+ All Categories
Home > Documents > Assessing the effect of hypoxia on cardiac metabolism using ...1 Assessing the effect of hypoxia on...

Assessing the effect of hypoxia on cardiac metabolism using ...1 Assessing the effect of hypoxia on...

Date post: 08-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13 C magnetic 1 resonance spectroscopy 2 3 (Short Title – Le Page et al: Assessing the response of cardiac metabolism to hypoxia with 13 C MRS) 4 5 Lydia M. Le Page 1,2,3 , Oliver J. Rider 4 , Andrew J. Lewis 4 , Victoria Noden 1 , Matthew Kerr 1 , Lucia 6 Giles 1 , Lucy J. A. Ambrose 1 , Vicky Ball 1 , Latt Mansor 1 , Lisa C. Heather 1 *, and Damian J. Tyler 1,4 * 7 8 1 Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK 9 2 Department of Physical Therapy and Rehabilitation Science, University of California, San 10 Francisco, San Francisco, USA 11 3 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San 12 Francisco, USA 13 4 Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, 14 University of Oxford, Oxford, UK 15 *joint last author 16 17 Corresponding author: 18 Dr Lydia Le Page, Departments of Physical Therapy and Rehabilitation Science, and Radiology 19 and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA. 20 Email: [email protected] 21 22 Word Count: 3,152 23 Key words: hyperpolarized 13 C, cardiac metabolism, hypoxia, magnetic resonance spectroscopy 24 Abbreviations: HP: hyperpolarized; PDH: pyruvate dehydrogenase; LDH: lactate dehydrogenase; 25 BOLD: blood-oxygen-level dependent; PET: positron emission tomography; PDK: pyruvate 26 dehydrogenase kinase; HIF: hypoxia-inducible factor 27 . CC-BY-NC-ND 4.0 International license available under a was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made The copyright holder for this preprint (which this version posted December 13, 2018. ; https://doi.org/10.1101/495069 doi: bioRxiv preprint
Transcript
  • Assessing the effect of hypoxia on cardiac metabolism using hyperpolarized 13C magnetic1

    resonancespectroscopy2

    3

    (ShortTitle–LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS)4

    5

    LydiaM.LePage1,2,3,Oliver J.Rider4,AndrewJ.Lewis4,VictoriaNoden1,MatthewKerr1,Lucia6

    Giles1,LucyJ.A.Ambrose1,VickyBall1,LattMansor1,LisaC.Heather1*,andDamianJ.Tyler1,4*7

    8

    1DepartmentofPhysiology,AnatomyandGenetics,UniversityofOxford,Oxford,UK9

    2Department of Physical Therapy and Rehabilitation Science, University of California, San10

    Francisco,SanFrancisco,USA11

    3DepartmentofRadiologyandBiomedicalImaging,UniversityofCalifornia,SanFrancisco,San12

    Francisco,USA13

    4OxfordCentreforClinicalMagneticResonanceResearch,DivisionofCardiovascularMedicine,14

    UniversityofOxford,Oxford,UK15

    *jointlastauthor16

    17Correspondingauthor: 18

    DrLydiaLePage,DepartmentsofPhysicalTherapyandRehabilitationScience,andRadiology19

    andBiomedicalImaging,UniversityofCalifornia,SanFrancisco,SanFrancisco,94158,CA,USA.20

    Email:[email protected]

    22

    WordCount:3,15223

    Keywords:hyperpolarized13C,cardiacmetabolism,hypoxia,magneticresonancespectroscopy24

    Abbreviations:HP:hyperpolarized;PDH:pyruvatedehydrogenase;LDH:lactatedehydrogenase;25

    BOLD: blood-oxygen-level dependent; PET: positron emission tomography; PDK: pyruvate26

    dehydrogenasekinase;HIF:hypoxia-induciblefactor27

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Abstractsummary28

    Hypoxiaplaysaroleinmanydiseasesandcanhaveawiderangeofeffectsoncardiacmetabolism29

    dependingontheextentofthehypoxicinsult.Non-invasiveimagingmethodscouldshedvaluable30

    lightonthemetaboliceffectsofhypoxiaontheheartinvivo.Hyperpolarizedcarbon-13magnetic31

    resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging32

    metabolismthatcouldprovidesuchinformation.33

    Theaimofourworkwas,therefore,toestablishwhetherhyperpolarized13CMRScanbeusedto34

    assesstheinvivoresponseofcardiacmetabolismtosystemicacuteandchronichypoxicexposure.35

    GroupsofhealthymaleWistarratswereexposedtoeitheracute(30minutes),oneweekorthree36

    weeks of hypoxia. In vivoMRS of hyperpolarized [1-13C]pyruvatewas carried out alongwith37

    assessmentsofphysiologicalparametersandejectionfraction.Nosignificantchangesinheart38

    rate, respiration rate, or ejection fraction were observed at any timepoint. Haematocrit was39

    elevatedafteroneweekandthreeweeksofhypoxia.40

    Thirtyminutesofhypoxiaresultedinasignificantreductioninpyruvatedehydrogenase(PDH)41

    flux,whereasoneor threeweeksof hypoxia resulted inaPDH flux thatwasnotdifferent to42

    normoxicanimals.Conversionofhyperpolarized[1-13C]pyruvateinto[1-13C]lactatewaselevated43

    followingacutehypoxia,suggestiveofenhancedanaerobicglycolysis.ElevatedHPpyruvateto44

    lactateconversionwasalsoseenattheone-weektimepoint,inconcertwithanincreaseinlactate45

    dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac46

    metabolismwascomparabletothatobservedinnormoxia.47

    Wehavesuccessfullyvisualizedoftheeffectsofsystemichypoxiaoncardiacmetabolismusing48

    hyperpolarized13CMRS,withdifferencesobservedfollowing30minutesand1weekofhypoxia.49

    This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the50

    cardiometaboliceffectsofhypoxiaindisease. 51

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Introduction52

    Oxygenation of tissue is key to survival andmaintenance of organ health. The heart has the53

    potential tobe exposed to a spectrumofhypoxic insults, ranging frommildandtransient, to54

    prolongedandsevere.Themetaboliceffectsofacutehypoxiaarewelldocumented,andnotably55

    involveincreasedglycolyticfluxandtransientlactateacidosis1,2.Prolongedandseverehypoxia56

    requires reprogramming of cardiac metabolism; the heart downregulates oxygen-consuming57

    processesandupregulatesglycolysisinanattempttomaximizeATPproductionunderoxygen58

    restrictedconditions3–5.Theeffectsofchronichypoxiaareobservedinresponsetohighaltitude6,59

    orasafactorinmanypathologicalconditions;examplesincludechronicobstructivepulmonary60

    disease7, complications in pregnancy8, sleep apnoea9, myocardial infarction (the peri-infarct61

    region)10andheartfailure11.62

    However,muchofthisexistingliteraturereliesonexvivoassessmentofthemetabolicchanges63

    thatoccur.Assuch,non-invasiveinvivomeasuresoftheeffectofoxygenlevelsoncardiactissue64

    wouldbevaluable,especiallyasthehypoxicresponsecanbeverytransient12.Imagingtechniques65

    havebeguntoprobeinvivooxygenlevels,andcurrentprominentmethodsincludeblood-oxygen-66

    leveldependent(BOLD)MRIandpositronemissiontomography(PET)imaging,althoughneither67

    isstandardclinicalpracticeasyet.BOLDMRIenablesassessmentofvascularoxygenation,using68

    theparamagneticnatureofdeoxyhaemoglobintocreateimagecontrast13;thistechniquehasnot69

    yetreachedtheclinicduetoacombinationofmanychallengesincludinglowsignal-to-noiseand70

    aneed forrobustanalysis14,whichstudieshavebeguntoaddress15.There isalsoanongoing71

    searchforPETprobestoassesshypoxia,themostpromisingofwhichiscurrently11C-acetate.72

    Clearanceofthistracerisdependentonoxidativemetabolism,andsoaccumulationindicateslow73

    oxygenpresence16.Itdoes,however,haveashorthalf-life17andsousagedependsonanearby74

    cyclotron,andaswithallPEToptions,patientswillbeexposedtoionizingradiationwhichmay75

    prohibitrepeatedmeasurements.76

    Spectroscopic imaging holds potential for providing non-invasive, non-radioactive metabolic77

    data.Imagingofcarbon-13(13C)inparticularcanbeveryinformativegiventheabundanceof78

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    4

    carbonpresentinmetabolites,includingthoseinpathwaysaffectedbyoxygenlevel.Although13C79

    spectroscopy suffers from inherently low sensitivity in vivo, the adventof hyperpolarized 13C80

    magneticresonancespectroscopy(HP13CMRS)offerstheuniqueabilitytomeasuretherateof81

    enzymefluxinvivo18.Itprovidesanenhancementofthe13Csignalof>10,000fold,andassuch,82

    enablesanon-invasivemeasurementofenzymaticfluxinrealtime.Intheheart,theglycolytic83

    pathwayiscentraltothemetabolicchangesthatoccurasoxygenlevelsfall.Themostestablished84

    hyperpolarized13C-labelledprobe,[1-13C]pyruvate,isrelevanttothispathway,asitallowsusto85

    visualise the fateofpyruvateeither throughmitochondrialpyruvatedehydrogenase(PDH) to86

    bicarbonate,orthroughcytosoliclactatedehydrogenase(LDH)intolactate19.Apreviousstudyby87

    Laustsenetal.20showedthevalueofhyperpolarizedpyruvateintheinvestigationofhypoxiain88

    thediabeticratkidney–demonstratinganabilitytomeasureincreasedlactateproductionafter89

    fifteenminutesofhypoxicanaesthesia.Hypoxiaisalsooneofmanypathologicalfactorsoftumor90

    development21,fluctuatingovertimeandinregionsofthetumor22,andassuchIvesonetal.used91

    HP13CMRSinamousetumormodel,showingthatinspirationofahypoxicatmospherecaused92

    increasedlactateproductionintumors23 .Oxidativestresshasbeeninvestigatedinafewnon-93

    cardiac studies, using HP dehydroascorbate24,25, but the toxicity of this compoundmay limit94

    translationtoclinicalstudies26.Indeed,thechallengesandfutureofhyperpolarizedprobesfor95

    assessingrenalandcardiacoxygenmetabolismhavebeendiscussedinareviewbySchroeder96

    andLaustsen27.Thusfar,nostudieshaveinvestigatedtheuseofHP13CMRStoassesstheeffect97

    ofhypoxiaonglucosemetabolismintheinvivoheart.98

    Inthisstudywehavethereforeassessedtheeffectofthreelengthsofhypoxicexposure–thirty99

    minutes, one week, and three weeks - on the in vivo rat heart, using hyperpolarized [1-13C]100

    pyruvate.WehavemeasuredtheconversionofHPpyruvatetobicarbonate,lactateandalanine101

    (Figure1A shows thebiochemical pathways involved).The level of oxygen saturation in the102

    bloodwasmatchedacrossgroups,andestablishedfollowingmeasurementinanimalshousedat103

    11%oxygenfrompreviousrodentstudiesinourlaboratory3,4.Alongsidecardiacmetabolismby104

    MRS,weassessedejectionfractionbyCINEMRIimaging,andmeasuredheartrateandrespiration105

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    5

    rateinallgroups. Wefurthermeasuredbodyweightandhaematocrit inthelongerexposure106

    groups(1weekand3weekshypoxia).Intheselattergroups,expressionlevelsofcardiacPDH107

    regulatorspyruvatedehydrogenasekinase(PDK)1,2and4,andtheexpressionleveloflactate108

    dehydrogenase(LDH),responsibleforconversionofpyruvatetolactate,werealsomeasuredin109

    cardiactissue.110

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Methods111

    Animalhandling:MaleWistarrats(initialbodyweight~200g,Harlan,UK)werehousedona112

    12:12-hlight/darkcycleinanimalfacilitiesattheUniversityofOxford.Allimagingstudieswere113

    performedbetween6amand1pmwithanimalsinthefedstate.Allproceduresconformedtothe114

    HomeOfficeGuidanceontheOperationoftheAnimals(ScientificProcedures)Actof1986andto115

    UniversityofOxfordinstitutionalguidelines.116

    117

    Hypoxicexposure118

    Agroupofhypoxically-housedanimals(n=6)andagroupofanimalshousedinnormoxia(n=4)119

    wereusedtoassessbloodoxygensaturation.Saturationwasmeasuredtobe74±2%(Figure1B)120

    in hypoxia, using a pulse oximeter on their hind paw (MouseOx, Starr Life Sciences). This121

    concentrationwassubsequentlymatchedforallhypoxicexposures.122

    123

    Experimentalgroupsforinvivoimaging124

    Three groups of animalswere exposed to three different lengths of hypoxia. Control groups125

    experiencednormoxiaonly.ThegroupsaresummarizedinFigure1C.126

    127

    Thirtyminutes (acute)hypoxia:Animals (n=9)were anaesthetisedusing isoflurane (2%) in128

    100%O2(2L/min).Metabolicandfunctionaldatawereacquiredinnormoxiaasdescribedinthe129

    imaging protocol below. Animals were then slowly introduced to hypoxia by increasing130

    replacementofoxygenwithnitrogenoverthirtyminutes,untilabloodoxygensaturationwhich131

    matchedthatoftheanimalshousedinthehypoxicchamberwasachieved(describedabove).A132

    second injection of hyperpolarized [1-13C]pyruvate was administered and a second data set133

    acquired.Acutehypoxiaelicitedsomerapidphysiologicalresponsessuchasincreasedventilation134

    andheartrate28,whichsettledpriortodataacquisition,allowingacquisitionofdatainastable135

    hypoxicstate.136

    137

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    7

    Oneweekofhypoxia:Animals (n=8)werehoused inanormobarichypoxic chamber forone138

    week,duringwhichtimetheoxygenconcentrationwasreduceddailyby1-2%untilatthefinal139

    daytheconcentrationwas11%.Animalswereweigheddaily,whichresultedinbriefexposureto140

    normoxia(nolongerthan5minutes).Animalsweresubsequentlyanaesthetisedunderhypoxia141

    (O2/N2mix)outsidethechamber,beforebeingplacedinthemagnetandtheimagingprotocol.142

    executed. A control group (n=6)was housed outside the hypoxic chamber in room air (21%143

    oxygen)foroneweekfromwhichnormoxicdatawereacquired.144

    145

    Threeweeksofhypoxia:Animals(n=8)wereintroducedtothenormobarichypoxicchamberas146

    fortheone-weekexperiments,butremainedinthechamberforafurther14daysat11%oxygen.147

    Animalswerethenanaesthetisedunderhypoxiaoutsidethechamber(O2/N2mix)andunderwent148

    theMRprotocolasfortheone-weekanimals,toobtaininvivocardiacmetabolicdata.Acontrol149

    group(n=8)washousedoutsidethehypoxicchamberinroomair(21%oxygen)forthreeweeks150

    fromwhichnormoxicdatawereacquired.151

    152

    Magnetic resonance (MR) protocol: Animals were anaesthetised with isoflurane (3.5%153

    induction and 2%maintenance). Ratswere positioned in a 7 T horizontal boreMR scanner154

    interfaced toaDirectDrive console (VarianMedicalSystems,Yarnton,UK),andahome-built155

    1H/13Cbutterflycoil(loopdiameter,2cm)wasplacedoverthechest.Correctpositioningwas156

    confirmed by the acquisition of an axial proton fast low-angle shot (FLASH) image (TE/TR,157

    1.17/2.33ms;matrixsize,64x64;FOV,60x60mm;slicethickness,2.5mm;excitationflipangle,158

    15°).AnECG-gatedaxialCINEimagewasobtained(slicethickness:1.6mm,matrixsize:128×128,159

    TE/TR:1.67/4.6ms, flip angle:15°) at the level of the papillarymuscles for ejection fraction160

    calculation. An ECG-gated shim was used to reduce the proton linewidth to ~120 Hz.161

    Hyperpolarized[1-13C]pyruvate(Sigma-Aldrich,Gillingham,UK)waspreparedby40minutesof162

    hyperpolarization at ~1K as described by Ardenkjaer-Larsen et al.18, before being rapidly163

    dissolved in a pressurised and heated alkaline solution. This produced a solution of 80mM164

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    8

    hyperpolarizedsodium[1-13C]pyruvateatphysiologicaltemperatureandpH,withapolarization165

    of~30%.Onemillilitreofthissolutionwasinjectedovertensecondsviaatailveincannula(dose166

    of ~0.32 mmol/kg). Sixty individual ECG-gated 13C MR slice selective, pulse-acquire cardiac167

    spectrawereacquiredover60safterinjection(TR,1s;excitationflipangle,5°;slicethickness168

    10mm,sweepwidth13,593Hz;acquiredpoints2,048;frequencycentredontheC1pyruvate169

    resonance)29.170

    171

    Tissue collection: All animals were sacrificed with an overdose of isoflurane following172

    completionof theMRprotocol. The heartwas rapidly removed,washedbriefly inphosphate173

    bufferedsaline,andsnap-frozeninliquidnitrogen.174

    175

    Blood analyses: Samples of blood were collected from the chest cavity on sacrificing, and176

    centrifugedat8,000rpmfor10minutes.Haematocritwasmeasuredusingamicrohaematocrit177

    reader(Hawksley,UK).178

    179

    Tissueanalysis:ForWesternblottingofcardiactissuefromoneweekandthreeweekgroups,180

    frozentissuewascrushedandlysisbufferaddedbeforetissuewashomogenised;aproteinassay181

    establishedtheproteinconcentrationofeachlysate.Thesameconcentrationofproteinfromeach182

    sample was loaded on to 12.5% SDS-PAGE gels and separated by electrophoresis30. Primary183

    antibodiesforPDK1and2werepurchasedfromNewEnglandBiolabsandAbgent,respectively;184

    anantibody forPDK4waskindlydonatedbyProf.MarySugden(QueenMary’s,Universityof185

    London,UK).AprimaryantibodyforLDHwaspurchasedfromAbcam(ab52488).Evenprotein186

    loadingandtransferwereconfirmedbyPonceaustaining(0.1%w/vin5%v/vaceticacid,Sigma-187

    Aldrich),andinternalstandardswereusedtoensurehomogeneitybetweensamplesandgels.188

    BandswerequantifiedusingUN-SCAN-ITgelsoftware(SilkScientific,USA)andallsampleswere189

    runinduplicateonseparategelstoconfirmresults.190

    191

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    9

    Magnetic resonancedataanalysis:All cardiac13C spectrawere analysedusing theAMARES192

    algorithminthejMRUIsoftwarepackage31.Figure1Dshowsexamplespectrasummedover30193

    seconds of acquisition in normoxic animals, acutely hypoxic animals and animals housed in194

    hypoxia for one and three weeks, showing cardiometabolic conversion of the injected195

    hyperpolarizedpyruvateintothedownstreamproductslactate,alanineandbicarbonate.Spectra196

    were DC offset-corrected based on the last half of acquired points. The peak areas of [1-197

    13C]pyruvate, [1-13C]lactate, [1-13C]alanine and[13C]bicarbonate at each time point were198

    quantifiedandusedasinputdataforakineticmodelbasedonthatdevelopedbyZierhutetal.32199

    andAthertonetal.33.PDHfluxwasquantifiedastherateof13Clabeltransferfrompyruvateto200

    bicarbonate.Therateof 13C labeltransfer frompyruvate to lactateandalaninewasusedasa201

    marker of lactate dehydrogenase activity and alanine aminotransferase activity respectively.202

    CINE images were analyzed using cmr42 software (Circle Cardiovascular Imaging, Calgary,203

    Canada)byanexperiencedanalystblindedtoexperimentalgroup.204

    205

    Statistical analyses: No significant differences were observed between the three normoxic206

    groups(acute,oneweekandthreeweeks)foranyparameter,thereforeallnormoxicvalueswere207

    combined for subsequent analysis. Values are reported as the mean ± standard deviation.208

    Differences between groups were assessed using a one-way ANOVA followed by a Tukey’s209

    multiplecomparisonstest.ThiswasperformedusingGraphPadPrismversion6.0gforMacOSX210

    (GraphPadSoftware, La JollaCaliforniaUSA,www.graphpad.com). Statistical significancewas211

    consideredifp≤0.05.212

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Results213

    Oxygensaturationwassuccessfullyreducedinallhypoxicgroupscomparedwithnormoxicdata214

    (Figure2A).215

    216

    Physiological Effects of Hypoxia: Hypoxia did not significantly affect in vivo heart rate,217

    respirationrateorleftventricularejectionfractioninanygroup(Figure2B,C,D).However,the218

    ANOVAforheartrategaveapvalueof0.051,andsoacomparisonbetweenthe30minuteand1-219

    weekhypoxiadatashouldbenoted(p=0.04).Oneweekofhypoxiacausedasignificantincrease220

    inhaematocritcomparedtonormoxia(49.3±0.6%and43±2%respectively),andhaematocritin221

    three-weekhypoxicanimalswassignificantly increasedcompared toone-weekandnormoxic222

    values(58±2%)(Figure2E);thisdemonstratessystemicadaptationtohypoxiaovertime.223

    Animalshousedinhypoxiaforoneweekshowedsignificantlylowerbodyweightsthannormoxic224

    animals. Following three weeks of hypoxia however, body weights were no different from225

    controls.226

    227

    MetabolicEffectsofHypoxia:228

    Invivodata:Following30minutesofhypoxia,animalsdemonstratedasignificantreductionin229

    PDH flux (50%) compared to normoxic animals (0.009±0.003 s-1 and 0.017±0.007 s-1230

    respectively;Figure 3A). In contrast, both 1 and3weeks of hypoxic exposure didnot show231

    significantlyalteredPDH flux,with valuesnot significantlydifferent fromcontrols (one-week232

    hypoxia:0.013±0.007s-1;three-weekshypoxia:0.017±0.011s-1;normoxia:0.017±0.007s-1).233

    234

    A significant (58%) increase inHP 13C label transfer to lactate (Figure3B),wasobserved in235

    comparing30minuteshypoxicexposuretonormoxicdata(0.032±0.008s-1and0.020±0.006s-1236

    respectively),indicativeofashort-termmetabolicshifttowardsanaerobicmetabolism.Afterone237

    weekof hypoxia, theunchangedPDH fluxwasaccompaniedby an increased rateof 13C label238

    transfertolactate(by40%)comparedtonormoxicanimals(0.028±0.008s-1and0.020±0.006s-239

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    11

    1respectively).Nodifferenceinfluxto13Clactatewasobservedfollowingthreeweeksofhypoxia240

    comparedtonormoxicdata(0.023±0.002s-1and0.020±0.001s-1respectively).Nochangeinthe241

    rateof13Clabeltransfertoalaninewasseenatanytimepoint(Figure3C).242

    243

    Biochemicalanalyses:244

    Cardiac tissue from the one-week and three-week hypoxic groups was assessed ex vivo. In245

    agreementwiththeunchangedPDHfluxatboththesetimepoints,nosignificantdifferencesin246

    theproteinexpressionlevelsoftheregulatorycardiacPDKisoforms(1,2and4)wereobserved247

    (Figure4).AsignificantlyhigherexpressionofLDHwasobservedinthe1-weekhypoxictissue,248

    inlinewiththeincreasedHPpyruvatetolactateconversionseeninvivo.249

    250

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Discussion251

    Inhypoxia,metabolicchangeshavetooccurinorderforcardiacfunctiontobemaintainedunder252

    theseoxygen-restrictedconditions.Firstlyconsideringtheresponsetoacutehypoxia,theheart253

    mustrapidlyshiftmetabolismtowardsamoreanaerobicphenotype,whichischaracterisedby254

    increased glycolysis, increased lactate efflux34 and decreased oxidative mitochondrial255

    metabolism.Indeed,intheanimalsexposedto30minutesofhypoxia,cardiacpyruvatetolactate256

    conversioninvivowassignificantlyincreased,andPDHfluxsignificantlydecreased.Therapid257

    response that we observed, in line with the expected metabolic signature of anaerobic258

    respiration, is likely mediated by changes in the NAD+/NADH ratio as a direct result of the259

    decreased oxygen availability35. The reduced oxygen results in decreased mitochondrial260

    respiration4, increasing NADH, inhibiting NAD-dependent dehydrogenases such as PDH and261

    promotingNADH-dependentdehydrogenasessuchasLDH.262

    Afteroneweekofhypoxicexposure,weobservedasignificantlyincreasedhaematocritlevel,as263

    theanimalsunderwentadaptationtotheincreasinglevelofhypoxia.Thispotentiallyindicatesa264

    partialadaptationtothehypoxicenvironment,aparticularlyviablesuggestionwhenconsidered265

    alongside the three-weekhaematocritdata,which showsan additional significant increase in266

    haematocrit.Thishypothesisof‘interim’adaptationissupportedbyatrendtoincreasedheart267

    rate as a compensatory mechanism to ensure sufficient systemic oxygen delivery, and a268

    significantlyreducedbodyweight.Similarparametershavebeenobservedinhumansadapting269

    to altitude showing increasedheart rate36 anda lower calorie intake37, the latter of hasbeen270

    suggestedtobeduetoincreasedleptinlevels38.271

    Theincreasedhaematocritleveldemonstratedbyourone-weekandthree-weekhypoxicanimals272

    is a hallmark of systemic adaptation to physiological hypoxia, driven by HIF-2α-stimulated273

    productionof erythropoietin39,40.Glycolytic changeshavebeen reported tobepredominantly274

    HIF-1α-regulated41suchasthatoflactatedehydrogenase42,theenzymeresponsiblefortheHP275

    conversionwemeasured invivo.Glycolyticallyderived lactatewas increased in theone-week276

    hypoxic animals, as assessed by HP pyruvate to lactate conversion, in line with significantly277

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    13

    increasedLDHexpressionincomparisontonormoxicdata.PDHfluxwasnotdecreased,which278

    was supported by our assessment of expression levels of its PDK regulators, perhaps279

    unexpectedlyduetopreviousstudiesdiscussingthehypoxia-induciblenatureofPDK143,44.Our280

    three-weekhypoxicexposurealsoresultedinnometabolicdifferences(intheconversionofHP281

    pyruvatetolactateorbicarbonate)incomparisonwithnormoxicdata,assupportedbymeasures282

    ofPDKandLDHexpression.283

    MuchresearchhashoweverfocussedontheeffectofhypoxiaonPDKexpressionincellculture.284

    Kimetal.43andPapandreouetal.44showedupregulationofPDK1,inmouseembryonicfibroblasts285

    following24-72hin0.5%hypoxia.Geneticover-activationofHIF1αincreasesPDK1and4protein286

    levelsinmuscle45.Ithasgenerallybeenassumedthatthistranslatestotheheart,intheinvivo287

    setting.Equally,measuredchangesintheseregulatorykinaseshavebeenextrapolatedtomeana288

    changeinPDHactivity.However,ourdatasuggeststhatthismaynotenablecommentonlong-289

    terminvivocardiachypoxia.Indeed,astudybyLeMoineetal.demonstratednoelevationofPDK1290

    expressioninskeletalmusclefollowingoneweekofhypoxicexposure46.Previousstudiesfrom291

    our group have shown that this three-week protocol of chronic hypoxia at 11% oxygen is292

    sufficienttometabolicallyreprogramtheheartspecificallytobecomemoreoxygenefficient5in293

    waysnotassessedinthisstudy.Further,studiesinanimalmodelsofhypertrophyhaverevealed294

    unchangedPDHactivity47,48andnodifferences inPDK isoforms,whichappearedatoddswith295

    cellularstudiesonhypoxia.Ourdatacontributestotheseobservationsandmayinfuturehelp296

    explainthesituationindisease.297

    298

    Limitations299

    This study did not measure ex vivo PDH activity, which could contribute to the in vivo HP300

    measures,andcouldbealteredinspiteofunchangedPDKexpression.HowevertheworkbyLe301

    Moine et al. demonstrated that ex vivo skeletal PDH activity inmice exposed to oneweek of302

    hypoxiawasunchangedcomparedtonormoxicanimals49.Concomitantly,workbyAthertonetal.303

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    14

    demonstratedasignificantcorrelationbetweeninvivodataacquiredusingHP[1-13C]pyruvate304

    andPDHactivityassessedfromexvivotissue50,strengtheningthevalidityofourinvivoHPdata.305

    Apulse-acquiresequencewasusedinthisstudy,anddataacquiredusingasurfacecoil.Future306

    work could involve implementing a more elegant acquisition protocol51 to provide more307

    informationonregionalhypoxiawithintheheart.308

    Finally,normoxicanimalswereimagedusing100%oxygen,which,althoughcommonprocedure309

    inpreclinicalanimalstudies,mayexacerbatethedifferenceswehaveseenhere.Futurestudies310

    couldincludeanaesthesiaataloweroxygenpercentage.311

    312

    Conclusion313

    Inconclusion,wehavedemonstratedtheabilityofHP[1-13C]pyruvatetonon-invasivelyassess314

    metabolicchangesinthehealthyheartinresponsetothreelengthsofexposuretohypoxia.This315

    couldthereforebeaviabletechniqueforassessinghypoxiainawiderangeofdiseasesandin316

    responsetotherapy.317

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • Funding318

    This study was funded by grants from the British Heart Foundation (FS/10/002/28078,319

    FS/14/17/30634)andDiabetesUK(11/0004175)andequipmentsupportwasprovidedbyGE320

    Healthcare.321

    322

    Acknowledgements323

    TheauthorswouldliketothankDr.LouiseUptonandProf.MarySugdenforthekindprovision324

    ofthepulseoximeterandaprimaryantibodyforPDK4respectively.L.L.Pwouldalsoliketothank325

    RichardandJocelynLePagefortechnicalassistanceinpreparingthemanuscript,andAsst.Prof.326

    MyriamChaumeilforvaluablediscussions.327

    328

    Conflictsofinterest329

    Lydia Le Page was supported in the form of a partial contribution to her D.Phil studies by330

    AstraZenecaPLC,London,UK.331

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • References332

    1. AllenDG,MorrisPG,OrchardtCH,PirolotJS.ANuclearMagneticResonanceStudyof333

    MetabolismintheFerretHeartduringHypoxiaandInhibitionofGlycolysis.Vol361.;1985.334

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1192854/pdf/jphysiol00576-335

    0195.pdf.AccessedOctober16,2018.336

    2. WilliamsonJR.Glycolyticcontrolmechanisms.II.Kineticsofintermediatechangesduring337

    theaerobic-anoxictransitioninperfusedratheart.JBiolChem.1966;241(21):5026-338

    5036.http://www.ncbi.nlm.nih.gov/pubmed/4224561.AccessedOctober16,2018.339

    3. ColeMA,AbdJamilAH,HeatherLC,etal.OnthepivotalroleofPPARαinadaptationof340

    thehearttohypoxiaandwhyfatinthedietincreaseshypoxicinjury.FASEBJ.April2016.341

    doi:10.1096/fj.201500094R.342

    4. HeatherLC,ColeMA,TanJ-JJ,etal.Metabolicadaptationtochronichypoxiaincardiac343

    mitochondria.BasicResCardiol.2012;107(3):268.doi:10.1007/s00395-012-0268-2.344

    5. MansorLS,MehtaK,AksentijevicD,etal.Increasedoxidativemetabolismfollowing345

    hypoxiainthetype2diabeticheart,despitenormalhypoxiasignallingandmetabolic346

    adaptation.JPhysiol.2016;594(2):307-320.doi:10.1113/JP271242.347

    6. StembridgeM,AinsliePN,DonnellyJ,etal.Cardiacstructureandfunctioninadolescent348

    Sherpa;effectofhabitualaltitudeanddevelopmentalstage.AmJPhysiolCircPhysiol.349

    2016;310(6):H740-H746.doi:10.1152/ajpheart.00938.2015.350

    7. deTheijeC,CostesF,LangenRC,PisonC,GoskerHR.Hypoxiaandmusclemaintenance351

    regulation:implicationsforchronicrespiratorydisease.CurrOpinClinNutrMetabCare.352

    2011;14(6):548-553.doi:10.1097/MCO.0b013e32834b6e79.353

    8. GiussaniDA,CammEJ,NiuY,etal.Developmentalprogrammingofcardiovascular354

    dysfunctionbyprenatalhypoxiaandoxidativestress.CalbetJAL,ed.PLoSOne.355

    2012;7(2):e31017.doi:10.1371/journal.pone.0031017.356

    9. GarveyJF,TaylorCT,McNicholasWT.Cardiovasculardiseaseinobstructivesleepapnoea357

    syndrome:theroleofintermittenthypoxiaandinflammation.EurRespirJ.358

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    17

    2009;33(5):1195-1205.doi:10.1183/09031936.00111208.359

    10. WillamC,MaxwellPH,NicholsL,etal.HIFprolylhydroxylasesintherat;organ360

    distributionandchangesinexpressionfollowinghypoxiaandcoronaryarteryligation.J361

    MolCellCardiol.2006;41(1):68-77.doi:10.1016/j.yjmcc.2006.04.009.362

    11. GiordanoFJ.Oxygen,oxidativestress,hypoxia,andheartfailure.JClinInvest.363

    2005;115(3):500-508.doi:10.1172/JCI24408.364

    12. PrabhakarNR,SemenzaGL.Adaptiveandmaladaptivecardiorespiratoryresponsesto365

    continuousandintermittenthypoxiamediatedbyhypoxia-induciblefactors1and2.366

    PhysiolRev.2012;92(3):967-1003.doi:10.1152/physrev.00030.2011.367

    13. MasonRP,ZhaoD,Pacheco-TorresJ,etal.Multimodalityimagingofhypoxiainpreclinical368

    settings.QJNuclMedMolImaging.2010;54(3):259-280.369

    http://www.ncbi.nlm.nih.gov/pubmed/20639813.AccessedNovember6,2018.370

    14. FriedrichMG,KaramitsosTD.Oxygenation-sensitivecardiovascularmagneticresonance.371

    JCardiovascMagnReson.2013;15(1):43.doi:10.1186/1532-429X-15-43.372

    15. StalderAF,SchmidtM,GreiserA,etal.RobustcardiacBOLDMRIusinganfMRI-like373

    approachwithrepeatedstressparadigms.MagnResonMed.2015;73(2):577-585.374

    doi:10.1002/mrm.25164.375

    16. DavidsonCQ,PhenixCP,TaiTC,KhaperN,LeesSJ.SearchingforNovelPETRadiotracers:376

    ImagingCardiacPerfusion,MetabolismandInflammation.Vol8.;2018.377

    www.ajnmmi.us/ISSN:2160-8407/ajnmmi0079469.AccessedNovember6,2018.378

    17. GroplerRJ,SiegelBA,GeltmanEM.Myocardialuptakeofcarbon-11-acetateasanindirect379

    estimateofregionalmyocardialbloodflow.JNuclMed.1991;32(2):245-251.380

    http://www.ncbi.nlm.nih.gov/pubmed/1992027.AccessedNovember6,2018.381

    18. Ardenkjaer-LarsenJH,FridlundB,GramA,etal.Increaseinsignal-to-noiseratioof>382

    10,000timesinliquid-stateNMR.ProcNatlAcadSciUSA.2003;100(18):10158-10163.383

    doi:10.1073/pnas.1733835100.384

    19. SchroederMA,ClarkeK,NeubauerS,TylerDJ.Hyperpolarizedmagneticresonance:a385

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    18

    noveltechniquefortheinvivoassessmentofcardiovasculardisease.Circulation.386

    2011;124(14):1580-1594.doi:10.1161/CIRCULATIONAHA.111.024919.387

    20. LaustsenC,LyckeS,PalmF,etal.Highaltitudemayalteroxygenavailabilityandrenal388

    metabolismindiabeticsasmeasuredbyhyperpolarized[1-(13)C]pyruvatemagnetic389

    resonanceimaging.KidneyInt.2013;86(1):67-74.doi:10.1038/ki.2013.504.390

    21. HanahanD,WeinbergRA.Hallmarksofcancer:thenextgeneration.Cell.391

    2011;144(5):646-674.doi:10.1016/j.cell.2011.02.013.392

    22. HardeeME,DewhirstMW,AgarwalN,SorgBS.NovelImagingProvidesNewInsightsinto393

    MechanismsofOxygenTransportinTumors.394

    https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841217/pdf/nihms184476.pdf.395

    AccessedOctober16,2018.396

    23. IversenAB,RinggaardS,LaustsenC,etal.Hyperpolarizedmagneticresonance397

    spectroscopyforassessingtumorhypoxia.ActaOncol.September2015:1-6.398

    doi:10.3109/0284186X.2015.1070964.399

    24. BohndiekSE,KettunenMI,HuD,etal.Hyperpolarized[1-13C]-Ascorbicand400

    DehydroascorbicAcid:VitaminCasaProbeforImagingRedoxStatusinVivo.JAmChem401

    Soc.2011;133(30):11795-11801.doi:10.1021/ja2045925.402

    25. KeshariKR,KurhanewiczJ,BokR,LarsonPEZ,VigneronDB,WilsonDM.Hyperpolarized403

    13Cdehydroascorbateasanendogenousredoxsensorforinvivometabolicimaging.404

    ProcNatlAcadSciUSA.2011;108(46):18606-18611.doi:10.1073/pnas.1106920108.405

    26. TimmKN,HuD,WilliamsM,etal.Assessingoxidativestressintumorsbymeasuringthe406

    rateofhyperpolarized[1-13C]dehydroascorbicacidreductionusing13Cmagnetic407

    resonancespectroscopy.JBiolChem.December2016:jbc.M116.761536.408

    doi:10.1074/jbc.M116.761536.409

    27. SchroederM,LaustsenC.Imagingoxygenmetabolismwithhyperpolarizedmagnetic410

    resonance:anovelapproachfortheexaminationofcardiacandrenalfunction.Biosci411

    Rep.2017;37(1):BSR20160186.doi:10.1042/BSR20160186.412

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    19

    28. MarshallJM,ThomasT,TurnerL.Alinkbetweenadenosine,ATP-sensitiveK+channels,413

    potassiumandmusclevasodilatationintheratinsystemichypoxia.JPhysiol.414

    1993;472:1-9.415

    http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1160471&tool=pmcentrez416

    &rendertype=abstract.AccessedJune2,2014.417

    29. SchroederMA,CochlinLE,HeatherLC,ClarkeK,RaddaGK,TylerDJ.Invivoassessment418

    ofpyruvatedehydrogenasefluxintheheartusinghyperpolarizedcarbon-13magnetic419

    resonance.ProcNatlAcadSciUSA.2008;105(33):12051-12056.420

    doi:10.1073/pnas.0805953105.421

    30. BoehmEA,JonesBE,RaddaGK,VeechRL,ClarkeK.Increaseduncouplingproteinsand422

    decreasedefficiencyinpalmitate-perfusedhyperthyroidratheart.AmJPhysiol-Hear423

    CircPhysiol.2000;280(3):977-983.http://www.ncbi.nlm.nih.gov/pubmed/11179038.424

    AccessedMay21,2014.425

    31. NaressiA,CouturierC,DevosJM,etal.Java-basedgraphicaluserinterfaceforMRUI,a426

    softwarepackageforquantitationofinvivo/medicalmagneticresonancespectroscopy427

    signals.ComputBiolMed.2001;31(4):269-286.428

    http://view.ncbi.nlm.nih.gov/pubmed/11390270.429

    32. ZierhutML,YenY-F,ChenAP,etal.Kineticmodelingofhyperpolarized13C1-pyruvate430

    metabolisminnormalratsandTRAMPmice.JMagnReson.2010;202(1):85-92.431

    doi:10.1016/j.jmr.2009.10.003.432

    33. AthertonHJ,SchroederMA,DoddMS,etal.Validationoftheinvivoassessmentof433

    pyruvatedehydrogenaseactivityusinghyperpolarised13CMRS.NMRBiomed.434

    2011;24(2):201-208.doi:10.1002/nbm.1573.435

    34. HeatherLC,PatesKM,AthertonHJ,etal.Differentialtranslocationofthefattyacid436

    transporter,FAT/CD36,andtheglucosetransporter,GLUT4,coordinateschangesin437

    cardiacsubstratemetabolismduringischemiaandreperfusion.CircHeartFail.438

    2013;6(5):1058-1066.doi:10.1161/CIRCHEARTFAILURE.112.000342.439

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    20

    35. KinnulaVL,HassinenI.Metabolicadaptationtohypoxia.Redoxstateofthecellularfree440

    NADpools,phosphorylationstateoftheadenylatesystemandthe(Na+-K+)-stimulated441

    ATP-aseinratliver.ActaPhysiolScand.1978;104(1):109-116.doi:10.1111/j.1748-442

    1716.1978.tb06256.x.443

    36. BärtschP,Simon;J,GibbsR.EffectofAltitudeontheHeartandtheLungsEffectsof444

    ExposuretoHighAltitudeontheNormalCardiovascularSystemCirculation445

    ContemporaryReviewsinCardiovascularMedicine.2007.446

    doi:10.1161/CIRCULATIONAHA.106.650796.447

    37. WesterterpKR.EnergyandWaterBalanceatHighAltitude.Vol16.;2001.448

    www.physiology.org/journal/physiologyonline.AccessedNovember7,2018.449

    38. TschopM,StrasburgerC,HartmannG,BiollazJ,BartschP.RaisedLeptinConcentrationsat450

    HighAltitudeAssociatedwithLossofAppetite.Vol352.;1998.451

    https://www.thelancet.com/action/showPdf?pii=S0140-6736%2805%2979760-9.452

    AccessedNovember7,2018.453

    39. GruberM,HuC-J,JohnsonRS,etal.AcutePostnatalAblationofHif-2ResultsinAnemia.;454

    2007.www.pnas.org/cgi/content/full/.AccessedNovember8,2018.455

    40. KapitsinouPP,LiuQ,UngerTL,etal.HepaticHIF-2regulateserythropoieticresponsesto456

    hypoxiainrenalanemia.Blood.2010;116(16):3039-3048.doi:10.1182/blood-2010-02-457

    270322.458

    41. HuC-J,WangL-Y,ChodoshLA,KeithB,SimonMC.DifferentialRolesofHypoxia-Inducible459

    Factor1(HIF-1)andHIF-2inHypoxicGeneRegulation.MolCellBiol.2003;23(24):9361-460

    9374.doi:10.1128/MCB.23.24.9361-9374.2003.461

    42. FirthJD,EbertBL,RatcliffePJ.HypoxicRegulationofLactateDehydrogenaseA.JBiol462

    Chem.1995;270(36):21021-21027.doi:10.1074/jbc.270.36.21021.463

    43. KimJ,TchernyshyovI,SemenzaGL,etal.HIF-1-mediatedexpressionofpyruvate464

    dehydrogenasekinase:ametabolicswitchrequiredforcellularadaptationtohypoxia.465

    CellMetab.2006;3(3):177-185.doi:10.1016/j.cmet.2006.02.002.466

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • LePageetal:Assessingtheresponseofcardiacmetabolismtohypoxiawith13CMRS

    21

    44. PapandreouI,CairnsRA,FontanaL,LimAL,DenkoNC.HIF-1mediatesadaptationto467

    hypoxiabyactivelydownregulatingmitochondrialoxygenconsumption.CellMetab.468

    2006;3(3):187-197.doi:10.1016/j.cmet.2006.01.012.469

    45. AragonesJ,SchneiderM,VanGeyteK,etal.Deficiencyorinhibitionofoxygensensor470

    Phd1induceshypoxiatolerancebyreprogrammingbasalmetabolism.NatGenet.471

    2008;40(2):170-180.doi:10.1038/ng.2007.62.472

    46. LeMoineCMR,MorashAJ,McClellandGB.ChangesinHIF-1αprotein,pyruvate473

    dehydrogenasephosphorylation,andactivitywithexerciseinacuteandchronichypoxia.474

    AmJPhysiolRegulIntegrCompPhysiol.2011;301(4):R1098-104.475

    doi:10.1152/ajpregu.00070.2011.476

    47. LydellCP,ChanA,WamboltRB,etal.Pyruvatedehydrogenaseandtheregulationof477

    glucoseoxidationinhypertrophiedrathearts.CardiovascRes.2002;53(4):841-851.478

    http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2131743&tool=pmcentrez479

    &rendertype=abstract.480

    48. SeymourA-ML,GilesL,BallV,etal.InVivoAssessmentofCardiacMetabolismand481

    FunctionintheAbdominalAorticBandingModelofCompensatedCardiacHypertrophy.482

    CardiovascRes.March2015:cvv101-.doi:10.1093/cvr/cvv101.483

    49. LeMoineCMR,MorashAJ,McClellandGB.ChangesinHIF-1αprotein,pyruvate484

    dehydrogenasephosphorylation,andactivitywithexerciseinacuteandchronichypoxia.485

    AmJPhysiolIntegrCompPhysiol.2011;301(4):R1098-R1104.486

    doi:10.1152/ajpregu.00070.2011.487

    50. AthertonHJ,SchroederMA,DoddMS,etal.Validationoftheinvivoassessmentof488

    pyruvatedehydrogenaseactivityusinghyperpolarised13CMRS.NMRBiomed.489

    2011;24(2):201-208.doi:10.1002/nbm.1573.490

    51. LauAZ,ChenAP,GhugreNR,etal.Rapidmultisliceimagingofhyperpolarized13C491

    pyruvateandbicarbonateintheheart.MagnResonMed.2010;64(5):1323-1331.492

    doi:10.1002/mrm.22525.493

    .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .C

    C-B

    Y-N

    C-N

    D 4.0 International license

    available under aw

    as not certified by peer review) is the author/funder, w

    ho has granted bioRxiv a license to display the preprint in perpetuity. It is m

    ade T

    he copyright holder for this preprint (which

    this version posted Decem

    ber 13, 2018. ;

    https://doi.org/10.1101/495069doi:

    bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

  • .CC-BY-NC-ND 4.0 International licenseavailable under awas not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

    The copyright holder for this preprint (whichthis version posted December 13, 2018. ; https://doi.org/10.1101/495069doi: bioRxiv preprint

    https://doi.org/10.1101/495069http://creativecommons.org/licenses/by-nc-nd/4.0/

Recommended