+ All Categories
Home > Documents > Assessment of data quality and Know-Why for a scalable...

Assessment of data quality and Know-Why for a scalable...

Date post: 03-May-2018
Category:
Upload: ledang
View: 218 times
Download: 2 times
Share this document with a friend
45
Assessment of data quality and Know-Why for a scalable QbD Approach Christoph Herwig 24th September 2013
Transcript

Assessment of data quality and Know-Why for a

scalable QbD ApproachChristoph Herwig

24th September 2013

09.10.2013 Ch. Herwig

Status Quo

Investigate! Redo! Hope!Stomach decision !

Process Development

Piloting ManufacturingScreening

Scale-up Scale-up Scale-up

Productivity

Waste

Process Development Time Revenue Period

2

09.10.2013 Ch. Herwig

Status Quo of Bioprocess Design

3

09.10.2013 Ch. Herwig

Status Quo of Bioprocess Design

Process regime (Feed rate, mode)

Product

Unwanted Sideproducts

Biomass

Media Composition(C, N, Trace Elements)

Agitation, pO2, pH, T, pCO2

4

09.10.2013 Ch. Herwig

Quality by Design

Process ParametersTemperatureStirrer SpeedDissolved OxygenpHAir FlowPressureFeedrateNutrient concentrationsInducer concentrationBiomass concentrationInduction TimeConductivityRedox levelStrainExpression cassette…

Product quality attributesEnzyme activityTiterPurityStabilityBatch-to-batch variabilityEfficiencyCost of productSpace-time-yieldProtein foldingGlycosylation patternViabilityEase of further processing (downstream)Potential risks for end-user…

???

09.10.2013 5

09.10.2013 Ch. Herwig

Process ParametersTemperatureStirrer SpeedDissolved OxygenpHAir FlowPressureFeedrateNutrient concentrationsInducer concentrationBiomass concentrationInduction TimeConductivityRedox levelStrainExpression cassette…

Product quality attributesEnzyme activityTiterPurityStabilityBatch-to-batch variabilityEfficiencyCost of productSpace-time-yieldProtein foldingGlycosylation patternViabilityEase of further processing (downstream)Potential risks for end-user…

Quality by Design

6

???

09.10.2013 Ch. Herwig

Current Solution: „How“ but not „Why“

CPPs

Specific Activity

[kU/gbiomass]

Induction Phase Temperature

[°C]

Induction Phase Feeding 

Exponent k

7

Knowledge

DataCPPs

CQA

09.10.2013 Ch. Herwig

“Paradigm Change” of Bioprocess Design

Design MethodologyDesign Methodology

Process Design Parameters:

Feed

T

pH

Quality!Performance!

Time to Market!Process Analytical TechnologyDesign of ExperimentsRisk AssessmentStatistics

Reduced Development TimeKnow‐How = Know‐WhyHardly Predictive

Reduced Development TimeKnow‐How = Know‐WhyHardly Predictive

8

09.10.2013 Ch. Herwig

Problem Statement and Goal

• QbD is perceived to

• be expensive and laborious due to high amount of experiments

• not hold the promise to provide more flexibility / scalability

• Goal: Show benefits to QbD by

• using high quality data

• providing not “How” but “Why” Process Understanding

9

High Quality Data “Why” Process Understanding

09.10.2013 Ch. Herwig

I) Importance of Data

Quality

10

09.10.2013 Ch. Herwig

Case Study

• Motivation• What is the impact of measurement quality on decisions made during the

process life cycle?• Which measurement system suits better the requirements for

measurement quality?

• Methodology• Two systems using different measurement principles were available for

process monitoring at a process development group within Roche Pharma.

• Process data was evaluated with respect to precision and accuracy.• The impact of measurement quality on process development and process

control decisions was evaluated.

09.10.2013 Ch. Herwig

Method for the assessment of error propagation

Basis: CHO cultures for monoclonal antibodies

Data were generated in-silico from real

processes

Add process / experimental noise to in-silico data

Add measurement

noise to in-silico data

Assess extractability of information

using statistical tools

(model building, t-test)

09.10.2013 Ch. Herwig

Precision and accuracy of measurements from two analyzers

09.10.2013 Ch. Herwig

Precision

Cedex Bio HT Membrane based analyzer

Range [mg/L] [%]* Range [mg/L] [%]*

Ammonium 0,03-12 0,18 1,50 8,5 -170

4,00 2,35

Glucose 20 -7500 44,68 0,60 500 -15000

616,19 4,11

Glutamine 4 - 1500 16,11 1,07 70 -730

136,91 18,75

Glutamate 4 - 1500 6,96 0,46 30 -550

49,53 9,01

Lactate 3,7 -1400

5,95 0,42 300 -5000

441,02 8,82

•* [%] in relating to max Range

09.10.2013 Ch. Herwig

Accuracy

∑ , ,

Cedex Bio HT Membrane based analyzer

Range [mg/L] [%]* Range [mg/L] [%]*

Ammonium 0,03-12 0,04 0,33 8,5 -170

3,60 2,12

Glucose 20 -7500 29,80 0,40 500 -15000

69,02 0,46

Glutamine 4 - 1500 4,53 0,30 70 -730

44,92 6,15

Glutamate 4 - 1500 26,27 1,75 30 -550

7,30 1,32

Lactate 3,7 -1400

22,94 1,64 300 -5000

113,05 2,26

•* [%] in relating to max Range

09.10.2013 Ch. Herwig

Effect of Quality of Measurement on Time Resolution of Processes

It does not make sense to measure in a higher sampling frequency than indicated

Impact for application to timely resolved analysis

Minimum Potential Measuring Interval

Cedex Bio HT[h]

Membrane based analyzer[h]

Ammonium 0,2 4,8Glucose 1,8 24,4Glutamine 3,0 25,6Glutamate 2,1 15,2Lactate 0,4 29,0

09.10.2013 Ch. Herwig

Simplified workflow inbioprocess development

• Screening studies: Process parameters which impact on product quality are selected for optimization studies (critical process parameters = CPPs)

• Optimization studies: CPPs are investigated aiming for identification of process optimum.

How does measurement quality impact on decision making in process development?

Risk assessment

Screening studies

Optimization studies

Scale Up

0,00

0,05

0,10

0,15

Tem

p

[g/l]

09.10.2013 Ch. Herwig

Case 1: Quantitative Screening for influential factors

• Goal: Make decision whether factor has an impact on process performance or not.

• Significance of these factors is checked using statistical tools. • Green bar: influence of factor (coefficient).• Error bar: Uncertainty.

Influencing factors can be missed through imprecise measurements!

Critical process parameters are not assessed as critical if measurement noise is high

High SNR ratio on measurements (SNR 500)

Low SNR ratio on measurements (SNR 25)

09.10.2013 Ch. Herwig

Screening for influential factors

• Building of multi-linear regression models

• Basic model assessment:• R2: Variance explained• Q2: Prediction quality, based on cross

validation

• Good models can only be build based on good data!

High SNR ratio on measurements (SNR 500)

Low SNR ratio on measurements (SNR 25)

09.10.2013 Ch. Herwig

Identification ofprocess optimum

• Identification of optimalprocess optimum in the presence of measurement noise• Low measurement noise: Minimum of

lactate production clearly identified at 25°C

• High measurement noise: No clear optimum can be identified! Minimum at 20°C?

Measurement noise can lead to• imprecise location of process optimum• contradicting results from different studies

???

09.10.2013 Ch. Herwig

Process Control Strategy

• Discontinuous process intervention by bolus addition

• Goal: Control glucose concentration above 2 g/L

• Control by bolus shots• When and how much?

Impact of data quality on process control strategy?

09.10.2013 Ch. Herwig

Glucose control based on bolus shots: Measurement every 12 hours

• 4% error on glucose measurement

• Action only if the measurement (red) is below 3g/L

• Does not necessarily match reality (blue)

• Wrong trigger – Wrong action

• 0.6% error on glucose measurement

• Measurement is always below 3g/L (much more precision on measurements)

• True culture kinetics can be read from the plot (specific growth rate)

09.10.2013 Ch. Herwig

Glucose control based on bolus shots: Measurement every 1 hour

No impact of measurement frequency on quality of process control

Even worse for Glutamine…

Culture kinetics (specific growth rate) counteracted by measurement frequency

Quality of process control is better due to higher due to measurement frequency

09.10.2013 Ch. Herwig

Conclusions

• Process development:• Imprecise measurements and outliers can lead

• Lack of time resolution• Miss significant factors (CPPs)• Wrong identification of process optima process not run at optimal

conditions• Wrong conclusions!

• Data quality propagates into decision making!

• Process control:• Wrong trigger – wrong action: • Quality of process control by bolus addition can be improved with higher

measurement frequency if data quality is sufficient only

• A measurement system with high precision, accuracy and resolution is required for both.

09.10.2013 Ch. Herwig

II)Importance of a

Mechanistic Approach Beyond QbD!

“The Why Approach”25

09.10.2013 Ch. Herwig

Successful Approach for Aircraft Design

26

09.10.2013 Ch. Herwig

Our Approach for Scalable Process Design

Process regime (Feed rate, mode)

Product

Unwanted Sideproducts

Biomass

Media Composition(C, N, Trace Elements)

Agitation, pO2, pH, T, pCO2

CELL

27

09.10.2013 Ch. Herwig

Our Approach for Bioprocess Design

28

09.10.2013 Ch. Herwig

Concept ofphysiological and mechanistic

understanding

29

PhysiologicalAssessmentRates/Yields

Sagmeister et.al., PDA Journal, 2012

Process

ProcessParameters Product

09.10.2013 Ch. Herwig

Extended process understandingusing combination of data

• Combine raw data to scalable entities

• Use of specific entities for knowledge extraction

30

Feed‐Profiles Biomass [g/L]

/

=Specific rate of substrateuptake qs [g/g/h]

09.10.2013 Ch. Herwig

Physiological bioprocess evaluation? What for?

• Physiological parameters vary with scale due to inhomogeneities in large scale (overflow metabolism)

• Physiological parameters vary in induction phase

Acquire scalable physiological  process information!

31

09.10.2013 Ch. Herwig

a) Traditional feed profile design b) Physiological feed profile design

Accelerate!

Careful selection of physiological factors for the DoE significantly reduces number of experiments Physiological factors enable mechanistic understanding and platform knowledge

Wechselberger et. al. 2012

Physiology-based DoE Speed up via Know-Why!

32

09.10.2013 Ch. Herwig

Scalable & optimized:Productivity in function

of physiology

GOAL: Generation of scalable knowledge

• Incorprating scalable physiological parameters in experimental design

• Tools for process governance at constantphysiological parameters

Scalable relationship of specificproductivity and scalable physiological parameters

µ

qi

Zalai, D., Dietzsch, C., Herwig, C., Spadiut, O., (2012). Biotechnology Progress

33

09.10.2013 Ch. Herwig

Accelerate!

a) Quick identification of scalablerelationships

b) Dynamic feeding profiles basedon specific substrate uptake rate

Zalai et. al. 2012

Dynamic Experiments Speed up via Know-Why!

Dynamic experiments increase information & throughput Mechanistic linkages between specific conversion rates = scalable physiological knowledge

34

09.10.2013 Ch. Herwig

Platform Knowledge:Soft-Sensors and dynamic

experiments

• GOAL: Efficient determination of DOE boundaries

• Link of physiology to processparameters

• Tools for real‐time extraction of physiological key parameters• Example: Determination of physiological parameters qs, µ in function of temperature

Very short experimental effort

35

0

5

10

15

20

25

30

35

40

00,10,20,30,40,50,60,70,80,9

1

0 5 10 15

Tem

p[°C

]

qs e

stim

ated

[g/

g/h]

µ

estim

ated

[h-1

]

Process Time [h]

qs estimated [g/l] µ estimated [h-1]

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

15 20 25 30 35 40

µ es

tuna

ted

K2S2

[h-1

] qs

es

timat

ed K

2S2

[g/g

/h]

Temperature [°C]µ f (t) qs f (T)µ f(T)

µ [1/h] ; qs [g/g/h] estimated

09.10.2013 Ch. Herwig

Platform knowledgeby information processing

• Promoter characteristic time effectidentified using yield coefficients

• Maximizing biomass using DoE on biomass yield as response

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

Y(C

O2/

s) [m

ol/m

ol]

Induction time [h]

36

09.10.2013 Ch. Herwig

Concept ofWHY understanding

37

PhysiologicalAssessmentRates/Yields

Sagmeister et.al., PDA Journal, 2012

Process

ProcessParameters Product

Plattform Knowledge! Scalable Knowledge!

09.10.2013 Ch. Herwig

V)Conclusions

38

09.10.2013 Ch. Herwig

Benefits

Less Experiments Right Decisions

Process Transparency Through Time Resolution

Control on Optimized CPPs

Platform Knowledge Scalable & Controllable QbD Process

39

High Quality Data

Shorter Time to Market

Higher Productivity

“Why” Process Understanding

09.10.2013 Ch. Herwig

Data to scalable knowledge: Workflow

Herwig, Book Chapter, Putting QbD in Practice, 2011

40

09.10.2013 Ch. Herwig

Elemental Balancing• Posch et.al. 2012a• Wechselberger et.al.  2010, …

Process Parameters

Process Variables

VfeedcfeedVgasincgasinrpm…

.

.QAscproductcBDWcO2outcCO2out…

Yield and Rate Calculation•Wechselberger et.al. 2012•Dietzsch et.al. 2013, …

Physiological InformationDietzsch et.al 2011 a&b, Sagmeister et.al. 2012,…

Systematic Resolution (e.g DoE) Wechselberger et.al. 2012Jazini et.al. 2013, …

!Model Predictive Control

•Sagmeister et.al. 2013, …

Physiological ModelingWechselberger et.al. 2010Zalai et.al. 2012, …  

Morphological ModelingPosch et.al. 2012bPosch et.al. 2013, …

Real‐time EvaluationWechselberger et.al. 2013

Herwig et.al. 2001, …Predictive Processing

InverseAnalysis

Pred

ictiv

eProcessing

Structured

Process Develop

men

t

From Understanding to Prediction

CELL

41

09.10.2013 Ch. Herwig

Benefits throughshown Approach

• Shorten process development times

• Ensure scalability

• Increase productivity

• Create synergies for product/process n+1

42

“Why” Processing

Dynamics

Real Time Approaches

Softsensors

09.10.2013 Ch. Herwig

Process‐ undisclosed

Design & CQAs‐ Freedom during design‐ Proof of Concept for  controlling QTPP

Proven Patient Benefit‐ QTPP‐ Efficacy, Safety‐ Clinical Phase I, II & III

Process‐ complete disclosure

New

 Produ

ctBiosim

ilar

Proof of Concept

Mechanistical Models via PhysiologyFirst PrinciplesMetabolic FoundationsPlatform Knowledge

Risk ManagementVerified Scale Down Models

Design Methodology

Relevance for New Products & Biosimilars

Design & CQAs‐ Fixed CQA limits from initial approval

Proof of Similarity

43

09.10.2013 Ch. Herwig

Investigate! Redo! Hope!Stomach decision !

Process Development

Piloting ManufacturingScreening

Scale-up Scale-up Scale-up

Productivity

Waste

Process Development Time Revenue Period

Benefits through shown Approach

44

Process

Development

Piloting ManufacturingScreening

Scale‐up

Increase productivity by sustained optimization, scalability and

elimination of fail batches

Increase productivity by sustained optimization, scalability and

elimination of fail batches

Cut Process Development Time by 50% Revenue Period

Investigate! Verify! Control & predict!Explore!

Scale‐up Scale‐up

09.10.2013 Ch. Herwig

Thank youfor your attention!

Univ.Prof. Dr. Christoph HerwigVienna University of TechnologyInstitute of Chemical EngineeringResearch Division Biochemical Engineering Gumpendorferstrasse 1a/ 166 - 4A-1060 WienAustria

emailto: [email protected] (Office): +43 1 58801 166400Tel (Mobile): +43 676 47 37 217Fax: +43 1 58801 166980URL : http://institute.tuwien.ac.at/chemical_engineering/bioprocess_engineering/EN/

45

https://www.facebook.com/BioVTatTUWien


Recommended