

    -

    STREAM ID 9

    FROM : B2

    TO : ----

    SUBSTREAM: MIXED

    PHASE: VAPOR

    COMPONENTS: KMOL/HR

    H2O 4.0102

    C3H8 2.7685-06

    C4H10 5.4829-07

    CH4 7.7149-04

    CO2 1.9969

    DEXH 3.8551-10

    C2H6 1.2360-05

    H2S 1.9920

    H2CO3IN 0.0

    OH- 0.0

    DEXCO2- 0.0

    DEXH2+ 1.4507-34

    HCO3- 5.2421-35

    H+ 0.0

    HS- 9.2746-35

    CO3-2 0.0

    S-2 0.0

    TOTAL FLOW:

    KMOL/HR 8.0000

    KG/HR 228.0365

    L/MIN 3253.1504

    STATE VARIABLES:

    TEMP C 86.2422

    PRES ATM 1.2000

    VFRAC 1.0000

    LFRAC 0.0

    SFRAC 0.0

    ENTHALPY:CAL/MOL -5.3196+04

    CAL/GM -1866.2356

    CAL/SEC -1.1821+05

    ENTROPY:

    CAL/MOL-K 0.0

    CAL/GM-K 0.0

    DENSITY:

    MOL/CC 4.0986-05

    GM/CC 1.1683-03

    AVG MW 28.5045

    MIXED SUBSTREAM PROPERTIES:

    *** LIQUID PHASE ***

    PH MISSING

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    75/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-75

    Chapter 5EFLASH and EFRACH

    OverviewTwo OLI Electrolyte blocks have been added to enable the use of OLIs 4 phase

    flash (EFLASH) and OLIs distillation tower (FraChem). These two blocks were

    added through ASPEN user added blocks capability and are available via the

    Library>Reference feature of Aspen PLUS.

    The ability to separate a 4 phase system into 4 streams does not exist in Aspen

    PLUS. This operation allows you to make complete phase separation.

    EFLASH (Electrolyte Flash)

    EFLASH

    Four Outlet Material

    Streams

    FEEDS

    HEAT

    VAPOR (1)

    AQUEOUS (2)

    ORGANIC (3)

    SOLID (4)

    HEAT

    .

    .

    .

    Figure 5-1 EFLASH diagram

    Three Outlet Material Streams

    (1) - VAPOR(2) - AQUEOUS & ORGANIC(3) - SOLID

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    76/93

    5-76 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    Two Outlet Material Streams

    (1) - VAPOR(2) - AQUEOUS & ORGANIC & SOLID

    One Outlet Material Stream

    (1) - ALL PHASES

    Example

    In this case we will create a chemistry model as described in early sections. This

    model will contain H2O, NaCl, C10H22 and N2. When prompted, select the second

    organic liquid phase as well as the aqueous, vapor and solid phases.

    Start Aspen PLUS as you would normally and open the BKP file you just created

    using either the OLI Chemistry Wizard or OLI Chemistry Generator.

    Select theLibrary menu item.

    SelectReferences

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    77/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-77

    If the OLI option has been purchased and the OLI Alliance Suite for Aspen PLUS has been installed

    then the OLI option will appear in this dialog. Check the OLI box and then click OK.

    The library has not been added to the library tool bar at the bottom of the Aspen PLUS

    user interface.

    Use the scroll buttons to find the OLI Library (it will be at the end of this list)

    The icons for the library appear at the left hand side.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    78/93

    5-78 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    The EFLASH and EFRACH (a/k/a FraChem) appear on this library pallete.

    Like any other icon, we can drag the icon to the work sheet. Create the following

    worksheet:

    B1: Eflash4

    B2: Flash3

    Enter the following composition for STREAM 1

    Temperature 25 C

    Pressure 1 ATM

    H2O 100 kmol/hrC10H22 10 kmol/hr

    N2 1 kmol/hr

    NaCl 20 kmol/hr

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    79/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-79

    Double-click the block B1

    Add the indicated temperature and pressure in the correct units.

    Click on the Stream Definitionstab.

    Fill out the four streams.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    80/93

    5-80 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    Close the block and open Block B2

    Change the default Temperature value toHeat Dutyand set a value of 0.0. Change the

    Pressure to 1 ATM. Close the block.

    Run the simulation.

    We have separated the solid phase into STREAM 4, the vapor into STREAM 2 and amixed stream into STREAM 3. The Mixed Stream is then further separated by phase.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    81/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-81

    1 2 3 4 5 6

    MIXED VAPOR LIQUID SOLID MISSING LIQUID LIQUID

    Substream:MIXED

    Mole

    Flow

    lbmol/hr

    H2O 220.4623 0.0530786 220.4092 0 0 7.97E03 220.401

    C10H22 22.04623 4.00E03 22.04223 0 0 22.04222 4.80E0

    HCL 1.80E12 9.96E13 8.03E13 0 0 0

    N2 2.204623 2.162302 0.0423205 0 0 0.0415593 7.61E0

    NACL 0 0 0 0 0 0

    NAOHW1 0 0 0 0 0 0

    NAOH 0 0 0 0 0 0

    NACLS 19.66807 0 0 19.66807 0 0

    NAOHS 0 0 0 0 0 0

    OH 1.39E07 0 1.39E07 0 0 0 1.39E0

    H+

    1.39E

    07

    0 1.39E

    07 0 0

    0 1.39E

    0

    NA+ 24.42438 0 24.42438 0 0 0 24.4243

    CL 24.42438 0 24.42438 0 0 0 24.4243

    TotalFlow lbmol/hr 313.23 2.219382 291.3425 19.66807 0 22.09175 269.250

    TotalFlow lb/hr 9747.232 62.09899 8535.672 1149.46 0 3137.614 5398.05

    TotalFlow cuft/hr 1018.273 869.6067 140.1569 8.509561 0 68.20093 71.9559

    TemperatureF 77 77 77 77 77 7

    Pressure psia 14.69595 14.69595 14.69595 14.69595 14.69595 14.69595 14.6959

    VaporFrac 7.09E03 1 0 0 0

    LiquidFrac 0.9301234 0 1 0 1

    SolidFrac 0.0627911 0 0 1 0

    Enthalpy

    Btu/lbmol1.20E+05

    2684.868

    1.17E+05

    1.77E+05

    1.29E+05

    1.16E+0

    Enthalpy Btu/lb 3867.461 95.95564 4008.032 3027.367 908.7212 5809.50

    Enthalpy Btu/hr 3.77E+07 5958.748 3.42E+07 3.48E+06 2.85E+06 3.14E+0

    Entropy Btu/lbmolR 21.65743 45.90025 21.46558 21.76371 101.8803 14.9037

    Entropy Btu/lbR 0.6959674 1.640449 0.7326705 0.3723923 0.7173327 0.743388

    Density lbmol/cuft 0.307609 2.55E03 2.078688 2.311291 0.3239216 3.74188

    Density lb/cuft 9.572315 0.0714104 60.90083 135.0787 46.00545 75.0188

    AverageMW 31.11845 27.9803 29.29772 58.44297 142.0265 20.0484

    LiqVol60Fcuft/hr 1.882868 11.88138 0 68.63595

    ***LIQUIDPHASE***

    PH 6.945542 6.945544 6.945

    Input Language

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    82/93

    5-82 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    BLOCK blockid EFLASH

    PARAM keyword=value

    Optional keywords: TEMP PRES DUTY VFRAC PH MOLEC PHASE

    PARAM Default flash is adiabatic at inlet pressure. The user must specify two of the state

    variables. The valid combinations are:

    TEMP, PRES - Constant TP flash

    DUTY, PRES - Adiabatic flash to calculate TEMP

    DUTY, TEMP - Adiabatic flash to calculate PRES

    VFRAC, PRES - Fixed vapor fraction, calculate TEMP

    VFRAC, TEMP - Fixed vapor fraction, calculate PRES

    PH, PRES - Fixed pH, calculate TEMP

    PH, TEMP - Fixed pH, calculate PRES

    TEMP - Temperature

    PRES - Pressure, zero or negative indicates pressure drop

    VFRAC - Molar vapor fraction

    DUTY - Heat duty

    PH - pH of the outlet

    MOLEC - Default outlet streams are in the true ionic form provided all

    species names have been defined in the COMPONENTS

    paragraph. If MOLEC is specified in the PARAM sentence,

    stream output will be in molecular form (all ions combined to

    molecular components)

    PHASE - No equilibrium calculation, evaluate enthalpy at T,P and Specified

    phase conditions (V,L,S)

    PHASE=V - ALL VAPOR PRODUCT

    PHASE=L - ALL LIQUID PRODUCT

    PHASE=S - ALL SOLID PRODUCT

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    83/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-83

    EFLASH Examples

    _______________________________________________________________________

    Example 1 Flash at a temperature=100 and pressure=14.7. Put vapor product

    in stream S1, aqueous product in stream S2, organic liquid phase

    in stream S3 and solid phase in stream S4..

    FLOWSHEET

    BLOCK FLSH IN=FEED1 FEED2 OUT=S1 S2 S3 S4

    BLOCK FLSH EFLASH

    PARAM TEMP=100 PRES=1

    _______________________________________________________________________

    Example 2 Adiabatic flash to calculate temperature. All phases put in

    stream S1.

    FLOWSHEET

    BLOCK FLSH IN=FEED1 FEED2 OUT=S1

    BLOCK FLSH EFLASH

    PARAM DUTY=0. PRES=0

    . .

    Example 3 Flash to a vapor fraction=.2 at the inlet pressure. Put vapor phase

    in steam S1, aqueous and organic in stream S2 and solid in S3.

    FLOWSHEET

    BLOCK FLSH IN=FEED1 FEED2 OUT=S1 S2 S3

    BLOCK FLSH EFLASH

    PARAM VFRAC=.2 PRES=0.

    _______________________________________________________________________

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    84/93

    5-84 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    EFLASH Examples (Continued)

    _______________________________________________________________________

    Example 4 All vapor stream at 300 F and 14.7 psia

    FLOWSHEET

    BLOCK FLSH IN=FEED1 OUT=S1

    BLOCK FLSH EFLASH

    PARAM TEMP=300 PRES=14.7 PHASE=V

    NOTE: There is no equilibrium calculation in this block. The outlet is assumed to be vapor at this condition and the

    enthalpy is evaluated at the specified temp and pres.

    ________________________________________________________________________

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    85/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-85

    EFRACH (Electrolyte Distillation)

    2

    3

    1

    N

    DECANTOR

    FEEDS

    PRODUCTS

    VAPOR OR LIQUID

    HEAT HEAT

    HEATHEAT

    HEAT HEAT

    Figure 5-2 EFRACH diagram

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    86/93

    5-86 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    Input Language

    BLOCK blockid EFRACH

    PARAM keyword=value

    keyword: NSTAGEoptional keyword: MAXIT NPRINT NCOLTY NINIF

    FEEDS sid stage [phase] /...

    PRODUCTS sid stage [phase] keyword=value /...

    optional keyword: MOLE-FLOW

    P-SPEC stage pres /...

    SC-REFLUX keyword=value

    keyword: MOLE-D MOLE-LN RR TEMP

    HEATERS stage duty /...

    STAGE-EFF stage eff /...

    DECANTER

    T-EST stage temp /...

    V-EST stage mole-flow /...

    L-EST stage mole-flow /...

    VARY varyno vartype keyword=value

    varytype: DUTY Q1 QN FEED-FLOW MOLE-LPROD MOLE-VPROD

    keyword: STAGE

    SPEC specno spectype value keyword=value

    spectype: TEMP MOLE-FLOW MASS-FLOW MOLE-FRAC MASS-FRAC

    keyword: STAGE PHASE COMPS

    PUMP-AROUNDS FROM=stage TO=stage MOLE-FLOW=value

    EFRACH (Continued)

    _______________________________________________________________________

    PARAM NSTAGE is required, all other parameters are optional.

    NSTAGE - Number of stages in the column, including condenser

    and reboiler; must be greater than 1. and less then 100.

    NPRINT - Controls the amount of print to the history file.

    1 - print input and final profiles

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    87/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-87

    2 - same as 1 with intermediate column profiles (default)

    3 - same as 2 with full intermediate stage compositions

    NCOLTY - Indicates the type of column

    0 - electrolyte column with two or three phase (default)

    (number of phases is controlled by chemistry model)

    2 - electrolyte extraction column

    MAXIT - Maximum number of iterations before stopping. (default=30)

    NINIF - Tower initialization flag

    0 - Use previous results except for first time (default)

    1 - Re-initialize tower each time in recycle loops

    2 - Use previous results all the time

    _______________________________________________________________________

    FEEDS Used to enter inlet material and heat stream locations. Liquid

    feeds are introduced onto the specified stage, vapor feeds go to

    the stage above the specified stage. A mixed phase feed will

    have the liquid portion to the specified stage and the vaporportion to the stage above. A vapor stream to the bottom stage

    is specified with as STAGE= (NSTAGE+1). A maximum of ten feed

    streams can be specified. (Heat streams must be specified last)

    sid - Stream ID

    stage - Stage number from the top

    phase - option entry to specify phase condition of feed.

    (default is to calculate based on temp and pres)

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    88/93

    5-88 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    EFRACH (Continued)

    _______________________________________________________________________

    PRODUCTS Two product streams are required, a distillate and a bottoms.

    In addition, vapor side draws and liquid side draws may be

    specified for a maximum of ten product streams. (Heat streams

    must be specified last)

    sid - Stream ID

    stage - Stage number from the top

    phase - Indicates phase condition of product stream (V or L).

    phase=L .... all liquid product

    phase=V .... all vapor product

    MOLE-FLOW - Mole flow rate of product stream, required for all

    side stream draw-offs. The distillate and bottoms

    rate should not be specified.

    P-SPEC Used to set the column pressure profile. At least on pressure

    is required. Only the top two stages and the bottom stage are

    used. The remaining stage are calculated by interpolation.

    stage - Stage number from the top

    pres - Pressure

    SC-REFLUX Used to specify a subcooled condenser, both the distillate and

    reflux are subcooled. The default is a partial condenser with

    a vapor distillate and liquid reflux. One of the following is

    required (MOLE-D, MOLE-LN,or RR). The temperature is calculated

    from the specified heat duty or it may also be specified.

    TEMP - Condenser temperature

    MOLE-D - Distillate rate out top of column

    MOLE-LN - Reflux rate from condenser to top stage of the column

    RR - Reflux ratio (Distillate rate/Reflux rate)

    EFRACH (Continued)

    _______________________________________________________________________

    HEATERS May be used to enter the heater stage location and duty. Inlet

    heat streams may be used in place of heater duty. Any inlet

    heat streams will be added to the duty. A HEATER record is required

    if the column has a condenser or reboiler.

    stage - Stage number from the top

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    89/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-89

    duty - Heat duty

    _______________________________________________________________________

    STAGE-EFF May be used to enter Murphree stage efficiencies. These efficiencies

    are applied to each component on the stage. Any missing stages will

    be linear interpolated; therefore, the top and bottom stages must

    be supplied.

    stage - Stage number from the top

    eff - Efficiency (default=1.0)

    _______________________________________________________________________

    DECANTER A decanter may be specified for the condenser. The organic phase

    is drawn off as distillate and the aqueous phase is refluxed back

    to the column. When using this option, a temperature spec needs

    to be entered to set the temperature of the condenser - varying

    the condenser heat duty to achieve the temperature. A totalcondenser is assumed.

    _______________________________________________________________________

    T-EST Temperature estimates must be entered for the top two stages and

    the bottom stage (At least one temperature estimate is required).

    stage - Stage number from the top

    temp - Estimated stage temperature

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    90/93

    5-90 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    EFRACH (Continued)

    _______________________________________________________________________

    V-EST A vapor flow rate estimate is required for the distillate rate

    stage - Stage number from the top

    mole-flow - Estimated vapor rate from the stage

    L-EST A liquid flow rate estimate may be entered for the reflux rate

    stage - Stage number from the top

    mole-flow - Estimated liquid rate from the stage

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    91/93

    A Guide to Using The Aspen OLI Interface EFLASH and EFRACH 5-91

    EFRACH (Continued)

    _______________________________________________________________________

    VARY Vary may be used in conjunction with the SPEC record to achieve

    some design specification. By default, all exchanger duties, feed

    rates, and side draw rates are fixed at the user specified values.

    varyno - Manipulated variable number

    vartype - Manipulated variable type

    DUTY - External heat duty on a stage (requires STAGE)

    Q1 - Condenser duty

    QN - Reboiler duty

    FEED-FLOW - Feed rate to the column (requires STAGE)

    MOLE-LPROD - Flow rate of a liquid product (req STAGE)

    MOLE-VPROD - Flow rate of a vapor product (req STAGE)

    STAGE - Stage number of duty, feed-flow, or product stream

    _______________________________________________________________________

    SPEC May be used to enter design specification. One SPEC sentence is

    required for each VARY sentence.

    specno - Spec number

    TEMP - Temperature on a given stage (Req STAGE)

    MOLE-FLOW - Total flow rate or flow rate of a group of components

    MASS-FLOW from a stage (Req STAGE and PHASE, COMPS requied for a

    group of components)

    MOLE-FRAC - Composition of a group of components from a stage

    MASS-FRAC (Req STAGE, PHASE, and COMPS) only molecular speciesmay be selected.

    STAGE - Stage number from top for spec

    PHASE - Phase for spec V - for vapor, L - for liquid

    COMPS - List of molecular component IDs

    value - Desired value for the design specification

    ________________________________________________________________________

    EFRACH (Continued)_______________________________________________________________________

    PUMP-AROUNDS May be used to specify liquid pump-arounds in the column.

    Pump-arounds must be from a lower stage to a higher stage

    in the column. Multiple pump-arounds can not cross one another.

    FROM - Specifies the stage to pump from.

    TO - Specifies the stage to pump to.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    92/93

    5-92 EFLASH and EFRACH A Guide to Using The Aspen OLI Interface

    stage - Stage number from top

    MOLE-FLOW - Molar flow rate of the pump-around.

  • 8/3/2019 Aspen OLI Standard Getting Started 2006

    93/93

    EFRACH Example

    _______________________________________________________________________

    Example 1 A 35 stage steam stripper with condenser. Steam feed to the bottom stage and an organic stream to stage 26.

    Set stage efficiency to .5 on all stages except condenser. Spec the methanol in the bottoms product to 1

    ppm by varying the steam feed flow rate.

    FLOWSHEET

    BLOCK STRIP IN=S1 S2 OUT=S3 S4

    BLOCK STRIP EFRACH

    PARAM NSTAGE=35

    FEEDS S1 36 / S2 26

    PRODUCTS S3 1 V / S4 35

    P-SPEC 1 14.7 / 35 14.7

    HEATERS 1 1.0E+06

    T-EST 1 209 / 2 212 / 35 215

    V-EST 1 50

    STAGE-EFF 1 1 / 2 .5 / 35 .5

    VARY 1 FEED-FLOW STAGE=35

    SPEC 1 MASS-FRAC 1.0E-06 STAGE=35 PHASE=L COMPS=METHANOL

    Example 2 A 10 stage distillation column with condenser and reboiler. Feed to stage 5. Condenser is sub-cooled to 100

    F and has a reflux ratio=2 (reflux rate/distillate rate). Column has

    a 100 mole/hr pump-around from stage 8 to stage 2. A liquid side-draw is taken from stage 3. Both

    condenser and reboiler have outlet heat streams

    DEF-STREAMS HEAT Q1 QN

    FLOWSHEET

    BLOCK DIST IN=S1 OUT=S2 S3 S4 Q1 Q2

    BLOCK DIST EFRACHPARAM NSTAGE=10

    FEEDS S1 5

    PRODUCTS S2 1 / S3 10 / S4 3 L MOLE-FLOW=100 / Q1 1 / QN 10

    P-SPEC 1 14.7 / 2 16 /10 20

    HEATERS 1 -1.0E+06/ 10 2.0E+06

    SC-REFLUX TEMP=100 RR=2 Note: Q1 CALC TO GIVE 100 F COND TEMP

    T-EST 1 100 / 2 212 / 10 220

    V-EST 1 50 Note: ESTIMATE OF DISTILLATE RATE

    PUMP-AROUND FROM=8 TO=2 MOLE-FLOW=100


Recommended