+ All Categories
Home > Documents > Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505,...

Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505,...

Date post: 01-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
31
A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics Parkes H I observations of galaxies behind the southern Milky Way II. The Crux and Great Attractor regions (l 289 to 338 ) , A. C. Schröder 1,2 , R. C. Kraan-Korteweg 3 , and P. A. Henning 4 1 Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp 1740, South Africa e-mail: [email protected] 2 Dept. of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 3 Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa 4 Institute for Astrophysics, University of New Mexico, MSC07 4220, 800 Yale Blvd., NE, Albuquerque, NM, 87131, USA Received 28 May 2009 / Accepted 15 July 2009 ABSTRACT As part of our programme to map the large-scale distribution of galaxies behind the southern Milky Way, we observed 314 optically- selected, partially-obscured galaxies in the Zone of Avoidance (ZOA) in the Crux and Great Attractor (GA) regions. An additional 29 galaxies were observed in the Vela ZOA survey region (because of the small numbers they are not discussed any further). The observations were conducted with the Parkes 64 m (210 ft) radio telescope, in a single-pixel pointed mode, reaching an rms noise level of typically 26 mJy over the velocity search range of 400 <v< 10 500 km s 1 . A total of 162 galaxies were detected (plus 14 galaxies in the Vela region). The detection rate is slightly higher than for the Hydra/Antlia region (52% versus 45%) observed in the same way. This can be explained by the prominence of the GA overdensity in the survey regions, which leads to a relatively higher fraction of nearby galaxies. It is also evident from the quite narrow velocity distribution (largely confined to 30006000 km s 1 ) and deviates significantly from the expectation of a uniform galaxy distribution for the given sensitivity and velocity range. No systematic dierences were found between detections and non-detections, in terms of latitude, foreground extinction, or environment, except for the very central part of the rich Norma cluster, where hardly any galaxies were detected. A detailed investigation of the H i content of the galaxies reveals strong H i deficiency at the core of the Norma cluster (within about a 0.4 Abell radius), similar to what has been found in the Coma cluster. The redshifts obtained by this observing technique result in a substantial reduction of the so-called redshift ZOA. This is obvious when analysing the large-scale structure of the new H i data in combination with data from other (optical) ZOA redshift surveys. The lower latitude detections provide further evidence of the extension of the Norma Wall, across the ZOA, in particular its bending towards the Cen-Crux clusters above the Galactic plane at slightly higher redshift, rather than a straight continuation towards the Centaurus clusters. Key words. catalogs – surveys – ISM: dust, extinction – galaxies: fundamental parameters – radio lines: galaxies – cosmology: large-scale structure of Universe 1. Introduction Revealing the three-dimensional distribution of galaxies over the entire sky including the regions behind the dust and stars of our Milky Way is important for understanding the motion of the Local Group with respect to the microwave background as well as the peculiar flow fields in the nearby Universe (e.g., re- view by Kraan-Korteweg & Lahav 2000; Kraan-Korteweg 2005; and contributions in “Mapping the Hidden Universe”, 2000, ASP CS 218, eds. Kraan-Korteweg et al. 2000; “Nearby Large-Scale Structures and the Zone of Avoidance”, 2005, ASP CS 329, eds. Fairall & Woudt 2005). Except for blind H i surveys where both the angular coordinates and redshifts of galaxies are simulta- neously detected, this is a two-step process: first the galaxies have to be identified (in the optical, near or far-infrared), then Figure 1 is only available in electronic form at http://www.aanda.org Table 1 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/1049 redshifts have to be determined in follow-up studies. This has been done in the optical, either as single-channel or multi-fibre spectroscopy depending on surface brightness of the galaxies and the galaxy density on the sky or in the radio using the 21 cm spectral line of neutral hydrogen. The latter is most eective for the most obscured and/or low surface brightness spirals and ir- regular galaxies. Based on the deep optical galaxy catalogues in the south- ern Zone of Avoidance (ZOA; Kraan-Korteweg 2000; Woudt & Kraan-Korteweg 2001), we have obtained pointed H i ob- servations of a sample of obscured spiral galaxies with the 64 m Parkes radio telescope in Australia. Previous results of the Hydra/Antlia region (266 < < 296 ) were presented in Kraan-Korteweg et al. (2002, hereafter Paper I). The second part, presented here, covers the observations of spiral galaxies in the Crux and Great Attractor regions (hereafter GA; 289 < < 338 , 10 < b < +10 ; Woudt & Kraan-Korteweg 2001). The optical search detected galaxies above a diameter limit of D > 0. 2 on IIIaJ film copies of the ESO/SRC sky survey. For a detailed description of the optical search, see Paper I and Article published by EDP Sciences
Transcript
Page 1: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A&A 505, 1049–1074 (2009)DOI: 10.1051/0004-6361/200912592c© ESO 2009

Astronomy&

Astrophysics

Parkes H I observations of galaxies behind the southern Milky Way

II. The Crux and Great Attractor regions (l ≈ 289◦ to 338◦)�,��

A. C. Schröder1,2, R. C. Kraan-Korteweg3, and P. A. Henning4

1 Hartebeesthoek Radio Astronomy Observatory, PO Box 443, Krugersdorp 1740, South Africae-mail: [email protected]

2 Dept. of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK3 Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa4 Institute for Astrophysics, University of New Mexico, MSC07 4220, 800 Yale Blvd., NE, Albuquerque, NM, 87131, USA

Received 28 May 2009 / Accepted 15 July 2009

ABSTRACT

As part of our programme to map the large-scale distribution of galaxies behind the southern Milky Way, we observed 314 optically-selected, partially-obscured galaxies in the Zone of Avoidance (ZOA) in the Crux and Great Attractor (GA) regions. An additional29 galaxies were observed in the Vela ZOA survey region (because of the small numbers they are not discussed any further). Theobservations were conducted with the Parkes 64 m (210 ft) radio telescope, in a single-pixel pointed mode, reaching an rms noiselevel of typically 2−6 mJy over the velocity search range of 400 < v < 10 500 km s−1. A total of 162 galaxies were detected (plus14 galaxies in the Vela region). The detection rate is slightly higher than for the Hydra/Antlia region (52% versus 45%) observed inthe same way. This can be explained by the prominence of the GA overdensity in the survey regions, which leads to a relatively higherfraction of nearby galaxies. It is also evident from the quite narrow velocity distribution (largely confined to 3000−6000 km s−1) anddeviates significantly from the expectation of a uniform galaxy distribution for the given sensitivity and velocity range. No systematicdifferences were found between detections and non-detections, in terms of latitude, foreground extinction, or environment, except forthe very central part of the rich Norma cluster, where hardly any galaxies were detected. A detailed investigation of the H i contentof the galaxies reveals strong H i deficiency at the core of the Norma cluster (within about a 0.4 Abell radius), similar to what hasbeen found in the Coma cluster. The redshifts obtained by this observing technique result in a substantial reduction of the so-calledredshift ZOA. This is obvious when analysing the large-scale structure of the new H i data in combination with data from other(optical) ZOA redshift surveys. The lower latitude detections provide further evidence of the extension of the Norma Wall, across theZOA, in particular its bending towards the Cen-Crux clusters above the Galactic plane at slightly higher redshift, rather than a straightcontinuation towards the Centaurus clusters.

Key words. catalogs – surveys – ISM: dust, extinction – galaxies: fundamental parameters – radio lines: galaxies –cosmology: large-scale structure of Universe

1. Introduction

Revealing the three-dimensional distribution of galaxies over theentire sky including the regions behind the dust and stars ofour Milky Way is important for understanding the motion ofthe Local Group with respect to the microwave background aswell as the peculiar flow fields in the nearby Universe (e.g., re-view by Kraan-Korteweg & Lahav 2000; Kraan-Korteweg 2005;and contributions in “Mapping the Hidden Universe”, 2000, ASPCS 218, eds. Kraan-Korteweg et al. 2000; “Nearby Large-ScaleStructures and the Zone of Avoidance”, 2005, ASP CS 329, eds.Fairall & Woudt 2005). Except for blind H i surveys where boththe angular coordinates and redshifts of galaxies are simulta-neously detected, this is a two-step process: first the galaxieshave to be identified (in the optical, near or far-infrared), then

� Figure 1 is only available in electronic form athttp://www.aanda.org�� Table 1 is also available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/1049

redshifts have to be determined in follow-up studies. This hasbeen done in the optical, either as single-channel or multi-fibrespectroscopy depending on surface brightness of the galaxiesand the galaxy density on the sky or in the radio using the 21 cmspectral line of neutral hydrogen. The latter is most effective forthe most obscured and/or low surface brightness spirals and ir-regular galaxies.

Based on the deep optical galaxy catalogues in the south-ern Zone of Avoidance (ZOA; Kraan-Korteweg 2000; Woudt& Kraan-Korteweg 2001), we have obtained pointed H i ob-servations of a sample of obscured spiral galaxies with the64 m Parkes radio telescope in Australia. Previous results ofthe Hydra/Antlia region (266◦ <∼ � <∼ 296◦) were presentedin Kraan-Korteweg et al. (2002, hereafter Paper I). The secondpart, presented here, covers the observations of spiral galaxiesin the Crux and Great Attractor regions (hereafter GA; 289◦ <∼� <∼ 338◦, −10◦ <∼ b <∼ +10◦; Woudt & Kraan-Korteweg 2001).The optical search detected galaxies above a diameter limit ofD >∼ 0.′2 on IIIaJ film copies of the ESO/SRC sky survey. Fora detailed description of the optical search, see Paper I and

Article published by EDP Sciences

Page 2: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1050 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

the optical catalogue papers (Kraan-Korteweg 2000; Woudt &Kraan-Korteweg 2001). In summary, our target list consisted ofspiral galaxies without redshift information at the time of ob-servation, which have extinction-corrected diameters larger thanD0 > 60′′ (based on the Schlegel at al. 1998 extinction maps,and the Cameron 1990 correction laws). This corresponds to thecompleteness limit of the deep optical ZOA galaxy cataloguesto foreground extinction levels of AB ≤ 3.m0 (Kraan-Korteweg2000). It will therefore complement existing optical whole-sky catalogues such as Nilson (1973) for the northern sky andLauberts (1982) for the southern sky. The ESO/SRC IIIaJ film-copies that were used for the searches have such fine-grainedemulsion and sensitivity that the spiral morphology could al-ways be discerned with our 50×magnifying viewer – though notalways the spiral sub-type. At the highest extinction levels, wealso targeted smaller galaxies since optical spectroscopy is un-likely to succeed in yielding redshifts for these heavily extinctedgalaxies. We also sampled deeper in some of the overdensitieslike, e.g., the Norma cluster.

Our sample has a sensitivity of 2−6 mJy. This study istherefore complementary to the systematic blind H i survey ofthe southern ZOA conducted with the Parkes multibeam re-ceiver (Staveley-Smith et al. 2000; for preliminary results seeKraan-Korteweg et al. 2005; Henning et al. 2005), which coversthe optically opaque part of the southern ZOA (212◦ ≤ � ≤ 36◦,|b| ≤ 5◦) for the velocity range −1200 to 12 700 km s−1, with asensitivity similar to the observations presented here. A subsam-ple of this work consists of the shallow H i ZOA survey (here-after HIZSS; Henning et al. 2000), based on 8% of the integra-tion time of the full survey with a sensitivity of 15 mJy beam−1

after Hanning smoothing). In another subsample which is basedon 16% of the integration time of the full survey, Juraszek et al.(2000, hereafter JS00) focused on the area of the GA in the ZOA(308◦ <∼ � <∼ 332◦).

In the following section, a short description of the obser-vations is given (see Paper I for further details). Section 3presents the H i data and line profiles of the detected galax-ies. In Sect. 4, the non-detected galaxies are listed with theirrespective velocity search range. An analysis of the propertiesof the detected galaxies, the velocity distribution as well as thedetection rate (Sect. 5) is followed by a detailed discussion ofH i-deficiency in the Norma cluster (Sect. 6). We then present adescription of the three-dimensional galaxy distribution in andaround the investigated area (Sect. 7). A summary is given inSect. 8. Throughout the paper we assume a Hubble constant ofH0 = 70 km s−1 Mpc−1.

In Appendix A, we discuss cross-identifications of opticalgalaxies for which the detected H i signal might not necessarilybe associated with the optical counterpart, or where more thanone galaxy was detected in one pointing. In Appendix B, wepresent detections in the Vela region (245◦ <∼ � <∼ 275◦) whichhave also been observed during the course of these observingruns.

2. Observations

The Parkes 64 m radio telescope1 was used over four observ-ing periods of about 10−14 days each (June 1993, April 1994,July 1995 and September 1996). Here, we report on theobservations that cover the Crux and GA ZOA regions.

1 The Parkes telescope is part of the Australia Telescope which isfunded by the Commonwealth of Australia for operation as a NationalFacility managed by CSIRO.

A detailed description of the observational set-up is given inPaper I. A summary of the main characteristics of the observa-tions is given below.

At 21 cm, the telescope has a half-power beam-width(HPBW) of 15′. The system temperature was typically 39 K atthe time of these observations. Typical integration times were atotal of 30 min each on the source (ON) and on a reference po-sition (OFF). Strong sources had shorter integration times (10 or20 min) while weaker possible detections were reobserved untilthe reality of the signal was clearly determined. Based on cali-brating observations the internal consistency of the flux scale isabout ±15%.

In 1993, we used the 1024-channel auto correlator witha bandwidth of 32 MHz, covering, in most cases, the radialvelocity range 300−5500 km s−1, with some additional ob-servations centred at 7500 km s−1; the channel spacing was6.6 km s−1 and the velocity resolution after Hanning smooth-ing was 13.2 km s−1. From 1994 on, we covered the range300−10 500 km s−1 with a channel spacing of 13.2 km s−1 anda velocity resolution after Hanning smoothing of 27.0 km s−1.

3. Detections

In the following, we present the parameters of the 162 de-tected galaxies, from the sample of 314 target galaxies. Thedata were reduced using the Spectral Line Analysis Program(Staveley-Smith 1985). The two orthogonal polarisations wereaveraged during reduction, and a low-order polynomial base-line subtracted from each spectrum. The reduced H i spectra areshown in Fig. 1 which is available online at A&A. The opticalproperties as well as the H i parameters are given in Table 1. Thecolumns in the table are described below. A colon after an entryindicates an uncertain value.

Column 1: identification as given in the optical Crux/GAZOA galaxy catalogue (Woudt & Kraan-Korteweg 2001). A fewgalaxies from Yamada et al. (1993), which are all IRAS-selectedgalaxies, had been added to the observing programme. Theirnames start with “Y” and have the ESO-galaxy number or theIRAS number attached to it. A question mark after the namedenotes an uncertain identification of the H i signal, and a plusindicates that more than one signal was found in the pointing orin the associated OFF-observation.

Column 2: second name as found by NED2 in the order ofNGC, IC, ESO, and other catalogue names. Most of the secondidentifications originate from the ESO/Uppsala Survey of theESO(B) Atlas (Lauberts 1982). Other names come from the fol-lowing catalogues: NGC stands for the New General Catalogue(Dreyer 1888), IC stands for the Index Catalogue (Dreyer 1908),FGCE stands for the Flat Galaxy Catalog (Karachentsev et al.1993), AM for Arp & Madore (1987), CSRG for Catalog ofSouthern Ringed Galaxies (Buta 1995), HIZSS for the H i ParkesZOA Shallow Survey (Henning et al. 2000), and HIZOA forJuraszek et al. (2000).

Column 3: identification in the infrared (IR) and near-infrared (NIR): “I” indicates an entry in the IRAS PointSource Catalog according to the precepts explained in Woudt& Kraan-Korteweg (2001); “M” or “D” indicates an entry in the2MASS Extended Objects Catalogue (2MASS, 2003) and theDENIS catalogue by Vauglin et al. (2002), respectively.

Columns 4 and 5: Right Ascension RA and DeclinationDec (J2000.0).

Columns 6 and 7: Galactic longitude and latitude � and b.

2 the NASA/IPAC Extragalactic Database.

Page 3: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1051

Column 8: morphological type. The morphological types arecoded similarly to the precepts of the RC2 (de Vaucouleurs et al.1976) with the addition of the subtypes E, M and L, which standfor early spiral (S0/a–Sab), middle spiral (Sb–Sd) and late spi-ral or irregular (Sdm–Im), respectively. (Note that the uncer-tainty of the bar presence is indicated by “Y” as in Woudt &Kraan-Korteweg (2001), rather than the standard “X” as in theRC2. We have kept their denotation.)

Column 9: major axis diameter D and minor axis diameter din arcseconds.

Column 10: apparent magnitude BJ. These magnitudes areeye-estimates from the ESO/SERC IIIaJ film copies. They com-pare well with the Lauberts & Valentijn (1989) B25 magnitudesand have a 1σ-dispersion of less than 0.m5.

Column 11: the Galactic reddening at the position of thegalaxy, as given by the DIRBE/IRAS extinction maps (Schlegelet al. 1998). See the catalogue paper (Woudt & Kraan-Korteweg2001) for a more detailed discussion.

Column 12: heliocentric H i radial velocity in km s−1 takenat the midpoint of the H i profile at the 20% level. The veloc-ity is given in the optical convention V = c · (λ − λo)/λo. Theuncertainty on the velocities, σV , can be determined followingSchneider et al. (1986) using 1.5(ΔV20 − ΔV50)(S/N)−1, whereS/N is the ratio of the peak signal to rms noise level. The me-dian error over all detections is 3.6 km s−1.

Column 13: velocity width in km s−1 of the H i profile mea-sured at the 50% level of the peak intensity. The expected erroris 2.0σV (Schneider et al. 1986), and the median error derivedfrom the table is 7.3 km s−1.

Column 14: velocity width in km s−1 of the H i profile mea-sured at the 20% level of the peak intensity. The expected erroris 3.1σV (Schneider et al. 1986), and the median error derivedfrom the table is 11.3 km s−1.

Column 15: integrated H i flux density, in Jy km s−1, uncor-rected for finite beam size. The uncertainty on the flux densities,σI , can be determined following Schneider et al. (1990) using2(1.2ΔV20/R)0.5Rσ, where R is the velocity resolution of the data(see Sect. 2) and σ is the rms noise level. The median error overall defined flux densities is 0.65 Jy.

Column 16: rms noise level in mJy measured over the regionused to fit a baseline, typically of a width of 1600 km s−1 centredon, but not including, the detection.

Column 17: most spectra have been Hanning-smoothed, ex-cept when the line width was smaller than 100 km s−1 or for otherreasons (see footnotes to the table), which is indicated with an“n” for “no Hanning-smoothing”.

Column 18: a star indicates a footnote for this entry.Column 19: angular distance of the detected galaxy from the

centre of the beam in arcminutes. Sometimes the telescope wasnot pointed towards the galaxy listed as, e.g., in a close pair orwhen there was a second detection in the beam. As the sensitiv-ity of the beam decreases with distance to the beam centre, thefluxes will have higher uncertainties (see Col. 20).

Column 20: corrected flux densities for off-centre detections.The sensitivity decreases as a function of the distance from thebeam centre. The observed flux density of galaxies detectedaway from the central pointing will be underestimated. We haveprovided a rough correction for such galaxies by assuming thatthe beam sensitivity can be approximated by a circular Gaussian.This correction becomes uncertain for distances above the beamradius, i.e., 7.′5.

Column 21: excised RFI (radio frequency interference) on ornear the detected H i profile.

The galaxy density in the Crux and particular in the GA re-gion is quite high. In 16% of the pointings, more than one galaxywas found within the 1σ beam radius. In most cases the properidentification of the detected galaxy was straightforward (bycomparing size, morphological type, optical velocity if avail-able, and distance from the beam centre). In questionable caseswe have made use of the HIPASS public data release3 (as a blindsurvey it is independent of our pointed observations) to spec-ify the origin of a signal. In a few cases the identification ofthe detection remains ambiguous or the counterpart could not befound at all. Due to the high extinction in these regions, low sur-face brightness (late-type) spiral galaxies are often too obscuredto be visible. In other cases the detection is a combination of thesignals from two or even more galaxies and the individual H i pa-rameters are uncertain or could not be derived. The problematiccases are discussed in more detail in Appendix A.

We have compared our detected velocities with indepen-dent velocity determinations in the literature. Table 2 gives thegalaxy IDs for which we have found velocity determinations,their observed velocity (from Col. 12 in Table 1), the velocityfrom the literature and its error, the origin of the measurement(optical or H i), and the reference (as explained in Table 3).

Since we did not repeat observations at Parkes for galaxieswith already existing H i data, most of the given independent ve-locities originate from optical spectroscopy. A number of strongH i sources were subsequently detected with HIZSS, JS00 and/orwith HIPASS.

The H i velocities measured by HIPASS with the Multibeam(MB) receiver compared to our single beam observations arein very good agreement. The 1σ-dispersion of 31 galaxies incommon is 11 km s−1 (including only velocities with HIPASSerror measurements <10 km s−1). A comparison with HIZSSgives a dispersion of 6.5 km s−1 for 7 galaxies. The agreementwith optical velocities is also satisfactory, giving a dispersionof 100 km s−1 for 50 measurements with errors <100 km s−1

(excluding one wrong measurement for WKK 5416).The line width measurements also agree well with HIPASS

albeit with a larger scatter of 28 km s−1 for both 50% and 20%line widths (using 29 measurements, excluding all uncertainmeasurements).

While the shallower HIPASS survey detected all galaxieswith peak flux density >120 mJy, the majority of our detec-tions have peak flux densities <70 mJy, see Fig. 2. Most ofthe HIPASS detections below 70 mJy have larger uncertainties,while our survey becomes incomplete only at <20 mJy. Thiscompares well with the distribution of rms noise in our survey:the median rms level lies at 3.8 mJy. The majority of detectionshave an rms noise level between 2 and 6 mJy. For comparison,the rms noise for HIPASS typically is 13 mJy, though expectedto be slightly higher in the Galactic plane. This indicates that weare sensitive enough to detect M∗ galaxies in the GA region –contrary to the blind HIPASS.

Comparing integrated flux densities with HIPASS gives a1σ-dispersion of 25% of the flux for 23 measurements (uncer-tain measurements excluded). Reducing the acceptable HIPASSerror on velocities from 9 km s−1 to 8 km s−1 (cf. the comparisonof H i velocities above) the 1σ-dispersion is 15% of the flux (for19 measurements), which is more comparable with what we findfor the calibrators (cf. Sect. 2). Table 1 lists 14 galaxies offsetfrom the beam centre. A comparison of the corrected fluxes

3 Data provided by the ATNF under the auspices of the MultibeamSurvey Working Group, see http://www.atnf.csiro.au/research/multibeam/release/

Page 4: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1052 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.Ta

ble

1.Hi-

dete

ctio

nsin

the

Cru

xan

dG

reat

Att

ract

orre

gion

.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

helΔ

V50

ΔV

20I

rms

hann

Ndi

stI c

exci

sed

RFI

(hm

s)(d

eg′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1km

s−1

kms−

1Jy

kms−

1m

Jy(′ )

Jykm

s−1

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

WK

K01

43FG

CE

0850

M10

5703

.6−7

010

3429

3.46−9

.44

S5

112×

1116

.40.

2343

5329

631

69.

644.

6W

KK

0204

ESO

063-

G00

6M

1109

03.2−6

834

4229

3.77−7

.55

S?

51×

2716

.00.

2443

4922

724

910

.46

4.5

WK

K02

07M

I11

0915

.5−7

015

1729

4.45−9

.08

SY4

48×

3215

.80.

2292

9026

631

75.

573.

0W

KK

0285

ESO

063-

G01

4I

1130

21.8−7

010

5929

6.11−8

.39

S7

54×

2816

.20.

4140

1718

322

72.

902.

0W

KK

0304

ESO

063-

G01

7M

I11

3855

.2−6

957

4329

6.75−7

.96

S5

81×

2315

.70.

4538

1329

433

115

.51

6.8

WK

K04

91+

ESO

171-

G00

3M

1158

48.4−5

519

0129

5.44

6.79

S5

73×

1516

.30.

2473

5345

147

58.

863.

3W

KK

0512

?+M

1159

54.9−5

511

0329

5.57

6.95

SL

28×

818

.00.

2546

1715

2:16

9:1.

12:

2.1

12.4

7.4

WK

K05

39M

1201

20.0−5

347

5629

5.49

8.35

S5

73×

6215

.00.

2175

6217

520

311

.30

5.3

WK

K06

62E

SO17

1-G

011

M12

0835

.3−5

405

5929

6.61

8.25

S4

55×

817

.00.

1856

0331

133

33.

973.

7W

KK

0696

M12

1013

.3−7

002

0629

9.40−7

.45

S5

60×

3115

.90.

2611

729

410

433

2.81

2.4

WK

K07

88I

1214

25.4−5

826

5329

8.09

4.08

S5

59×

1117

.00.

6056

4329

233

77.

153.

959

00W

KK

0793

1214

45.5−6

941

1529

9.74−7

.04

S5

78×

817

.10.

2953

6626

929

64.

294.

147

50W

KK

0850

1217

29.3−5

321

2529

7.81

9.18

SP

48×

2415

.90.

1759

6421

424

53.

212.

9W

KK

0969+

M12

2306

.5−5

806

4829

9.19

4.55

?16×

1218

.50.

6645

9819

522

84.

25:

2.5

*8.

510

.4W

KK

0994

M12

2443

.7−7

016

0930

0.66−7

.52

S6

40×

3416

.20.

3653

4317

223

23.

744.

0

WK

K10

45M

1227

47.6−5

314

4529

9.35

9.46

S3

50×

4215

.40.

1754

1117

219

02.

472.

8W

KK

1089

ESO

172-

G00

4M

1231

02.2−5

508

1429

9.99

7.62

I85×

5414

.50.

4417

1214

618

333

.61

6.8

WK

K11

17+

ESO

131-

G01

0M

1232

50.9−5

801

3030

0.46

4.76

S5:

43×

1916

.50.

7142

5626

428

74.

882.

5W

KK

1294

ESO

172-

G00

612

4312

.7−5

247

4730

1.67

10.0

6S

374×

3115

.60.

1719

1911

012

83.

163.

8W

KK

1342

1245

46.6−5

540

4230

2.13

7.18

S5

65×

1716

.50.

5553

8625

628

68.

183.

1

WK

K13

52E

SO17

2-G

008

M12

4612

.9−5

644

2230

2.21

6.12

SY4:

67×

4215

.20.

4254

3722

725

76.

716.

8W

KK

1446

1251

41.0−5

243

1030

2.97

10.1

5S

347×

2716

.20.

2336

7720

722

69.

984.

3W

KK

1455

ESO

172-

G01

1M

1252

12.2−5

329

3730

3.05

9.38

S7

81×

3415

.50.

3236

9221

122

76.

434.

0W

KK

1510

M12

5451

.6−5

553

5430

3.42

6.97

S4

66×

1116

.50.

4326

6812

317

61.

763.

8W

KK

1608

M12

5843

.4−5

648

5430

3.93

6.04

SB4

63×

4015

.40.

5259

3826

231

94.

392.

6

WK

K16

96I

1302

26.8−5

608

5530

4.48

6.69

S5

78×

1516

.70.

3666

8428

831

24.

312.

3W

KK

1752

1305

06.1−7

016

3830

4.09−7

.44

S7

95×

1216

.60.

3824

7517

920

46.

174.

5W

KK

1972

ESO

173-

G00

8M

1312

38.2−5

703

4530

5.82

5.69

S6

85×

3115

.60.

4856

5128

730

98.

964.

0W

KK

2029

HIZ

SS07

7M

1315

09.9−5

856

1130

6.00

3.79

SM

47×

3115

.80.

9023

4915

722

131

.67

4.2

WK

K21

47E

SO17

3-G

011

MI

1321

59.7−5

436

4530

7.39

7.99

S5

105×

2815

.00.

4141

8043

145

45.

873.

70.

15.

9

WK

K21

63?

ESO

220-

G00

6M

1322

52.0−5

244

3630

7.75

9.83

S6

74×

5615

.30.

3135

3315

518

58.

274.

0W

KK

2171

MI

1323

30.3−5

618

3130

7.40

6.28

SL

43×

3816

.50.

7536

3026

228

97.

313.

2W

KK

2172

1323

27.9−5

330

0530

7.74

9.07

S5

60×

3615

.90.

3940

2919

122

33.

732.

3W

KK

2201

ESO

173-

G01

313

2519

.8−5

332

1330

8.02

9.00

S7

56×

4615

.90.

3340

6112

114

63.

583.

6W

KK

2203

1325

24.8−5

609

4730

7.68

6.40

S5

59×

917

.60.

5837

0921

823

86.

133.

3

WK

K22

15I

1325

46.5−5

509

3630

7.86

7.38

S5

70×

7015

.10.

4975

2027

429

98.

363.

4W

KK

2222

ESO

173-

G01

4M

1326

16.3−5

529

0730

7.89

7.05

S3:

70×

5115

.30.

4825

8281

123

7.72

8.8

nW

KK

2245

HIZ

SS07

813

2743

.0−5

729

0530

7.81

5.04

SY70×

5015

.60.

8029

12:

272:

335:

28.1

7:5.

5W

KK

2254

I13

2759

.0−5

458

0930

8.21

7.53

S5:

74×

2315

.90.

4355

1827

931

97.

673.

7W

KK

2301

M13

3148

.7−6

516

3730

7.14−2

.74

20×

1217

.71.

2627

7528

630

310

.05

5.9

WK

K23

6913

3538

.8−5

241

3430

9.70

9.60

S6

54×

717

.80.

3462

6422

427

04.

063.

5W

KK

2372

I13

3612

.3−5

632

2230

9.11

5.79

SL

71×

5415

.30.

7040

5820

122

311

.88

5.3

Page 5: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1053

Tabl

e1.

cont

inue

d.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

helΔ

V50

ΔV

20I

rms

hann

Ndi

stI c

exci

sed

RFI

(hm

s)(d

eg′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1km

s−1

kms−

1Jy

kms−

1m

Jy(′ )

Jykm

s−1

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

WK

K23

77M

1336

35.9−5

455

5530

9.44

7.37

S7:

70×

2316

.10.

5642

8230

132

911

.93

4.5

WK

K23

88++

MI

1337

17.0−5

504

3430

9.52

7.21

S5

36×

1617

.00.

5739

3828

133

19.

293.

80.

79.

3W

KK

2390+

MI

1337

24.5−5

852

2130

8.85

3.47

SE

54×

1216

.61.

0936

59:

364:

516:

20.7

8:3.

71.

221

.2

WK

K23

92+

MI

1337

32.6−5

850

0630

8.88

3.50

I?

24×

1317

.21.

0936

59:

364:

516:

20.7

8:3.

73.

223

.6W

KK

2402

I13

3810

.5−5

628

3930

9.39

5.81

SB5

120×

8514

.10.

5839

4731

134

327

.32

6.7

0.5

27.4

WK

K24

06M

1338

18.2−5

504

1630

9.66

7.19

SL

55×

3815

.90.

6242

6421

623

59.

764.

1W

KK

2433

ESO

066-

G00

1M

I13

4021

.7−7

107

4530

6.91−8

.64

S5

78×

4414

.80.

4253

3540

343

17.

384.

40.

17.

4W

KK

2503+

HIZ

SS08

3M

I13

4455

.8−6

540

5230

8.41−3

.38

S85×

4315

.20.

8927

94:

329:

396:

29.9

3:7.

80.

830

.2

WK

K25

03B+

(LSB

)0.

8927

94:

329:

396:

29.9

3:7.

8...

...W

KK

2542

ESO

174-

G00

113

4758

.3−5

320

5531

1.41

8.59

I?

208×

5614

.00.

5068

475

109

57.9

18.

8n

WK

K25

76++

MI

1350

29.2−5

256

4731

1.87

8.90

S5:

86×

7514

.60.

4138

83:

171:

216:

...3.

7*

8.4

...W

KK

2595++

AM

1348

-524

M13

5123

.3−5

254

4931

2.01

8.90

S6

102×

4014

.90.

3938

86:

171:

268:

23.3

0:3.

7W

KK

2596

HIZ

SS08

4M

I13

5138

.7−5

835

1931

0.72

3.37

S?

32×

1217

.81.

0038

6764

668

225

.61:

3.4

3650

WK

K25

97++

AM

1348

-524

MI

1351

30.5−5

255

2231

2.03

8.88

S5

59×

4715

.00.

3938

86:

171:

268:

23.3

0:3.

71.

223

.7W

KK

2640+

1353

38.8−5

255

0331

2.35

8.81

I51×

4215

.90.

4037

0549

109

4.84

4.8

n*

WK

K26

44+

1353

47.1−5

250

5831

2.38

8.87

SM

26×

917

.80.

4094

0425

4:34

1:6.

72:

3.8

4.3

8.4

1010

0W

KK

2670

ESO

174-

G00

2M

I13

5433

.4−5

318

4131

2.38

8.40

SL

121×

1915

.70.

4338

2134

637

96.

773.

7W

KK

2693

ESO

066-

G00

3M

1356

37.1−7

055

3830

8.25−8

.73

S5

118×

1615

.70.

2970

8143

245

26.

363.

9

WK

K27

22M

1357

21.0−5

433

2731

2.47

7.09

S5

78×

1516

.20.

4039

8425

128

59.

432.

3W

KK

2804

CSR

G07

55M

I14

0026

.4−5

343

3131

3.13

7.77

S1

34×

3215

.90.

4448

0332

335

36.

306.

90.

36.

3W

KK

2844+

M14

0141

.0−5

325

1431

3.39

8.02

I30×

1517

.40.

46>

3802

......

...4.

6W

KK

2850

M14

0156

.4−5

547

3031

2.78

5.73

SL

38×

2416

.50.

4639

6827

028

818

.02

4.9

WK

K28

63+

ESO

174-

G00

5M

I14

0213

.7−5

332

2831

3.44

7.88

S5

98×

8314

.20.

4738

02:

308:

333:

15.2

8:4.

6*

8.7

38.8

WK

K29

0314

0439

.6−6

904

1330

9.42−7

.13

S6

114×

1215

.90.

2930

1527

028

910

.71

3.0

WK

K29

24+

1405

13.4−6

534

3031

0.47−3

.79

S8:

58×

2216

.10.

6034

1020

521

82.

122.

5W

KK

2938+

M14

0545

.0−6

541

0431

0.49−3

.91

L34×

2216

.30.

5628

6412

817

32.

58:

2.5

7.3

5.0

WK

K29

93E

SO17

5-G

003

MI

1408

41.1−5

514

0631

3.86

5.99

SM

62×

2815

.80.

4543

4725

429

518

.51

2.9

WK

K30

02?+

1409

17.1−5

532

1331

3.85

5.68

SL

?56×

2016

.50.

5034

3691

120

3.59

4.8

n

WK

K30

06?+

1409

46.4−5

539

1631

3.88

5.54

13×

819

.10.

5028

2078

951.

99:

4.8

n8.

24.

6W

KK

3045

ESO

175-

G00

4I

1412

32.8−5

634

3331

3.97

4.55

SL

116×

5614

.50.

6637

7629

333

46.

483.

4W

KK

3068

1414

12.7−5

355

1831

5.03

6.99

SL

60×

2716

.10.

6755

0135

538

58.

425.

9W

KK

3069

1414

19.7−5

641

3131

4.17

4.36

?I74×

2715

.80.

7639

9516

820

37.

564.

0W

KK

3107

ESO

175-

G00

5M

I14

1746

.9−5

249

4831

5.90

7.85

SL

120×

1915

.60.

4730

8828

730

914

.72

5.3

WK

K31

39I

1420

23.0−5

504

0631

5.51

5.62

SR

43×

2615

.80.

6028

2621

624

112

.21

5.5

0.4

12.2

WK

K31

91I

1426

30.9−5

421

5931

6.59

5.96

SL

62×

1916

.30.

7731

9222

025

119

.59

4.8

WK

K32

2114

2859

.3−5

445

0131

6.78

5.48

S5

54×

4315

.60.

6449

0219

221

83.

112.

9W

KK

3278

ESO

067-

G00

214

3703

.3−7

028

5131

1.59−9

.41

S6

74×

1716

.10.

2929

1816

018

32.

952.

6W

KK

3285

1436

48.1−5

334

2331

8.30

6.13

I?

24×

1717

.70.

8130

1012

5:18

5:3.

12:

2.9

20.1

453.

1

WK

K33

23M

I14

3927

.9−5

525

0431

7.91

4.28

SD

?54×

3915

.60.

7146

2833

736

25.

902.

8W

KK

3503

1456

56.0−6

709

2931

4.69−7

.20

S6

51×

2416

.30.

3144

2313

924

27.

564.

4W

KK

3672

ESO

067-

G00

715

0627

.6−6

921

2731

4.39−9

.55

S7

74×

1716

.10.

1650

1920

522

22.

142.

3W

KK

3880

ESO

221-

G02

8M

1409

02.2−5

110

0731

5.14

9.86

S5

73×

5615

.00.

3945

3314

016

611

.05:

7.6

3.7

13.1

3650/4

700

Page 6: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1054 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.Ta

ble

1.co

ntin

ued.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

helΔ

V50

ΔV

20I

rms

hann

Ndi

stI c

exci

sed

RFI

(hm

s)(d

eg′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1km

s−1

kms−

1Jy

kms−

1m

Jy(′ )

Jykm

s−1

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

WK

K40

16+

ESO

222-

G00

814

2937

.3−5

154

6031

7.93

8.07

SL

67×

4815

.50.

3746

41:

109:

295:

...7.

0*

12.1

...41

00

WK

K40

22+

1430

20.4−5

147

2631

8.08

8.15

S5

91×

3415

.70.

3846

21:

179:

232:

12.4

8:7.

02.

213

.241

00W

KK

4171

1442

18.5−5

405

3231

8.83

5.32

S7

106×

1616

.30.

7027

7918

320

65.

394.

020

50W

KK

4231

ESO

222-

G01

514

4427

.2−4

923

5932

1.13

9.44

SY5:

159×

6014

.20.

2123

0622

123

710

.64:

6.3

5.4

15.2

WK

K42

72E

SO17

6-G

003

1446

11.0−5

317

4331

9.69

5.80

S5

66×

1716

.40.

6449

1425

829

35.

732.

4W

KK

4338

M14

4855

.6−5

538

4931

9.03

3.51

S5:

51×

1716

.50.

8056

5542

046

55.

001.

7

WK

K44

70E

SO17

6-G

006

MI

1457

09.9−5

423

3132

0.65

4.10

SM

87×

2315

.60.

8528

7947

649

923

.30

4.3

WK

K44

82M

I14

5749

.6−5

158

1632

1.88

6.19

SM

60×

2416

.10.

6041

5954

6:56

4:5.

48:

3.2

2.1

5.8

4350

WK

K44

86H

IZO

AJ1

458-

55M

I14

5814

.3−5

511

3732

0.42

3.31

SL

79×

3815

.40.

8852

2320

726

88.

444.

8W

KK

4585

ESO

176-

G00

8M

1503

48.7−5

309

1432

2.11

4.72

S6

114×

2015

.70.

7047

1749

051

68.

312.

7W

KK

4748

HIZ

SS09

6I

1514

34.4−5

259

2032

3.59

4.04

S5

212×

5613

.90.

9914

4944

547

015

2.2

8.0

0.2

152.

3

WK

K47

6015

1558

.5−6

103

4631

9.53

−2.9

4S

28×

1316

.81.

3447

3911

821

23.

133.

2W

KK

5229

HIZ

OA

J154

3-60

1543

28.0−6

016

1132

2.76

−4.2

0S

L58×

1915

.80.

7451

8723

526

68.

883.

2W

KK

5240

ESO

099-

G00

8I

1545

11.3−6

617

3231

9.19

−9.0

7S

157×

1315

.10.

1447

85:

297:

372:

4.26

:2.

011

.723

.0W

KK

5253

MI

1545

26.9−6

059

3132

2.51

−4.9

2S

M47×

1915

.90.

7152

6137

740

59.

455.

00.

39.

5W

KK

5260

ESO

099-

G00

915

4601

.4−6

318

4432

1.12

−6.7

9S

L82×

2015

.40.

2646

5729

330

98.

936.

049

50

WK

K52

66E

SO13

6-G

002

M15

4623

.7−6

211

2432

1.85

−5.9

3S

590×

2215

.00.

3749

3929

732

110

.17

3.1

WK

K52

85H

IZO

AJ1

547-

59I

1547

10.8−5

904

0732

3.87

−3.5

419×

1217

.10.

6356

3533

935

714

.21:

3.5

2.7

15.5

WK

K52

9915

4804

.5−6

337

1332

1.11

−7.1

7S

L70×

1216

.20.

2744

02:

189:

209:

4.97

:3.

1*

WK

K53

66?

HIZ

OA

J155

0-58

M15

5022

.6−5

822

3632

4.63

−3.2

6S

543×

1516

.40.

7820

6411

513

95.

404.

2W

KK

5378

1551

01.0−5

930

4132

3.97

−4.1

9S

23×

1217

.10.

5250

1615

322

010

.05

5.1

WK

K54

04E

SO10

0-G

001

MI

1552

19.4−6

248

3832

2.00

−6.8

4S

5:71×

2015

.30.

2764

0440

746

28.

474.

1W

KK

5413

M15

5229

.9−6

038

0732

3.41

−5.1

8S

247×

1216

.00.

4261

0616

417

81.

873.

358

50/6

250

WK

K54

16D

I15

5233

.7−5

823

3732

4.84

−3.4

5?I

?24×

917

.40.

7455

8042

447

46.

575.

00.

96.

6W

KK

5430

M15

5318

.8−6

108

1332

3.16

−5.6

3SB

M36×

2316

.10.

4043

5026

228

217

.32

4.7

WK

K54

43O

FFH

IZSS

100

1543

10−5

844

24:

323.

66−2

.96

1.19

2907

147

161

9.14

:7.

51.

79.

5

WK

K54

56E

SO13

6-G

007

M15

5414

.2−5

949

5532

4.09

−4.7

0S

577×

3015

.00.

4955

9029

231

98.

223.

4W

KK

5459

ESO

136-

G00

8M

I15

5422

.9−6

120

2432

3.13

−5.8

7S

378×

3214

.50.

4043

8839

843

213

.17:

3.3

6.3

21.5

WK

K54

70M

1554

44.7−6

056

0632

3.43

−5.5

8S

538×

2615

.80.

4851

2036

940

05.

563.

643

00/4

500/

4750

WK

K55

62+

1557

52.7−6

102

5332

3.64

−5.9

1S

L67×

2615

.50.

4244

4322

824

94.

812.

9W

KK

5584

ESO

136-

G01

0M

1558

29.4−6

017

4332

4.19

−5.3

9SY

573×

4314

.60.

3649

3626

928

87.

32:

4.4

4850

WK

K56

16+

1559

27.3−6

107

0332

3.74

−6.0

9S

19×

518

.40.

4141

6741

551.

95:

5.1

n*

5.3

2.8

WK

K56

36M

1600

04.0−6

121

5132

3.64

−6.3

3S

L32×

3015

.90.

3658

6693

117

5.97

3.2

*W

KK

5642

?++

MI

1600

10.8−6

106

5432

3.81

−6.1

5S

M48×

1715

.90.

4064

4612

222

22.

723.

6W

KK

5659

?++

1600

38.0−6

106

0332

3.86

−6.1

7S

644×

1516

.30.

3844

1814

615

72.

22:

3.4

3.4

2.6

IC45

84+

ESO

100-

G00

4I

1600

13.7−6

622

4232

0.31−1

0.11

SAS7

102×

9015

.8N

0.11

3671

:33

0:37

7:9.

76:

3.4

9.4

29.0

IC45

85+

ESO

100-

G00

5M

I16

0017

.6−6

619

2032

0.35−1

0.07

SYS5

126×

3613

.0R

0.11

3671

:33

0:37

7:9.

76:

3.4

8.6

24.3

WK

K57

29+

1602

47.6−6

103

1432

4.09

−6.3

1S

L48×

1616

.30.

32>

5729

......

...4.

46.

9...

WK

K57

60E

SO13

6-20

8M

1603

29.2−5

939

4732

5.08

−5.3

3SY

511

6×27

14.7

0.35

5149

374

392

8.17

3.4

WK

K57

68E

SO13

6-G

016

M16

0349

.2−6

058

4132

4.23

−6.3

4S

521

1×26

14.0

0.32

5422

524:

541:

6.18

:2.

99.

518

.8W

KK

5796

ESO

136-

G01

7M

1604

25.0−6

044

1432

4.45

−6.2

0S

0:10

9×22

14.6

0.32

5372

100

119

1.94

:5.

22.

82.

143

00

Page 7: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1055

Tabl

e1.

cont

inue

d.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD

xd

BJ

E(B−V

)V

helΔ

V50

ΔV

20I

rms

hann

Ndi

stI c

exci

sed

RFI

(hm

s)(d

eg′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1km

s−1

kms−

1Jy

kms−

1m

Jy(′ )

Jykm

s−1

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

WK

K58

2916

0534

.8−6

115

2832

4.21−6

.69

SL

91×

1215

.60.

2544

0916

7:18

6:9.

587.

2n

*W

KK

5882

M16

0627

.4−5

733

5232

6.78−4

.02

S5

60×

1616

.30.

5850

5640

142

69.

833.

6W

KK

5891

I16

0704

.2−6

127

5632

4.20−6

.96

SL

65×

3415

.00.

2552

5514

121

02.

482.

5W

KK

5904

ESO

100-

G01

016

0739

.5−6

357

3632

2.54−8

.84

SY5:

65×

3515

.10.

1874

0326

430

17.

154.

068

50W

KK

5993+

ESO

136-

G01

9M

1609

50.4−6

011

2732

5.32−6

.25

SL

90×

3214

.70.

2534

43:

235:

303:

4.30

:2.

3*

WK

K59

99E

SO13

6-G

020

M16

0956

.0−6

019

1832

5.24−6

.36

SYR

563×

5414

.20.

2532

4417

619

521

.33:

7.0

3250

WK

K61

00M

1611

55.8−6

043

3332

5.14−6

.82

SP

34×

2815

.70.

2150

1191

100

0.97

3.3

n5.

71.

4W

KK

6181

ESO

100-

G01

3M

I16

1344

.5−6

324

2632

3.42−8

.90

SE

60×

2015

.00.

1433

3125

828

96.

054.

40.

16.

1W

KK

6219

1613

46.0−5

616

2532

8.39−3

.75

S32×

2416

.50.

6026

2710

813

63.

944.

832

00W

KK

6331

I16

1614

.4−6

150

4932

4.73−7

.98

I9

43×

1516

.40.

1843

7616

118

42.

691.

8

WK

K63

53E

SO10

0-G

015

1616

35.0−6

241

2632

4.16−8

.61

S5

70×

1615

.80.

1497

5343

846

05.

27:

3.0

9700/1

0150

WK

K64

83E

SO10

0-G

018

MI

1619

01.2−6

303

1132

4.10−9

.07

S7

85×

6613

.90.

1432

7314

918

45.

344.

1W

KK

6535

?+M

1620

08.6−6

328

1332

3.89−9

.45

S5

39×

917

.20.

1441

5918

323

03.

68:

3.1

6.5

6.2

WK

K65

70?+

M16

2040

.1−6

322

4532

4.00−9

.43

SY3

60×

2715

.50.

1529

3814

819

22.

421.

833

00W

KK

6594

ESO

137-

G01

8M

I16

2059

.2−6

029

1332

6.11−7

.43

S7

239×

8212

.60.

2560

514

116

445

.55

3.6

WK

K66

8016

2246

.0−6

250

0532

4.56−9

.22

S7

46×

3415

.50.

2064

6274

901.

225.

4n

*W

KK

6689+

ESO

137-

G02

016

2247

.6−6

018

5632

6.39−7

.46

SB5

82×

6014

.20.

2431

84:

136:

176:

4.86

:2.

6W

KK

6732

1623

36.1−6

011

2932

6.55−7

.45

SB5

44×

3615

.50.

2332

2693

112

5.23

:5.

5n

WK

K68

7216

2721

.3−6

027

2232

6.68−7

.97

I9:

109×

6214

.10.

2011

5591

108

24.6

45.

9n

WK

K69

1316

2836

.0−5

956

5032

7.16−7

.73

I30×

2716

.20.

2355

4013

014

42.

90:

4.1

3.2

3.3

WK

K69

9316

3006

.3−5

741

1632

8.96−6

.33

SL

99×

3814

.70.

4526

8321

923

810

.50

4.5

3050

WK

K71

49N

GC

6159

MI

1634

52.2−6

037

0632

7.19−8

.76

S4

98×

8313

.20.

1732

7514

523

523

.39

7.1

WK

K71

98C

SRG

0806

MI

1636

51.9−6

016

3632

7.61−8

.71

SR

591×

7014

.00.

2334

0725

026

712

.12

8.0

WK

K72

87+

1640

51.4−6

020

2332

7.89−9

.13

I30×

2016

.50.

2557

4066

741.

14:

4.7

3.3

1.3

4750/5

900

WK

K72

89+

ESO

137-

G03

8M

I16

4052

.5−6

023

4032

7.85−9

.17

SYR

519

1×73

13.1

0.25

5278

435

454

12.1

94.

747

50/5

900

WK

K72

93E

SO13

7-G

039

1641

06.7−6

058

5532

7.42−9

.57

S7

69×

1116

.20.

2635

0217

421

05.

243.

632

00W

KK

7294

1640

52.7−5

624

2133

0.90−6

.56

S5

79×

1915

.40.

2950

1330

132

14.

122.

0W

KK

7328

FGC

E12

56M

I16

4249

.6−6

105

2532

7.47−9

.80

S6

126×

1715

.20.

3044

8532

840

25.

692.

6W

KK

7377

ESO

179-

G01

2M

1644

21.6−5

529

3933

1.92−6

.33

SL

145×

2014

.70.

3551

1745

048

125

.45

3.5

WK

K74

60+

ESO

179-

G01

3M

I16

4720

.0−5

726

2833

0.68−7

.90

SYL

198×

105

12.7

0.27

842:

179:

222:

113.

8:3.

71.

411

6.6

WK

K74

63+

1647

27.8−5

725

3633

0.70−7

.90

S82×

6714

.30.

2884

2:...

......

3.7

WK

K74

65+

ESO

137-

G04

2I

1647

40.5−6

008

5832

8.59−9

.66

S4

112×

6613

.60.

19>

3256

......

...5.

9W

KK

7652

NG

C62

21I

1652

46.0−5

913

0732

9.74−9

.57

SY3

302×

179

11.2

0.16

1519

300

340

26.4

3:6.

311

.613

8.7

WK

K77

76M

1657

29.7−5

834

2733

0.63−9

.66

SY5

130×

9513

.60.

1827

9149

6715

.71

7.8

nW

KK

7863

1702

31.6−5

250

2433

5.67−6

.74

S74×

5414

.60.

3844

3613

416

910

.05

3.4

WK

K79

49E

SO18

0-G

003

1708

36.1−5

635

1133

3.15−9

.67

S4

65×

5614

.60.

1846

7711

313

74.

703.

1Y

395-

4E

SO39

5-G

004

MI

1824

23.3−3

410

5535

9.40−9

.76

S72×

4215

.8N

0.13

4904

324

352

7.02

3.1

0.1

7.0

4350

Not

es:W

KK

0969

:se

epl

otof

WK

K11

17;W

KK

2576

:th

esi

gnal

isbl

ende

dw

ithW

KK

2595

and

WK

K25

97(c

f.te

xt),

the

wid

than

dve

loci

tyof

the

narr

owpe

akar

egi

ven

here

;WK

K25

97:

see

plot

ofW

KK

2595

;WK

K28

63:

see

plot

ofW

KK

2844

;WK

K40

16:

the

sign

alis

blen

ded

with

WK

K40

22,t

heve

loci

tym

easu

rem

ents

refe

rto

the

narr

owpe

akatv�4

640

kms−

1on

ly;

WK

K52

99:

the

para

met

ers

are

unce

rtai

ndu

eto

anR

FIat

the

edge

ofth

epr

ofile

atv�4

500

kms−

1;W

KK

5616

:se

epl

otof

WK

K56

59;W

KK

5636

:H

anni

ng-s

moo

thed

once

desp

iteth

ena

rrow

line,

due

tori

ngin

gin

the

spec

trum

;W

KK

5829

:no

tHan

ning

-sm

ooth

eddu

eto

anR

FIcl

ose

toth

epr

ofile

atv=

4550

kms−

1;W

KK

5993

:th

epr

ofile

ofW

KK

5999

(see

sepa

rate

poin

ting)

has

been

excl

uded

from

the

profi

lem

easu

rem

ent;

WK

K66

80:

once

Han

ning

-sm

ooth

edfo

rth

epl

ot.

Page 8: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1056 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

Table 2. Comparison of velocities.

Ident. Vhel Vother origin Reference Ident. Vhel Vother origin Referencekm s−1 km s−1 km s−1 km s−1

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)WKK0204 4349 4332 ± 8 H i HIPASS WKK3880 4533 4572 ± 85 opt RS06WKK0207 9290 9178 ± 70 opt VY96 WKK4231 2306 2254 ± 10 opt & H i CF97WKK0304 3813 3807 ± 7 H i HIPASS 2303 ± 6 H i HIPASSWKK0491 7353 7523 ± 250 opt FW98 WKK4272 4914 4940 ± 9 H i HIPASSWKK0539 7562 7651 ± 85 opt RS06 WKK4470 2879 2875 ± 10 H i HIZSS

7534 ± 8 H i HIPASS 2877 ± 10 H i HIZOAWKK0662 5603 6526 ± 231 opt FW98 2890 ± 6 H i HIPASS

5760 ± 76 opt WK04 WKK4486 5223 5200 ± 10 H i HIZOA5630 ± 85 opt RS06 WKK4585 4717 4728 ± 137 opt WK99

WKK1045 5411 5268 ± 250 opt FW98 WKK4748 1449 1449 ± 10 H i HIZSSWKK1089 1712 3939 ± 150 opt FW98 1445 ± 10 H i HIZOA

1714 ± 5 H i HIPASS 1456 ± 3 H i HIPASS-BGCWKK1294 1919 1910 ± 10 opt & H i CF97 1456 ± 5 H i HIPASSWKK1352 5437 5528 ± 100 opt FW98 WKK5229 5187 5193 ± 10 H i HIZOAWKK1446 3677 3679 ± 9 H i HIPASS WKK5240 4785: 4787 ± 8 H i HIPASSWKK1455 3692 3684 ± 100 opt WK04 WKK5253 5261 5093 ± 70 opt VY96WKK1972 5651 5630 ± 85 opt RS06 WKK5260 4657 4963 opt D91WKK2029 2349 2355 ± 50 opt FW98 4740 ± 10 H i HIPASS

2337 ± 10 H i HIZSS WKK5266 4939 4944 H i MH912340 ± 5 H i HIPASS 4940 ± 7 H i HIPASS

WKK2147 4180 4153 ± 44 opt FH95 WKK5285 5635 5631 ± 30 H i HIZOAWKK2171 3709 3633 ± 10 H i HIPASS WKK5366? 2064 2059 ± 10 H i HIZOAWKK2172 4029 4069 ± 11 H i HIPASS 4822 ± 82 opt WK04WKK2222 2582 2570 ± 7 H i HIPASS WKK5404 6404 6450 ± 70 opt DN97WKK2245 2912: 2915 ± 10 H i HIZSS WKK5413 6106 6057 ± 174 opt WK99

2903 ± 10 H i HIZOA WKK5416 5580 5524 ± 114 opt WK042992 ± 85 opt RS06 12403 ± 70 opt VY96

WKK2254 5518 5653 ± 58 opt FW06 WKK5443OFF 2907 2905 ± 10 H i HIZSSWKK2372 4058 4058 ± 3 H i HK01 2897 ± 10 H i HIZOAWKK2388 3938 3976 ± 40 opt FH95 WKK5459 4388 4390 ± 60 opt RC3WKK2390 3659: 3790 ± 70 opt VY96 4396 ± 7 H i HIPASS

3586 ± 10 H i HIPASS WKK5470 5120 5209 ± 214 opt WK99WKK2392 3659: 3790 ± 70 opt VY96 WKK5584 4936 5027 opt D91WKK2402 3947 3956 ± 6 H i HIPASS WKK5642? 6446 6045 ± 42 opt SH92WKK2433 5335 5367 ± 53 opt FH95 6118 ± 100 opt WK04WKK2503? 2794: 2789 ± 10 H i HIZSS IC4584 3671: 3700 ± 44 opt SH92

2769 ± 10 H i HIZOA IC4585 3671: 3638 ± 40 opt RC32774 ± 6 H i HIPASS WKK5768 5422 5426 ± 10 H i RC3

WKK2542 684 694 ± 6 H i HK01 5428 ± 6 H i HIPASS680 H i BD99 WKK5796 5372 5260 ± 60 opt RC3688 ± 3 H i HIPASS-BGC WKK5993 3443: 3487 ± 108 opt WK04687 ± 5 H i HIPASS WKK5999 3244 3250 ± 38 opt WK04

WKK2576 3883: 3948 ± 70 opt DN97 3246 ± 6 H i HIPASS3876 ± 85 opt RS06 WKK6181 3331 3278 ± 70 opt VY963872 ± 5 H i HIPASS 3308 ± 70 opt WK99

WKK2595 3886: 3873 ± 85 opt RS06 WKK6353 9753 9900 ± 70 opt DN97WKK2596 3867 3869 ± 10 H i HIZSS WKK6483 3273 3367 opt D91

3848 ± 10 H i HIZOA 3268 ± 17 H i HIPASS3881 ± 7 H i HIPASS WKK6594 605 606 ± 20 opt HG95

WKK2597 3886: 3973 ± 43 opt SH92 605 ± 3 H i HIPASS-BGC3954 ± 85 opt RS06 605 ± 5 H i HIPASS

WKK2640 3705 3574 ± 85 opt RS06 WKK6689 3184: 3239 ± 88 opt WK04WKK2644 9404 9406 ± 100 opt WK04 WKK6872 1155 1157 ± 3 H i HIPASS-BGC

9276 ± 85 opt RS06 1157 ± 5 H i HIPASSWKK2670 3821 3758 ± 40 opt FH95 WKK7149 3275 3300 ± 30 opt SE95

3798 ± 85 opt RS06 3263 ± 6 H i HIPASSWKK2693 7081 7389 ± 250 opt FW98 WKK7198 3407 3405 ± 6 H i HIPASS

7013 ± 80 opt WK04 WKK7289 5278 2100 ± 100 opt F83WKK2804 4803 4779 ± 39 opt FH95 WKK7377 5127 5122 ± 7 H i HIPASSWKK2850 3968 3959 ± 6 H i HIPASS WKK7460 842: 775 ± 36 opt SH92WKK2863 3802: 3775 ± 37 opt SH92 842 ± 4 H i HIPASS-BGC

3778 ± 30 opt SE95 843 ± 5 H i HIPASS3768 ± 6 H i HIPASS WKK7465 >3256 3255 ± 39 opt SH92

WKK2938 2864 3024 ± 157 opt FW98 3265 ± 4 H i DN96WKK2993 4347 4313 ± 37 opt FH95 3283 ± 85 opt RS06

4364 ± 45 opt FW98 WKK7652 1519 1350 ± 31 opt RC34345 ± 7 H i HIPASS 1478 ± 38 opt WK04

WKK3107 3088 3090 ± 7 H i HIPASS 1340 ± 85 opt RS06WKK3139 2826 2844 ± 70 opt VY96 1499 ± 5 H i HIPASS

2823 ± 7 H i HIPASS WKK7776 2791 2790 ± 3 H i HIPASS-BGCWKK3191 3192 3187 ± 6 H i HIPASS 2790 ± 5 H i HIPASSWKK3278 2918 3118 ± 40 opt FW98 Y395-4 4904 4896 ± 43 opt FH95WKK3285 3010 3016 H i RK02 4895 ± 9 H i TH07

3016 ± 3 H i HIPASS-BGC3017 ± 5 H i HIPASS

Page 9: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1057

Fig. 2. Histogram of peak flux density in mJy of our detections (open)and of the detections in common with HIPASS (hashed). Cross-hasheddetections are HIPASS detections with errors ≥10 km s−1. Note thatthere are three more detections by both surveys beyond the frame ofthe plot between 400 mJy and 800 mJy.

with HIPASS confirms that corrections for distances up to halfthe beam width (i.e., 7.′5) are acceptable.

4. The non-detections

A further 152 galaxies that were observed in the Crux and GA re-gions were not detected. They are listed in Table 4 with thesearched velocity range as well as the rms within that inter-val. Some spectra did reveal a signal, but careful investigationshowed them to be due to close neighbours rather than the tar-geted galaxies. These cases are marked with a plus in Col. 1 ofTable 4 (see also Table 1), and the identification of the signal isgiven in the footnote. Some of these cases are discussed in detailin Appendix A.

Columns 1–11: same as in Table 1. CGMW4# in Col. 2stands for the 4th Catalog of Galaxies Behind the Milky Way(Roman et al. 2000).

Column 12: the searched velocity range in km s−1.Column 13: the rms noise of the searched velocity range in

mJy, typically of the order of 4 mJy. These values were deter-mined after baseline fitting over a width of 1600 km s−1 – hencesimilar to the determination for detections – centred at increas-ingly higher redshifts in order to obtain values for the wholevelocity range. The quoted values represent the highest rms forthe velocity intervals, the rms for the nearer velocities are onaverage slightly lower.

Column 14: perturbed velocity intervals, mainly due to recur-ring RFI around 800, 1250 and ∼7400 km s−1, very strong GPS(Global Positioning System) signals around 8300−8500 km s−1,and detections of other galaxies. In these intervals a signal wouldhave gone undetected.

Column 15: a star indicates a footnote for this entry.Column 16: the distance in arcminutes of the targeted galaxy

to the centre of the beam. Given the falloff of sensitivity with dis-tance from the centre of the beam, any upper limits for flux den-sities calculated from the rms of such cases are underestimated.

Columns 17–19: independent velocity determinations and er-ror for the non-detected galaxies. The reference coding (Col. 18)is as in Table 3, and Col. 19 gives the origin of the measurement(optical or H i).

Table 3. References for independent velocity determinations.

BD99: Banks et al. (1999)CF97: Coté et al. (1997)DN96: Di Nella et al. (1996)DN97: Di Nella et al. (1997)DT90: Djorgovski et al. (1990)D91: Dressler (1991)F83: Fairall (1983)FW98: Fairall et al. (1998)FW06: Fairall & Woudt (2006)FH95: Fisher et al. (1995)HW00: Hasegawa et al. (2000)HIZSS: Henning et al. (2000)HIPASS: HIPASS (2006)HG95: Huchra et al. (1995)HK01: Huchtmeier et al. (2001)JS00: Juraszek et al. (2000)KD04: Koribalski & Dickey (2004)HIPASS-BGC Koribalski et al. (2004)MF96: Mathewson & Ford (1996)MH91: Mould et al. (1991)PT03: Paturel et al. (2003)RS06: Radburn-Smith et al. (2006)RK02: Ryan-Weber et al. (2002)SE95: Sanders et al. (1995)SH92: Strauss et al. (1992)TH07: Theureau et al. (2007)RC3: de Vaucouleurs et al. (1991)Vv92: Visvanathan & van den Bergh (1992)VY96: Visvanathan & Yamada (1996)WK99: Woudt et al. (1999)WK04: Woudt et al. (2004)

Based on this table, only 42% of the 149 pointings have anunperturbed velocity range, and 52% of the pointings are RFIfree (i.e., 18 pointings are affected by the detection of a galaxy,either in the ON or in the OFF scan). Table 5 lists the frequen-cies of the noted velocity ranges affected by RFIs which affectthe possible detection of a galaxy. Note that the single 10-minscans show many more RFIs, most of which, however, could beexcised successfully. The worst affected velocity ranges are ei-ther very low (800−1350 km s−1 for 23% of pointings) or around8300−8500 km s−1 for 14% of the cases. In 8% of the cases thevelocity range 7000−7700 km s−1 shows some problems.

WKK 3836 is the only galaxy that we have not detected butwas subsequently detected by HIPASS. On the one hand, ourrms of 7 mJy is fairly high (only 13% of our detection have anrms of 7 mJy and higher) and the pointing is d = 8.′5 away fromthe galaxy position (which means the signal would be reducedby a factor of 2.4). On the other hand, the HIPASS detectionis weak (the peak flux density is 37 mJy and the error on thevelocity at 12 km s−1 is the second highest value in our sampleof HIPASS galaxies).

5. Velocity distribution and detection rate

Figure 3 shows the Crux/GA search area (outlined regions)in Galactic coordinates with the optically discovered galaxies(D <∼ 0.m2) plotted as small dots (Woudt & Kraan-Korteweg2001). The 314 galaxies observed with the Parkes radio tele-scope (indicated with larger symbols) are distributed fairly ho-mogeneously over the galaxy density distribution – leading nat-urally to a larger number of observations in the high density area

Page 10: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1058 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.Ta

ble

4.Hi

non-

dete

ctio

nsin

the

Cru

xan

dG

reat

Att

ract

orre

gion

.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′ )km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

WK

K01

9911

0724

.8−7

022

4029

4.35−9

.26

SY5

58×

3015

.90.

2360

0−

5800

4.8

WK

K03

31E

SO06

3-G

019

M11

4400

.8−6

821

3529

6.76−6

.30

S5

73×

2316

.00.

3560

0−1

3600

4.4

1256

5±2

50FW

98op

tW

KK

0338

ESO

064-

G00

1M

1145

09.1−7

150

2729

7.76−9

.64

S4

70×

2316

.00.

3050

0−1

3350

4.1

7313±1

00FW

98op

tW

KK

0411

ESO

171-

G00

2I

1154

15.3−5

409

3929

4.54

7.78

SR

60×

4015

.60.

2760

0−1

3600

3.6

5359±

77V

V92

opt

WK

K04

25M

1155

15.5−5

520

2829

4.94

6.66

SB5

42×

3816

.30.

2770

0−1

0450

3.6

7500−

7750

WK

K04

28I

1155

24.9−5

654

5829

5.31

5.12

?54×

1616

.80.

4450

0−1

0450

2.5

1150−

1300

WK

K05

85E

SO17

1-G

006

M12

0428

.0−5

356

0929

5.98

8.30

S5

87×

1116

.30.

2070

0−1

0350

3.1

8382±1

34W

K04

opt

8112±

85R

S06

opt

Y21

7-21

ESO

217-

G02

1M

I12

0443

.7−5

228

4929

5.75

9.74

S4

63×

917

.5L

0.14

450−1

0450

3.0

7400−

8750

8074±

39FH

95op

t79

63±

85R

S06

opt

WK

K06

33M

1206

37.6−6

818

4429

8.79−5

.80

S5

40×

518

.10.

3539

50−1

1100

4.6

WK

K09

75M

1223

48.8−5

956

4129

9.48

2.74

S5

43×

718

.31.

2260

0−

5700

4.4

WK

K15

84M

1257

51.2−5

601

1830

3.83

6.84

S3

40×

917

.30.

3560

0−

5700

4.2

WK

K15

97M

1258

38.9−7

135

0930

3.51−8

.72

S56×

917

.60.

3050

00−1

0450

3.0

8100−

8950

WK

K16

94+

ESO

173-

G00

2M

I13

0222

.9−5

617

3530

4.46

6.55

S4:

78×

1716

.10.

3360

0−1

0350

3.1

6350−

6700

*59

57±

85R

S06

opt

WK

K17

07M

1302

57.6−6

603

5030

4.10−3

.22

S26×

1117

.50.

7945

0−1

0350

3.9

WK

K18

06M

1307

00.4−6

719

2330

4.44−4

.50

S54×

2416

.30.

5360

0−1

0000

3.7

1000

0−1

0350

WK

K18

22E

SO17

3-G

006

MI

1307

17.9−5

407

3530

5.28

8.67

SR

560×

3015

.90.

3840

0−1

3600

5.3

0.1

7730±

30W

K04

opt

8016±

70V

Y96

opt

7777±

85R

S06

opt

WK

K18

27E

SO06

5-G

005

M13

0752

.5−7

155

1730

4.22−9

.09

S6

51×

3816

.20.

2940

0−1

0250

3.1

6950−

7200

8200−

8750

WK

K18

83M

I13

0930

.4−5

728

1630

5.37

5.32

S3

32×

1217

.30.

4640

0−

5700

3.4

2.2

6801±

70V

Y96

opt

5657±

38W

K04

opt

5666±

85R

S06

opt

WK

K18

8413

0959

.3−7

144

0730

4.40−8

.92

SB5

51×

4016

.20.

3060

0−1

0450

3.8

6950−

7350

WK

K18

8813

0944

.8−5

752

4330

5.37

4.91

S40×

2216

.60.

4460

0−1

0250

3.9

9250−

9450

6413±1

46W

K04

opt

WK

K18

91M

1310

24.4−7

201

3730

4.41−9

.21

SL

54×

817

.90.

2535

0−1

0450

4.3

WK

K19

0913

1028

.3−5

618

1330

5.59

6.47

SL

51×

2816

.50.

5970

0−1

0450

3.8

WK

K20

42E

SO17

3-G

009

I13

1547

.3−5

629

4030

6.31

6.22

SL

81×

3015

.60.

6260

0−1

0450

3.5

1005

0−1

0250

6012±

70FW

06op

tW

KK

2049

1315

58.5−5

747

2930

6.21

4.92

S6:

58×

1117

.20.

5970

0−1

0450

4.1

7150−

7700

WK

K20

60M

I13

1628

.6−5

834

5530

6.20

4.13

S7?

50×

1616

.80.

8560

0−

9850

4.1

7800−

8750

WK

K21

01I

1318

50.2−5

736

0930

6.61

5.07

I9:

47×

2416

.70.

7540

0−1

0250

3.4

1025

0−1

2550

*W

KK

2134

1321

07.8−6

900

0730

5.60−6

.28

SL

43×

917

.80.

5260

0−1

0350

3.7

WK

K21

43M

1321

46.3−5

649

2330

7.09

5.80

S4

59×

1116

.90.

7720

0−1

0250

5.6

800−

1100

5369±1

99FW

98op

tW

KK

2296

M13

3102

.2−5

509

3930

8.61

7.27

SL

58×

3115

.80.

4760

0−1

0550

4.6

WK

K23

00M

1331

33.1−5

750

0530

8.27

4.62

S5

38×

1217

.00.

6510

0−

7050

10.7

5897±

85R

S06

opt

WK

K23

3313

3331

.8−5

528

3430

8.92

6.91

S6

55×

1317

.00.

5060

0−1

0350

5.3

WK

K23

37M

1333

44.0−5

514

2830

8.98

7.13

I38×

2016

.90.

4930

0−1

0350

4.1

800−

1100

3700−

3900

WK

K23

76M

1336

35.1−5

719

5930

9.02

5.00

SL

60×

2316

.30.

6860

0−1

0450

3.5

WK

K24

5313

4053

.2−5

315

5731

0.38

8.89

S4

40×

1516

.70.

3740

0−1

0250

3.2

8200−

9050

WK

K24

93I

1344

10.8−7

116

1330

7.18−8

.84

S2

36×

3016

.10.

3750

0−

5600

4.4

0.6

7259±

35FH

95op

t72

20±

45FW

98op

t

Page 11: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1059

Tabl

e4.

cont

inue

d.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′ )km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

WK

K25

19E

SO06

6-G

002

M13

4626

.7−6

942

2630

7.70−7

.35

SB4

51×

2815

.80.

3080

0−1

0550

2.6

7500−

7900

2071±2

50FW

98op

tW

KK

2564

1349

49.6−5

737

2631

0.71

4.36

SL

43×

1916

.70.

6010

50−1

0250

4.9

WK

K28

7314

0303

.5−6

531

5831

0.26−3

.69

31×

1117

.60.

7070

0−1

0350

4.3

1200−

1350

7700−

8550

WK

K28

74M

I14

0236

.3−5

305

5231

3.62

8.29

S7:

35×

1916

.80.

4960

0−

5800

4.7

1.1

6000±

70V

Y96

opt

5819±

85R

S06

opt

WK

K28

92M

1404

07.6−5

254

30:

313.

898.

41S

767×

3816

.00.

4330

0−1

0350

3.9

3550−

3800

*7.

513

844±

85R

S06

opt

WK

K28

93M

1404

14.4−7

107

4630

8.80−9

.09

S4

55×

1916

.00.

2970

0−1

0450

3.9

7150−

7450

WK

K28

9514

0356

.6−6

603

0331

0.21−4

.21

S46×

917

.40.

5130

0−1

0250

4.0

900−

1150

WK

K29

5814

0646

.0−6

506

5231

0.75−3

.39

SY31×

1717

.10.

7130

0−1

0250

6.0

WK

K30

2314

1048

.3−6

019

0731

2.61

1.05

SE

?43×

1516

.64.

3250

0−1

0450

4.4

1005

0−1

0250

WK

K30

41M

I14

1308

.6−7

100

2130

9.54−9

.19

SP

47×

2816

.10.

3460

0−

9800

4.1

8400−

8900

1.3

7533±

70V

Y96

opt

7604±

70FW

98op

tW

KK

3072

MI

1415

21.8−6

731

3131

0.84−5

.95

S66×

817

.40.

4640

0−1

0450

4.7

8200−

8550

WK

K31

28+

1419

24.5−5

513

4231

5.32

5.51

SL

56×

1516

.70.

6360

0−1

0550

3.6

4150−

4500

*W

KK

3136

1421

09.2−7

120

3931

0.04−9

.72

54×

2216

.30.

2560

0−1

0450

3.8

WK

K31

6314

2429

.2−7

037

2731

0.56−9

.14

SL

56×

717

.60.

3260

0−1

0350

3.4

8000−

8500

WK

K32

66M

1434

37.0−5

238

4231

8.36

7.11

S7:

55×

917

.30.

5340

0−1

0450

4.6

WK

K32

79M

I14

3606

.5−5

424

5131

7.87

5.39

S?

38×

1217

.20.

7560

0−

9800

5.2

3100−

3350

1.1

3118±

40FH

95op

tW

KK

3296+

M14

3731

.0−5

353

2531

8.27

5.79

SL

60×

2416

.20.

7740

0−1

0400

3.7

2950−

3200

*W

KK

3346

ESO

067-

G00

3M

1443

45.3−7

007

4931

2.26−9

.32

S3:

63×

1616

.40.

2640

0−1

0350

3.1

8000−

8350

5147±1

00FW

98op

tW

KK

3357

M14

4444

.8−6

734

2231

3.44−7

.04

SB5

56×

4615

.40.

3455

0−1

0450

4.0

WK

K33

72M

1446

38.7−6

626

5831

4.09−6

.11

S5

67×

3215

.20.

3055

0−1

0450

3.5

7050−

7700

WK

K38

2313

5733

.1−5

206

4331

3.13

9.45

SM

:20×

618

.60.

4430

0−1

0550

7.3

650−

1000

*8.

727

483±

85R

S06

opt

WK

K38

3614

0006

.4−5

203

0231

3.53

9.40

SL

83×

1516

.40.

4230

0−1

0550

7.3

650−

1000

*8.

536

12±

12H

IPA

SSHi

WK

K39

91M

I14

2730

.8−5

207

1531

7.55

8.00

SM

34×

818

.00.

4060

0−

5700

6.1

0.8

1716

52FH

95op

t16

968±

85R

S06

opt

WK

K47

51M

1514

36.0−4

812

4132

6.11

8.11

SY5

56×

1916

.50.

4040

0−1

0250

5.1

650−

1100

*2.

9W

KK

4755

M15

1450

.4−4

812

4432

6.15

8.09

SM

:58×

3515

.80.

4040

0−1

0250

5.1

650−

1100

*2.

9Y

68-3

LE

SO06

8-G

003

I15

2015

−69

0252

:31

5.61−9

.92

S72×

2415

.6N

0.11

300−

5500

5.4

1.1

4981±

37FH

95op

tW

KK

4907

MI

1525

06.2−4

849

0332

7.26

6.66

S5

40×

1616

.90.

3960

0−

9700

7.9

0.8

1052

70V

Y96

opt

WK

K49

8915

2948

.8−5

359

3432

4.95

1.97

S43×

1117

.12.

6930

0−1

0250

4.0

1100−

1350

WK

K50

3915

3236

.7−6

252

3332

0.16−5

.53

SL

?42×

2016

.30.

4840

0−1

0250

3.6

1100−

1300

WK

K50

6115

3329

.7−6

021

3832

1.71−3

.54

S23×

1317

.00.

8360

0−1

0350

4.0

WK

K51

2415

3712

.1−6

025

0932

2.05−3

.85

?I24×

2016

.80.

7140

0−1

0250

5.6

WK

K51

31M

1537

41.6−6

233

0632

0.83−5

.61

20×

1217

.40.

5030

0−1

0250

5.0

1449

54W

K04

opt

WK

K51

38M

1538

05.3−5

947

1332

2.51−3

.41

S46×

3515

.51.

0220

0−1

0250

3.6

650−

1000

WK

K51

86M

I15

4044

.8−6

005

2232

2.60−3

.85

S6

46×

2615

.50.

7460

0−1

0250

5.7

0.7

5151±

70V

Y96

opt

WK

K51

95M

I15

4111

.6−5

958

5032

2.71−3

.80

S28×

1716

.70.

7330

0−1

0250

5.9

5918±

70V

Y96

opt

WK

K51

9615

4114

.9−6

038

3432

2.31−4

.33

S24×

717

.60.

5930

0−1

0250

5.7

WK

K52

5115

4516

.8−5

921

4532

3.49−3

.62

S20×

817

.90.

8030

0−1

0250

6.1

WK

K52

67+

1546

47.8−6

624

0431

9.25−9

.26

S62×

816

.90.

1360

0−1

0450

3.4

4550−

5050

*W

KK

5268

M15

4619

.5−5

853

2032

3.89−3

.33

S24×

1116

.90.

6130

0−1

0350

6.3

5541±

46W

K04

opt

Page 12: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1060 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.Ta

ble

4.co

ntin

ued.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′ )km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

WK

K52

88M

1547

21.5−6

014

1832

3.16−4

.47

SL

52×

1915

.90.

5860

0−1

0350

5.4

WK

K52

97+

1547

41.7−5

859

2732

3.97−3

.52

S7

51×

1915

.80.

6060

0−1

0450

5.3

5300−

5650

*43

43±

52W

K04

opt

5950−

6150

WK

K53

3015

4906

.3−6

042

3932

3.03−4

.97

S9

63×

3415

.10.

6160

0−1

0550

3.8

WK

K53

34M

1549

19.8−6

155

5932

2.29−5

.94

S?

44×

2015

.80.

3530

0−1

0350

4.2

8350−

8650

6038±

33W

K04

opt

WK

K53

49M

I15

4942

.0−6

100

3432

2.90−5

.25

S5:

38×

916

.90.

4830

0−1

0250

4.2

WK

K53

57M

1549

52.4−5

842

5632

4.36−3

.48

SM

44×

2315

.80.

6360

0−1

0350

4.3

5447±

44W

K04

opt

WK

K53

81+

D15

5105

.4−5

835

2832

4.56−3

.48

S32×

1516

.70.

6430

0−1

0150

3.8

2000−

2150

*55

18±

98W

K04

opt

WK

K54

24I

1552

54.2−5

834

5332

4.75−3

.62

?S19×

1617

.10.

6230

0−1

0350

4.7

4350−

4600

WK

K54

43+

M15

5337

.7−5

841

3032

4.76−3

.77

S5:

38×

1216

.60.

7515

0−1

0350

4.0

2850−

3050

*50

69±

40W

K04

opt

WK

K54

82I

1554

51.3−5

652

0832

6.05−2

.47

?I?

71×

6014

.91.

1420

0−1

0350

4.2

1150−

1450

WK

K54

90M

1555

23.9−5

814

3032

5.22−3

.57

S27×

1217

.10.

7460

0−1

0550

4.5

WK

K55

28M

1556

49.3−6

148

5932

3.04−6

.42

S5:

60×

916

.70.

4760

0−1

0250

4.2

WK

K55

34+

1556

58.6−5

906

2632

4.82−4

.36

S9:

43×

2615

.80.

5630

0−1

0350

4.1

5300−

5800

*W

KK

5544+

M15

5733

.1−6

321

4132

2.10−7

.65

SM

51×

1316

.10.

2610

0−1

0250

3.5

4450−

4850

*68

50−

7150

8000−

8700

WK

K55

56+

M15

5733

.3−5

901

0632

4.93−4

.34

S22×

1516

.60.

5211

00−

8100

4.6

5400−

5900

*46

58±1

62W

K99

opt

WK

K55

63M

1557

54.4−6

053

1832

3.75−5

.80

S35×

1516

.50.

4560

0−1

0550

3.6

1306

0±1

02W

K04

opt

WK

K55

68M

1558

13.2−6

253

1332

2.47−7

.34

S3:

65×

1615

.60.

3430

0−1

0250

3.5

850−

1000

7460±

70D

N97

opt

WK

K55

81+

1558

53.3−6

617

5532

0.26−9

.96

SB4:

58×

3914

.80.

1140

0−1

0250

4.1

3450−

3900

*97

50±

70D

N97

opt

6800−

7150

8350−

8700

WK

K55

9515

5840

.7−5

727

1032

6.07−3

.25

I?

30×

1916

.80.

6630

0−1

0250

5.5

800−

1100

0.7

WK

K55

9615

5916

.0−6

502

1332

1.13−9

.03

SL

50×

2615

.40.

1340

0−1

0250

3.2

1100−

1300

WK

K55

9715

5845

.7−5

727

2632

6.07−3

.26

SL

?28×

1117

.30.

6730

0−1

0250

5.5

800−

1100

WK

K56

15M

I15

5922

.2−6

001

2432

4.45−5

.26

SM

42×

1216

.50.

3860

0−

7700

5.7

3936±

37FH

95op

t38

67±

70W

K99

opt

WK

K56

47M

1600

14.4−6

022

2232

4.31−5

.59

SL

44×

3115

.40.

3540

0−1

0250

4.6

WK

K56

50I

1600

18.1−6

025

2032

4.28−5

.63

SM

52×

1915

.60.

3430

0−1

0350

4.5

8300−

8600

WK

K56

93M

1601

36.8−5

904

4432

5.29−4

.73

S?

42×

2415

.60.

3730

0−1

0250

5.9

650−

1000

WK

K56

94+

DI

1601

48.3−6

108

5432

3.94−6

.30

SM

66×

3814

.70.

3340

0−

9700

4.0

8100−

8950

*34

12±

36FH

95op

t35

05±

50W

K04

opt

WK

K57

09+

M16

0212

.6−6

059

1032

4.08−6

.21

SD?

46×

2615

.50.

3220

0−1

0250

5.0

5600−

5800

*W

KK

5733++

M16

0250

.2−6

110

0732

4.02−6

.40

S3

54×

916

.40.

3136

50−

8950

3.8

4150−

4500

*62

15±

92W

K99

opt

5500−

5850

WK

K57

80+

1604

11.7−6

107

4632

4.17−6

.48

S6

56×

3515

.20.

2930

0−1

2950

4.4

5100−

5700

*W

KK

5791

1604

11.9−5

909

2832

5.49−5

.01

S5:

95×

1615

.20.

3220

0−1

0250

4.7

800−

1000

WK

K58

01M

1604

24.8−5

940

1932

5.16−5

.41

SM

44×

2615

.30.

3460

0−1

0450

4.5

WK

K58

05+

ESO

136-

G01

8M

1604

37.5−6

046

3232

4.44−6

.25

S5

71×

1615

.50.

3034

50−

8950

5.6

6207±2

30W

K99

opt

WK

K59

23M

I16

0753

.1−5

913

3732

5.79−5

.38

SR

350×

2815

.20.

3824

00−

7900

5.3

4514±

42SH

92op

tW

KK

5928

ESO

100-

G01

116

0820

.8−6

257

3932

3.28−8

.16

S5

90×

2814

.60.

1840

0−1

0250

4.2

8354±1

30W

K04

opt

WK

K59

71M

1609

24.3−6

241

1832

3.56−8

.04

43×

2315

.90.

2030

0−1

0250

4.1

8350−

8650

Page 13: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1061

Tabl

e4.

cont

inue

d.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′ )km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

WK

K59

83M

1609

52.5−6

500

4832

1.99−9

.77

S47×

3015

.50.

1440

0−1

0250

4.3

1100−

1300

1505

70D

N97

opt

1483

8±1

78W

K99

opt

WK

K60

07E

SO13

6-G

021

M16

1009

.5−6

125

6032

4.49−7

.19

SB2

75×

5814

.10.

2310

0−1

0250

4.2

5750−

5950

WK

K60

5516

1050

.2−5

625

5932

7.98−3

.59

SL

43×

1716

.70.

5820

0−1

0250

3.8

900−

1050

WK

K60

90D

1611

51.8−6

111

4232

4.81−7

.15

SY5

31×

2016

.20.

2360

0−1

0350

5.1

WK

K60

92+

M16

1151

.4−6

037

5532

5.20−6

.74

SB2

56×

4714

.70.

1960

0−1

0350

2.1

4900−

5100

*46

88±

38W

K99

opt

8200−

8750

4711±

58W

K04

opt

WK

K61

5416

1241

.8−5

654

0932

7.85−4

.11

SL

32×

1916

.70.

5020

0−1

0350

3.7

900−

1050

8050−

8850

WK

K61

62M

1613

13.8−6

234

5432

3.96−8

.27

SY44×

1715

.90.

1710

0−1

0350

2.1

WK

K61

76E

SO13

6-G

001

MI

1613

27.2−6

045

5132

5.25−6

.98

S5

86×

3114

.60.

2130

0−1

0350

6.8

4630±

58W

K99

opt

WK

K61

87D

1613

42.4−6

217

1432

4.20−8

.09

22×

2216

.80.

1560

0−1

0550

5.2

7400−

7600

0.9

WK

K61

8916

1344

.9−6

217

0432

4.21−8

.10

E13×

817

.30.

1460

0−1

0550

5.2

7400−

7600

WK

K62

49M

1614

53.5−6

253

0932

3.88−8

.62

S5

51×

2015

.70.

1430

0−1

0350

3.1

8350−

8650

WK

K62

51M

1614

45.0−6

055

3632

5.25−7

.20

S4

36×

1815

.90.

2013

50−1

0250

27.6

8350−

8750

*56

89±1

00W

K99

opt

WK

K62

8616

1514

.1−6

016

5932

5.74−6

.78

S20×

518

.50.

2724

00−

7900

4.0

7.4

WK

K63

68E

SO13

7-G

013

M16

1651

.5−6

221

0632

4.42−8

.40

SY5

74×

1915

.50.

1360

0−1

0450

4.4

1324

34W

K04

opt

WK

K64

59M

1618

26.7−6

046

4732

5.68−7

.41

S5:

62×

4314

.80.

2620

0−1

0250

6.5

1100−

1400

5268±

35W

K08

opt

WK

K65

41M

1620

00.9−6

000

4732

6.36−7

.01

SYM

42×

2715

.60.

2130

0−1

0250

2.6

8350−

8550

WK

K66

40C

SRG

0801

M16

2146

.8−6

125

3132

5.50−8

.15

SR

56×

4314

.90.

2040

0−1

0250

3.3

1150−

1450

4147±

71W

K04

opt

WK

K66

63M

1622

20.3−6

121

2832

5.60−8

.15

S2

85×

2015

.00.

2130

0−1

0350

5.0

1150−

1300

3062±

70W

K99

opt

WK

K67

6816

2425

.1−5

618

4132

9.42−4

.82

S5:

39×

1916

.20.

3630

0−1

0350

11.5

700−

1000

WK

K68

3016

2547

.8−5

610

5532

9.65−4

.87

SM

:35×

1916

.20.

3730

0−1

0350

4.7

800−

1050

8350−

8700

WK

K70

37M

1631

05.3−5

949

0632

7.47−7

.87

S5

42×

1516

.50.

2425

00−

7800

5.3

1872

71W

K04

opt

WK

K70

42M

1631

00.4−5

645

3532

9.72−5

.79

S5:

78×

4214

.60.

3530

0−1

0250

5.2

850−

1050

4800−

5100

WK

K71

75+

M16

3541

.2−6

009

3632

7.60−8

.53

S5:

39×

916

.80.

2416

00−

6750

6.7

3250−

3500

*W

KK

7177

ESO

137-

G03

5M

1635

50.8−6

127

6032

6.63−9

.41

S3

112×

3614

.30.

2524

00−

7900

4.9

4780±

60R

C3

opt

WK

K72

48+

ESO

137-

G03

7M

1639

18.5−5

953

1132

8.11−8

.69

S3

106×

2214

.80.

2824

00−

7900

4.4

5450−

5600

*54

30±

50R

C3

opt

WK

K73

2016

4205

.3−5

549

1133

1.46−6

.30

S5

67×

2415

.30.

3120

0−1

0250

3.5

WK

K73

75M

1644

37.9−6

051

0532

7.80−9

.81

S70×

2215

.10.

2630

0−1

0250

4.6

800−

1000

Y45

3-3

ESO

453-

G00

3M

I16

4635

.2−3

135

2135

0.44

8.86

S3

60×

3013

.6I

0.43

600−

5800

4.6

0.1

6644±

10M

F96

opt

WK

K76

25M

1652

14.6−5

940

1032

9.34−9

.80

SB5

65×

5414

.80.

2110

0−1

0250

2.8

1200−

1350

1427

40W

K04

opt

1432

85R

S06

opt

WK

K76

3516

5214

.4−5

516

3933

2.80−7

.06

?I?

78×

5414

.70.

2630

0−1

0250

4.7

WK

K76

89+

1653

48.6−5

905

2432

9.92−9

.60

I74×

4315

.20.

1330

0−1

0250

6.5

1300−

1700

*15

59±

3H

K01

Hi

1655±

KD

04Hi

WK

K77

2616

5450

.5−5

517

0333

3.03−7

.35

SB10

5×74

14.1

0.30

500−1

0250

3.8

1200−

1350

Y45

3-11

ESO

453-

G01

1M

I16

5642

.5−3

137

1635

1.78

7.16

S3

78×

1815

.8N

0.33

500−

9700

6.3

0.1

7028±

1H

W00

opt

WK

K77

94+

MI

1658

40.8−5

829

0633

0.80−9

.73

SB4

51×

4415

.10.

1950

0−

5800

5.4

*0.

858

54±

70V

Y96

opt

WK

K78

5317

0144

.2−5

257

1433

5.51−6

.72

S5

52×

1516

.20.

3930

0−1

0350

8.8

700−

1050

Y17

030-

48M

I17

0643

.5−4

823

5933

9.64−4

.61

S48×

0.86

400−

9800

5.5

8750−

8900

0.5

Page 14: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1062 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.Ta

ble

4.co

ntin

ued.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′ )km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Y51

9-9

ESO

519-

G00

9I

1711

44.2−2

544

4835

8.51

8.03

S5

73×

815

.6N

0.49

500−

9800

4.9

8300−

8800

6259±

50D

T90

opt

6335±

15PT

03Hi

WK

K80

7417

1500

.5−5

408

2633

5.71

−9.0

1SR

555×

2415

.90.

2030

0−1

0250

5.8

1100−

1300

WK

K80

90M

1716

04.6−5

446

5533

5.26

−9.5

0S

559×

1216

.40.

2120

0−1

0350

4.9

WK

K81

63M

1722

28.6−5

419

4533

6.17−1

0.02

S7:

50×

1516

.30.

2060

0−1

0550

5.8

WK

K81

65M

I17

2234

.7−5

242

0433

7.56

−9.1

4S

358×

1316

.00.

2350

0−

9800

4.6

0.7

Y17

477-

40M

I17

5118

−40

2625

:35

0.70

−6.9

0S

24×

16.8

N0.

3250

0−

9800

5.4

8200−

9050

2.4

1280

38FH

95op

tY

1813

9-37

CG

MW

4-04

33M

I18

1721

−37

2108

:35

5.87

−9.8

9S

42×

1816

.5N

0.10

500−

9800

4.8

1200−

1300

0.5

7214±

70V

Y96

opt

Not

es:

WK

K16

94:

dete

cted

WK

K16

96;

WK

K21

01:

the

velo

city

rang

e10

250−

1255

0ha

san

rms

of6.

1;W

KK

2892

:th

epo

intin

glie

sbe

twee

nth

ega

laxi

esW

KK

2892

atd=

7.′5

and

WK

K29

34at

d=

11.′ 3

(not

liste

d);

WK

K31

28:d

etec

ted

WK

K29

93in

the

OFF

poin

ting;

WK

K32

96:d

etec

ted

WK

K32

85;W

KK

3823

and

WK

K38

36ar

ein

the

sam

ebe

amat

asi

mila

rdi

stan

cefr

omth

ece

ntre

;WK

K47

51an

dW

KK

4755

are

inth

esa

me

beam

ata

sim

ilard

ista

nce

from

the

cent

re;W

KK

5267

:det

ecte

dW

KK

5240

;WK

K52

97:d

etec

ted

WK

K52

85;W

KK

5381

:det

etce

dW

KK

5366

;WK

K54

43:d

etec

ted

HIZ

SS10

0(W

KK

5443

OFF

)in

the

OFF

poin

ting;

WK

K55

34:d

etet

ced

WK

K52

85in

the

OFF

poin

ting;

WK

K55

44:

dete

cted

WK

K52

60in

the

OFF

poin

ting;

WK

K55

56:

dete

cted

WK

K52

85in

the

OFF

poin

ting;

WK

K55

81:

dete

cted

IC45

84an

dIC

4585

;WK

K56

94:

dete

cted

WK

K57

68an

dW

KK

5729

;WK

K57

09:d

etec

ted

WK

K57

68;W

KK

5733

:det

ecte

dW

KK

5768

and

WK

K57

29;W

KK

5733

:det

etce

dW

KK

5768

and

WK

K57

29;W

KK

5780

:det

etce

dW

KK

5768

;WK

K58

05:

dete

tced

WK

K57

96;W

KK

6092

:de

tect

edW

KK

6100

;WK

K62

51lie

scl

ose

toa

hots

ourc

e(p

roba

bly

WK

K62

69,a

cDga

laxy

)w

hich

caus

esst

rong

base

line

vari

atio

ns;

WK

K71

75:d

etec

ted

WK

K71

98;W

KK

7248

:de

tect

edW

KK

6913

inth

eO

FFpo

intin

g;W

KK

7689

:det

ecte

dW

KK

7652

;WK

K77

94:d

etec

ted

WK

K77

76.

of the Norma cluster. The contours mark extinction levels ofAB = 1.m0 and 3.m0 following Schlegel et al. (1998). The formerindicates where previous optical surveys become incomplete,the latter where the deep optical ZOA survey becomes incom-plete (Kraan-Korteweg 2000; Woudt & Kraan-Korteweg 2001).Detected galaxies are marked by filled circles, non-detectedgalaxies by crossed squares. The detections are colour-coded forradial velocity in such a way that they emphasise the velocityspace of the GA region (blue dots; 3000 < vhel < 6500 km s−1),showing the Norma cluster and Norma Wall that (is believed to)encompass the GA overdensity. Magenta dots are at lower ve-locities, while the red dots indicate higher velocities.

The majority of the detections are found to lie in the velocityrange of the GA overdensity (3000 < vhel < 6500 km s−1). Fewnearer galaxies are detected (Vhel < 3000 km s−1), even thoughwe are sensitive to them. And very few more distant galaxieswere detected. This is partly due to the lower sensitivity at thesehigher redshifts, but also indicative of the lack of distant large-scale structures in this area.

This is further illustrated by a histogram of the heliocen-tric radial velocities for the detections presented in this paper(Fig. 4). The overall histogram shows all detections. Detectionsin the GA survey region are marked in blue, and the ones inthe Crux survey region in red. The inset shows the velocity his-tograms for the Crux and GA region separately, including theprevious work in the adjacent Hydra/Antlia survey region.

The histogram shows a markedly different behaviour fromwhat is expected for a uniform distribution of galaxies in spacegiven our rms, with a sharp drop-off at about 6000 km s−1. Thepeak – albeit quite broad – is centred roughly at 4500 km s−1

ranging from 3000−6000 km s−1, similar to the velocity rangeof the Norma cluster (Woudt et al. 2008) which completelycoincides with the predicted velocity range of the GA (Kolattet al. 1995) and the mean Norma cluster velocity (Woudt et al.2008). It is distinct from the much flatter distribution of theH i-survey undertaken under the same observing conditions forthe Hydra/Antlia survey area (top panel of inset; as in Paper I).

This is in agreement with the results by Woudt et al. (2004)who have shown that the velocity distribution of all survey galax-ies for which we obtained redshifts (about 15% on average forthe deep ZOA surveys, mostly optical spectra from our dedi-cated follow-up surveys at the SAAO and ESO, plus some pre-viously published redshifts), is fairly flat out to 20 000 km s−1

in the Hydra/Antlia region, while the Crux region and – muchmore pronounced – the GA region show a distinct broad peakof galaxies at ∼4000−5000 km s−1 (see their Fig. 5), while thehistogram is otherwise similar for the three survey regions. Theprominence of the GA overdensity around � ∼ 320◦ leads to anoverall higher fraction of nearby galaxies (V <∼ 6000 km s−1)over the sampled volume (out to about 20 000 km s−1). This maywell explain the slightly higher detection rate of 52% found forthis survey compared to Paper I (45%, with a total 148 observedgalaxies compared to 314 here). In general, the non-detectionsare for fainter and smaller galaxies (extinction-corrected), im-plying that they are most likely background galaxies beyond thevelocity search range of our survey, plus some closer-by galaxieswith an H i flux density below our sensitivity limit.

Inspection of Fig. 3 indicates that the detections and non-detections are spread quite evenly with respect to the galaxydensity of the overall galaxy distribution. We subsequently havea larger number of observations in and around the high densityarea of the Norma cluster. A relatively higher fraction of obser-vations were also made at higher extinction levels: (i) in the sus-pected extension of the Norma Wall across the Galactic plane,

Page 15: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1063

330 320 310 300

-10

-5

0

5

10

GALACTIC LONGITUDE

Fig. 3. Distribution of galaxies in the Crux and GA ZOA regions. Filled circles indicate the 162 21 cm detections, crosses in squares the 152 non-detections. The small dots represent the galaxies uncovered within the optical search regions (outlined areas). The contours show the dust extinctionas determined from the 100 μm DIRBE maps (Schlegel et al. 1998) at the levels AB = 1.m0 and 3.m0 (thick line). The circles are centred on theNorma cluster with 1 RA and 2 RA.

i.e., extending from the Norma cluster at (�, b, v) = (325.29◦,−7.21◦, 4821 km s−1) (Woudt et al. 2008) towards the low-latitude CIZA J1324.7–5736 and Cen-Crux clusters at (�, b, v) =(307.4◦, +5.0◦, 5700 km s−1) and (305◦, +5◦, 6214 km s−1), re-spectively (Radburn-Smith et al. 2006, see also their Fig. 4),which form part of the GA Wall; (ii) for some highly obscuredgalaxy candidates deep into the ZOA (in total 37 were observedwith AB > 3.m0 of which 20 were detected) as H i observationsare the only way to obtain a redshift for such heavily obscuredgalaxies.

Overall the detections and non-detections seem to be sim-ilarly distributed over the survey area. However, a closer lookat the Norma cluster (see also Fig. 5) reveals that the detec-tion rate within one Abell radius (RA = 1.◦75) of the centralcD galaxy, WKK 6292, is only 41% (ntot = 32), which is lowerthan for the whole survey on the 1σ level. A bit further out, inthe annulus 1 − 2 RA, the detection rate is similar to the rest ofthe GA/Crux survey, namely 53% (ntot = 53). Such a trend, ifreal, would be expected if there are not many spiral galaxies inthe cluster or if the spirals are H i deficient. The former is un-likely as morphological distinction between ellipticals and spi-rals is largely unaffected at the extinction levels of the Normacluster. The latter is probable since rich, massive, and X-raystrong galaxy clusters like the Norma cluster generally showH i deficiencies (Giovanelli & Haynes 1985). We explore thiseffect in more detail in Sect. 6.

6. HI deficiency in the Norma cluster

As a first measure of H i-deficiency we regard the H i-massesof the galaxies in and around the cluster as a function of

Table 5. References for independent velocity determinations.

Velocity range Counts800−1000 19

1200−1350 153200 1

3700−3800 24450 24900 15800 16000 17000 3

7200−7300 37500−7700 6

8100 18300−8500 218800−9000 2

9300 110000 1

10 100−10 300 4

cluster-centric distance. The H i masses are calculated usingMHI = 2.356 × 105D2S , where S is the H i flux integral inJy km s−1, and D the distance in Mpc calculated from the mea-sured velocity and corrected for the motion with respect to theLocal Group (Yahil et al. 1977). For galaxies assumed to lie inthe Norma cluster (i.e., within 1.5 RA and 2096 km s−1 < v <7646 km s−1, cf. Woudt et al. 2008) we adopt a distance ofD = 67 h−1

70 Mpc.Figure 6 shows histograms of the logarithm of H i mass for

galaxies in the inner region of the Norma cluster (<0.5 RA,top panel), three different annuli (0.5−1 RA; 1−1.5 RA,

Page 16: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1064 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

GA

Crux

Hydra

Fig. 4. Velocity distribution of the 162 H i detections in the Crux (lightgrey/red) and GA (dark grey/blue) regions. The inset shows the detec-tions separated by regions; the detections in the Hydra/Antlia regionfrom Paper I are also shown.

Fig. 5. Distribution of the galaxies observed at 21 cm zoomed in at theNorma cluster (cf. description of Fig. 3). A third contour level at AB =2.m0 is shown as a dotted line. Non-detections with a large circle have aknown optical velocity (a black circle stands for v > 12 000 km s−1).

and 1.5−2 RA, middle panels), including for comparison theH i-mass distribution of all the 162 detections in the survey area(bottom panel). For reference, the hashed histograms are shownin accumulation in the bottom panel as well. The mean valuesand the standard deviations are indicated for each subset and forthe total region in the bottom panel. Our median value of all de-tections is log MHI = 9.86 (in units of solar mass) and compareswell with the H i mass distribution in the Northern Extension of

Fig. 6. Histogram of the logarithm of H i mass for various regions inthe Norma cluster (hashed) and the total region observed (non-hashed).The non-hashed region in the second panel from the top indicates twogalaxies (WKK 6689 and WKK 6732) with an uncertain though smallcontribution from each other. The H i mass in both cases is thereforeslightly overestimated.

the HIZOA survey (log MHI = 9.7, Donley et al. 2005) whichhas s similar sensitivity to our pointed survey. These histogramsshow that galaxies closer to the cluster core have lower H i massthan farther galaxies, although at only about the 1σ level.

In the innermost region only two galaxies (out of nine; 22%)were detected, one of which actually has a substantial H i-mass(WKK 5999 lies at d = 0.49 RA and v = 3244 km s−1). Apartfrom this galaxy, the distribution of H i mass for the galaxieswithin 1.5 RA is shifted towards the lower end as compared tothe field. This is expected if we assume that cluster membershave passed at least once through the centre of the cluster andhave undergone ram-pressure stripping. In contrast, galaxies inthe range 1.5−2 RA have an H i mass distribution comparable tothe field.

A better estimate of the effect of the cluster environmenton the H i content of the Norma spiral galaxies is the H i defi-ciency parameter (Giovanelli & Haynes 1985) which comparesthe H i content of a cluster galaxy with the average H i content ofan isolated field spiral of the same morphological type. Solaneset al. (1996) have shown that the H i content of a field spiralalso depends on the diameter. However, due to the uncertain-ties in diameter of our highly obscured galaxies we have not in-cluded the diameter dependence in our calculations. Moreover,there is uncertainty in the morphology of many of the highlyobscured galaxies. Such obscured galaxies were generally la-belled as “S” by Woudt & Kraan-Korteweg (2001) without afurther subtype. We assumed these to be late type spirals (i.e.,Scd or Sd,) as a bulge dominated spiral could have been classi-fied, whereas strongly obscured low-surface brightness irregulargalaxies would most likely have remained invisible on the opti-cal survey plate.

We note furthermore, that our sample of latest type spi-rals (Sdm − I) shows a systematic offset in H i mass compared

Page 17: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1065

to our other morphological sub-samples. The mean H i mass ofthis latest type sample (not including the possibly H i-deficientNorma galaxies within 2 RA) is log MHI = 9.79 with a standarddeviation of 0.33. This value is typical of Scd and Sd galaxies(log MHI = 9.62, with a standard deviation of 0.31) and con-sistent with the fact that Giovanelli & Haynes (1985) find thevalue 9.09 for their field Sm − Im sample (all H i masses fromGiovanelli & Haynes were corrected for the difference of theiradopted Hubble constant of 50 km s−1 Mpc−1 to our value of70 km s−1 Mpc−1). Considering the high foreground extinctionof our sample, we assume that most of the galaxies classified aslate type S/Im were probably misclassified: it is unlikely to findmore than a couple of very late-type galaxies at these foregroundextinctions. Hence, we have calculated the H i deficiency param-eter for the Sdm − I galaxy sample using the average H i contentof field galaxies of types Scd and Sd.

The derived H i deficiency parameters are plotted as a func-tion of cluster-centric distance out to 2 RA, as illustrated in Fig. 7.The dispersion is quite large and only a very weak dependenceis seen. The least squares fit out to a radius of 2 RA has a slopeof −0.07 ± 0.12. A comparison with the respective plot for theComa cluster (Bravo-Alfaro et al. 2000, their Fig. 4) which issimilar to the Norma cluster in its cluster specific properties(Kraan-Korteweg et al. 1996; Woudt 1998), shows that we haveonly one detection within 0.4 RA, whereas Coma shows obvi-ous deficiencies for seven central galaxies. This one detection(WKK 6100) is of unknown morphological type. Revisiting theR- and J-band images and taking account of the effect of ex-tinction, it is likely that this galaxy is actually an Sc galaxy. thatwould make this galaxy more deficient.

However, the fact that we have six non-detections withind = 0.49 RA of the Norma cluster indirectly suggests that thecluster is even more H i deficient than suggested by Fig. 7. Thesegalaxies must lie below our sensitivity limit. To test this, welooked at the non-detections that have optically determined ve-locities. Based on that, we can test whether they are part of thecluster or cluster environment. These are identified with opencircles in Fig. 5. Nearly all non-detections with optically knownvelocities have velocities consistent with being part of the clus-ter (blue open circles with crosses). For these we have calculatedupper limits of the H i-mass based on our measured rms, assum-ing that we would have detected the galaxy if it had an S/N = 3,and a 50% line width typical of a spiral galaxy of 200 km s−1.These values are added to the sample’s H i deficiency parame-ters, and shown in Fig. 8.

This is not all the data available to test the H i deficiencyhypothesis. Vollmer et al. (2001) obtained ATCA radio synthe-sis imaging observations of the centre of the Norma cluster aswell as for two fields just slightly offset from the centre. In allthree fields (with a HPBW of 30′) they detected only two galax-ies (both were not observed by us). That alone presents an indi-cation of H i deficiency. Only one of their two detected galaxiesis clearly H i deficient: WKK 6489 lies at 0.36 RA and has anH i deficiency of 1.0, while the other galaxy detected by them,WKK 6801, at 0.75 RA has a normal value of −0.15.

The ATCA fields contain, however, many more spiral galaxycandidates (the reason why these fields were chosen for obser-vations). We assume that all the spiral galaxies in the ATCAfields actually are members of the Norma cluster. An inspectionof the velocity histograms of all known redshifts of galaxies inthe Norma cluster (available from Woudt et al. 2008) in rings outto 2 RA confirms that nearly all galaxies within 0.5 RA are mem-bers of the cluster, with just a very low number of outliers (seeFig. 9). Even for the outermost ATCA field (at about 0.65 RA

Fig. 7. H i deficiency parameters of Norma cluster are plotted versusdistance from the centre of the cluster in Abell radii. Open circles indi-cate unknown spiral types or early morphological types which are notincluded in the fitted line. (One RA corresponds to 1.◦75).

Fig. 8. Same as Fig. 7 but with lower limits for non-detections (trian-gles). Open symbols stand for ATCA data, filled symbols are from thepresent paper.

from the cluster centre) contamination by background or fore-ground galaxies will be minimal.

The ATCA non-detections have a 3σ detection limit of about3 mJy/beam in each velocity channel. Assuming emission to beunresolved with the 30′′ beam in each channel, the 3σ upperlimit on H i mass for these non-detections is 6 × 108 M (fol-lowing Vollmer et al. 2001, but with D = 67 Mpc rather thanD = 79 Mpc, and an assumed linewidth of 200 km s−1 ratherthan 150 km s−1). Taking this limit, the calculated H i deficiencyfor spiral galaxies in the ATCA fields are also added to Fig. 8(filled triangles). The addition of these lower limits now reveal avery clear and strong trend of H i deficiency for galaxies within0.4 RA. For the annulus from 0.4 RA to 1 RA and beyond, theH i deficiency scatters between normal values to considerablydeficient galaxies. This is consistent with what has been foundfor other rich clusters, where clear H i deficiency manifests it-self unambiguously only in the innermost core of the cluster(R <∼ 0.5 RA; see e.g., Haynes et al. 1984).

Page 18: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1066 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

Velocity distribution of WKK galaxies in the Norma cluster

0

10

20

30

40

50

60

70

0

10

20

30

40

50

0

10

20

30

40

50

0 5000 10000 15000 20000 25000 30000 350000

10

20

30

40

50

Fig. 9. Velocity distribution of WKK (optical) detections in the Normaregion, separated by Abell radii, as indicated.

The non-detection rate can also be used to calculate anH i deficiency fraction as defined by Giovanelli & Haynes1985. In our sample, we have one detection with an H i defi-ciency >0.3 within 1 RA as well as 13 lower limits close toor above 0.3. There are an additional 8 detections and 5 non-detections which may have H i deficiencies just under 0.3. TheH i deficiency fraction in this case is at least 0.58. Böhringeret al. (1996) give an X-ray luminosity for the Norma clus-ter of 2.2(±0.3) × 1044 erg s−1 in the ROSAT energy band(0.1−2.4 keV). Figure 9 in Giovanelli & Haynes shows a rela-tionship between the H i deficiency fraction and X-ray luminos-ity in the (0.5−3.0 keV) band. The values for the Norma clusterfit well onto that relationship.

For completeness, we have checked for H i deficiency inour other galaxies. There are only two outliers, WKK 1294with (l, b, v) = (301.◦7, 10.◦1, 1919 km s−1) and WKK 1510 with(l, b, v) = (303.◦4, 7.◦0, 2668 km s−1). Both are located in thevicinity of the two clusters in Crux area, the CIZA clusters(Clusters in the ZOA, Ebeling et al. 2002) CIZA 1324.7–5736at (l, b, v) = (307◦, 5◦, 5700 km s−1) and less rich Cen-Crux clus-ters (l, b, v) = (306◦, 5.◦5, 6200 km s−1), but not close enough toexpect any H i stripping. It is therefore more likely that the mor-phological types (S3 and S4, respectively) are wrong, and thatthese galaxies are of later type. This is supported for WKK 1294,which is bright in the B-band but barely visible on the 2MASSJ-band image. A later type would reduce the H i deficiencyvalue.

7. Large-scale structure in the Crux and GA regions

In this section, we will discuss the new H i detections in thecontext of the known large-scale structures (LSS) in and acrossthe ZOA. The new data is presented together with previouslyknown redshifts in and adjacent to the survey area (extractedfrom LEDA) in a series of sky projections and redshift cones(Figs. 10 and 11). Care should be taken in the interpretation ofthese plots as they are based on an “uncontrolled” redshift sam-ple of galaxies.

7.1. Sky projections

Figure 10 displays the galaxy distribution in Galactic coordi-nates in and around the survey region sliced in redshift intervalsof widthΔv = 2000 km s−1 out to 8000 km s−1 (the first slice runsfrom 300−2000 km s−1). Higher velocity slices (8000−12 000)are not shown, as the detections for v > 8000 km s−1 (see Fig. 4)are too scarce to add useful insight to the LSS at those redshifts.

What is immediately conspicuous in all four panels is thatthe H i detections constitute a large fraction of the galaxies withredshifts within the band limited by AB < 3.m0 and b < 10◦ (apartfrom the H i-deficient galaxies in the Norma cluster). This em-phasises that H i-observations, even when dependent on optical(or NIR) pre-identification, are tremendously powerful in map-ping LSS of highly obscured galaxies in and across the ZOA.Note that optical redshifts for these survey regions have been ob-tained earlier with the SAAO 1.9 m telescope (Fairall et al. 1998;Woudt et al. 1999), as well as with multi-object spectroscopy us-ing the 3.6 m telescope of ESO in Chile (Woudt et al. 2004).

The first slice is quite sparsely populated. The SupergalacticPlane (SGP; de Vaucouleurs 1953) is the most prominent fea-ture, visible here from about (�, b) = (335◦, −30◦) to (315◦,+30◦), crossing the Galactic Plane (GP) at � = 325◦. Most ofthe detections in this panel lie along the SGP.

In the second panel (2000–4000) the Centaurus Wall (CenW)is the dominant feature (Fairall 1998; Fairall et al. 1998). It en-ters the panel at about (345◦, −30◦) and extends across the ZOAto the Centaurus clusters (302◦, +22◦); it is less inclined than theSGP. Apart from a few detections below the GP in Crux, whichdo not seem to highlight any particular structure, most of theH i-detected galaxies in this panel follow CenW. However, thedetections above the GP spread out over a much wider area thanwould be expected from the quite narrow CenW, i.e., it seems toveer off toward the right (∼310◦, +5◦), away from CenW. Thesegalaxies probably are the low velocity members of the two Cen-Crux clusters discussed below which form part of the NormaGreat Wall.

Despite the many H i non-detections at the core of the cluster,the Norma cluster and the Norma Great Wall – dubbed so for thefirst time by Woudt et al. in 1999 – are the prominent structuresin the third panel. There are still a few galaxies visible that formpart of CenW (blue dots above the GP around the Crux/GA bor-der). But the majority of the detections (mostly red dots) fol-low the Norma Wall (Woudt et al. 1999). The Norma Wall canbe traced from the Pavo II cluster (∼332◦, −23◦) to the Normacluster (∼325◦, −7◦), see also Fig. 11. It crosses the GalacticPlane at ∼320◦, and continues with a much shallower slopewith respect to the Galactic Plane towards two neighbouringgalaxy clusters at slightly higher redshift, the Cen-Crux cluster at(�, b, v) ∼ (305.◦4, 5◦, 6200 km s−1) (Woudt et al. 1999; Woudt &Kraan-Korteweg 2001) and the X-ray cluster CIZA J1324.7–736at (�, b, v) ∼ (307.◦4, 5◦, 5700 km s−1) (Ebeling et al. 2002). Fromthere, the Wall connects with the Vela cluster (Abell S0639;

Page 19: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1067

Fig. 10. Sky projections in Galactic coordinates in and around theCrux/GA survey region in redshift intervals of Δv = 2000 km s−1

for 300 < v < 8000 km s−1. In each panel, the “nearer” galaxies(Δv = 1000 km s−1) have blue symbols, and the more distant red sym-bols. The squares around the dots identify the new H i detections. Thesurvey area and extinction contour of AB = 3.m0 are outlined.

(�, b, v) = (280.◦5, −10.◦9, 6326 km s−1); Stein 1996). The ex-tent and shape of this wall was suspected in earlier papers(e.g., Kraan-Korteweg et al. 1994) and strongly supported in

more recent work (Woudt et al. 2004; Kraan-Korteweg 2005;Ebeling et al. 2005; Radburn-Smith et al. 2006). A sketch of thisWall, as well as the Centaurus filament, is given with Fig. 4 inRadburn-Smith et al. (2006).

In the final panel, most of the H i detections are found atthe position of the Norma cluster and the two Crux clusters.They most certainly are high velocity dispersion outliers of themassive clusters (finger-of-God effect) prominent in the previ-ous panel, rather than an indication of galaxy agglomerations atthis higher velocity range.

In conclusion, the new H i detections mostly help to delin-eate filaments and walls deeper into the ZOA. They provide sup-porting evidence that the Norma Wall crosses the ZOA, but thenturns away from CenW towards Vela. A much smaller numberof galaxies seem to form part of the general field. The slices alsoindicate that the H i observations of galaxies allow the mappingof LSS to quite high dust column-densities, higher than can beachieved with optical spectroscopy.

7.2. Pie diagrams

The above findings are confirmed with Fig. 11, which showsthe new detections in a composite of pie diagrams that covera wider area than the previous figure to reveal the overall LSSin this part of the sky. The two top panels show redshift slicesout to 12 000 km s−1, the maximum redshift range of our HI ob-servations. They are 30◦ wide in longitude, with the left onecentred on the GA survey region (340◦ > � > 310◦) and theright one centred on the Crux survey region (310◦ > � > 280◦).Note that there is a longitude overlap of 10◦ to facilitate the vi-sualisation of the structures running from one wedge diagramto the next. The pie diagram for these two longitude strips runfrom −45◦ across the ZOA to +45◦. The bottom panel displaysa pie diagram of the ZOA (|b| ≤ 10◦) for the longitude range360◦−270◦ as in the sky projection plot in the middle panel. Themiddle panel displays the projected LSS distribution of galaxiesout to 12 000 km s−1, with blue dots marking the distance rangeof Norma and the Norma Wall (3000−6500 km s−1), magentathe nearer galaxies (300−3000 km s−1), and cyan the distantgalaxies (6500−12 000 km s−1). This panel is meant for orienta-tion and interpretation of the pie diagrams. The plot is collapsedin latitude.

The pie diagrams confirm that H i-observations of opticallyselected galaxies are quite successful in reducing the ZOA downto |b| = 5◦, at least out to redshifts of about 6000 km s−1 (seealso Fig. 4). For higher velocities the detection efficiency dropssubstantially and the ZOA remains increasingly empty. Such adrop in the detection rate at similar velocities can also seen in thesystematic, blind deep Parkes H i ZOA survey (HIZOA; |b| ≤ 5◦;see, e.g., Fig. 13 in Kraan-Korteweg 2005). This is not surprisinggiven that the rms and velocity range of both surveys are similar.In that sense, the pointed Parkes H i observations presented here,which are quite successful in the range 5◦ <∼ |b| <∼ 10◦, are in factcomplementary to the deep Parkes HIZOA survey of the inneroptically opaque ZOA (Henning et al., in prep.; for preliminaryresults see Henning et al. 2005; Kraan-Korteweg et al. 2005).

The most prominent feature in the GA cone diagram (topleft panel) is the Norma cluster with its finger-of-God rangingbetween 2500−6500 km s−1 evident at (b = −7◦). The clusterstands out even more prominently in the bottom panel which dis-plays the ZOA slice. The H i detections (red dots) mostly hoveraround Norma. The cluster itself seems embedded in a wall-like structure centred at a mean velocity of 4500−5000 km s−1

which can be traced from about b ∼ −30◦ to the Norma cluster

Page 20: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1068 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

Fig. 11. Large scale structures in and around the Crux/GA region. The top two redshift cones are centred on the GA and Crux regions, respectively,and cover the latitude range b ≤ ±45◦ out to v = 12 000 km s−1. The bottom panel displays a redshift cone of the ZOA (|b| ≤ 10◦). Red and greendots represent the Parkes H i detections and previously determined redshifts from LEDA, respectively. The middle panel shows the sky distributionof galaxies out to the same redshift. It is meant as a guide in the interpretation of the redshift cones.

(b = −7◦) where we lose it in the ZOA. This is also evident in themiddle panel where we see part of the wall between the Pavo IIcluster (Abell S0805 at 332◦, −24◦, 4200 km s−1) and Norma. Aweak continuation of the wall is visible on the other side of theGP, together with an overdensity at slightly lower velocities. Thelatter is probably related to CenW (see also panel 2 in Fig. 10).

We find a clearer continuation of these structures in the Cruxcone (top right panel). Most of the detections lie above the GP.Hardly any detections or possible extension of the Norma clus-ter/wall exists below the GP. The galaxies either form part ofCenW which connects with the Centaurus clusters visible inthis cone at lower velocities at b � 20−30◦, or with the higher

Page 21: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1069

velocity Crux clusters (Cen-Crux and CIZA J1324.7–736). Thelatter two also stand out in the ZOA-longitude slice displayedin the bottom panel. The link with the galaxy cluster in Vela(Abell S0639) is not visible here as the cluster with (�, b, v) =(280.◦5, −10.◦9, 6326 km s−1) (Stein 1996) lies just beyond theCrux slice (and just beyond the latitude limit of the ZOA slice).

The bottom panel shows the galaxy distribution in the tradi-tional “optical” ZOA, i.e., for |b| <∼ 10◦ for a major fraction ofthe southern ZOA, where near-infrared surveys are also highlyincomplete (e.g., Fig. 9 in Kraan-Korteweg 2005). It is satisfyingto see that real LSS including voids are now emerging within theZOA. The H i data follow again the previously identified struc-tures, which on average lie at slightly higher latitudes. Distinctfeatures are the Norma cluster with its enormous velocity dis-persion, as well as the Cen-Crux and CIZA cluster, clearly iden-tifiable as clusters. As a clump (rather than a finger of God) wefind an overdensity in red and green dots at about 4000 km s−1

that most certainly is a signature of the crossing of the CentaurusWall across the ZOA.

The wall-like structure of Norma is not obvious in this ZOApie diagram, as the larger structures – from Pavo to Normaand from the Crux clusters to Vela – lie just beyond the ZOA,whereas the inner ZOA (|b| < 5◦) remains unprobed by thisproject due to the optical pre-selection of spiral galaxy candi-dates. However, the pie diagram will soon be filled by the deepParkes HIZOA survey, where indeed evidence is found for thecontinuation of the Centaurus Wall and the Norma (or GA) Wallsuggested here (see Kraan-Korteweg 2005; Henning et al. 2005,for preliminary results).

8. Summary

This paper presents pointed 21 cm spectral line (H i) observa-tions obtained with the 64 m Parkes radio telescope of partiallyto heavily-obscured spiral galaxies uncovered in the deep opti-cal search for galaxies in the Crux and GA regions of the ZOA(Woudt & Kraan-Korteweg 2001). Out of a total of 314 observedgalaxies we have detected 162. Due to the high density of galax-ies in some areas (in particular near and in the Norma cluster),a number of pointings contain more than one detection. On theother hand, some pointings of a non-detection show a chance de-tection of a different galaxy (with a distance to the beam centreof up to 20′).

The average rms for the detections is 4.2 mJy; 85% of all de-tections have an rms within the range 2−6 mJy. Non-detectionshave a slightly higher rms of 4.7 mJy. The mean peak flux den-sity is 46 mJy (with a median of 39 mJy), which is significantlylower than the average detection limit of the HIPASS detec-tions (∼70 mJy) but similar to HIZOA (Henning et al. 2005;Kraan-Korteweg et al. 2005). The H i parameters compare wellwith those found with HIPASS, and the velocities compare wellwith optical velocities found in the literature.

The detection rate in the survey area is 52%, slightly higherthan in the Hydra/Antlia survey region (45%) obtained in thesame way (Paper I). The exception is the core of the Normacluster: within 1 RA, the detection rate drops to 41% as expectedin case of H i deficiency. To explore this further, we have de-rived H i deficiency parameters for all galaxies in and aroundthe Norma cluster. Although only a few galaxies have actuallybeen detected within 1 RA, the lower limits of non-detectionsconfirm that the galaxies in the Norma cluster are on aver-age strongly H i deficient within 0.4 RA. Including three fieldsobserved with ATCA in the Norma cluster at an earlier stage

(Vollmer et al. 2001) and calculating the upper limits for non-detected spiral galaxies strengthens this conclusion. It shows fur-thermore that non-detected spiral galaxies between 0.4 RA and1.0 RA also exhibit H i deficiencies. The observed trend is simi-lar to that seen in the Coma cluster within 0.4 RA (Bravo-Alfaroet al. 2000) and to other massive, X-ray bright galaxy clusterswithin 1.0 RA (Giovanelli & Haynes 1985).

The H i detections delineate large-scale structures, such asfilaments, walls and voids, deeper into the ZOA than any ofthe other previous optical redshift follow-ups of the opticallyidentified galaxies. Most low-velocity detections lie along theSGP, while intermediate-velocity galaxies follow the CenW. Thehigher-velocity galaxies (5000−6500 km s−1) support evidencethat the Norma Wall crosses the ZOA, but then turns from theCenW towards Vela. Only a small number of the detected galax-ies seem to form part of the general field.

We have shown that H i observations, even when dependenton optical (or NIR) pre-identification, are quite successful in re-ducing the (redshift) ZOA down to |b| >∼ 5◦ and in mapping LSSof highly obscured galaxies in and across the ZOA, at least outto redshifts of about 6000 km s−1. For higher velocities the de-tection efficiency drops substantially and the ZOA remains in-creasingly empty. Our observations are complementary to thedeep Parkes HIZOA survey of the inner optically opaque ZOAat |b| ≤ 5◦ (Kraan-Korteweg et al. 2005; Henning et al. 2005;Henning et al., in prep).

With the future Square Kilometer Array (SKA) pathfinders,the Australian ASKAP and the South African MeerKAT, the sit-uation will be greatly improved: we will be able to close theredshift ZOA to even lower latitudes and to map the LSSs tohigher redshifts and lower H i masses. For example, MeerKATwill not only be able to fully map the GA but also the Shapleycluster concentration and thus possibly solve the GA/Shapleycontroversy on what is the dominant contributor to the dipolemotion of the universe (Kraan-Korteweg et al. 2009, and refer-ences therein).

Acknowledgements. We first of all would like to thank P. A. Woudt for manyvaluable discussions and the referee for many valuable suggestions. We havemade use of the Lyon-Meudon Extragalactic Database (LEDA), supplied by theLEDA team at the Centre de Recherche Astronomique de Lyon, Observatoirede Lyon, and of the NASA/IPAC Extragalactic Database (NED), which is oper-ated by the Jet Propulsion Laboratory, Caltech, under contract with the NationalAeronautics and Space Administration. Furthermore, this research has made useof the Digitized Sky Surveys (produced at the Space Telescope Science Instituteunder US Government grant NAG W-2166) and of the HIPASS database pro-vided by the ATNF under the auspices of the Multibeam Survey Working Group.RKK thanks the South African National Research Foundation for support.

References

Arp, H. C., & Madore, B. F. 1987, A Catalog of Southern Peculiar Galaxies andAssociations (Cambridge: Cambridge University Press)

Banks, G. D., Disney, M. J., Knezek, P. M., et al. 1999, ApJ, 524, 612Böhringer, H., Neumann, D. M., Schindler, S., & Kraan-Korteweg, R. C. 1996,

ApJ, 467, 168Bravo-Alfaro, H., Cayatte, V., van Gorkom, J. H., & Balkowski, C. 2000, AJ,

119, 580Buta, R. 1995, ApJS, 96, 39Coté, S., Freeman, K. C., Carignan, C., & Quinn, P. J. 1997, AJ, 114, 1313de Vaucouleurs, G. 1953, AJ, 58, 30de Vaucouleurs, G., de Vaucouleurs, A., & Corwin, H. G. 1976, 2nd Reference

Catalogue of Bright Galaxies (RC2) (Austin: University of Texas Press)de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G., et al. 1991, Third

Reference Catalogue of Bright Galaxies (RC3) (New York: Springer)Di Nella, H., Paturel, G., Walsh, A. J., et al. 1996, A&AS, 118, 311Di Nella, H., Couch, W. J., Parker, Q. A., & Paturel, G. 1997, MNRAS, 287, 472

Page 22: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1070 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

Djorgovski, S., Thompson, D. J., de Carvalho, R. R., & Mould, J. R. 1990, AJ,100, 599

Donley, J. L., Staveley-Smith, L., & Kraan-Korteweg, R. C. 2005, AJ, 129, 220Dressler, A. 1991, ApJS, 75, 241Dreyer, J. L. E. 1888, Mem. Mon. R. A. S., 49, 1Dreyer, J. L. E. 1908, Mem. Mon. R. A. S., 59, 105Ebeling, H., Mullis, C. R., & Tully, R. B. 2002, ApJ, 580, 774Ebeling, H., Kocevski, D., Tully, R. B., & Mullis, C. R. 2005, in Nearby Large-

Scale Structures and the Zone of Avoidance, ed. A. P. Fairall, & P. A. Woudt(San Francisco: ASP), ASP Conf. Ser., 329, 83

Epchtein, N., Batz, B. de, Capoani, L., et al. 1997, Messenger, 87, 27Fairall, A. P. 1983, MNRAS, 203, 47Fairall, A. P. 1998, Large-Scale Structures in the Universe (Chichester: John

Wiley & Sons Ltd in association with Praxis Publishing)Fairall, A. P., & Woudt, P. A. 2005, Nearby Large-Scale Structures and the Zone

of Avoidance (San Francisco: ASP), ASP Conf. Ser., 329Fairall, A. P., & Woudt, P. A. 2006, MNRAS, 366, 267Fairall, A. P., Woudt, P. A., & Kraan-Korteweg, R. C. 1998, A&AS, 127, 463Fisher, K. B., Huchra, J., Davis, M., et al. 1995, ApJS, 100, 69Giovanelli, R., & Haynes, M. P. 1985, ApJ, 292, 404Hasegawa, T., Wakamatsu, K.-I., Malkan, M., et al. 2000, MNRAS, 316, 326Haynes, M. P., Giovanelli, R., & Chincarini, R. 1984, ARvA&A, 22, 445Henning, P. A., Staveley-Smith, L., Ekers, R. D., et al. 2000, AJ, 119, 2686

(HIZSS)Henning, P. A., Kraan-Korteweg, R. C., & Staveley-Smith, L. 2005, in Nearby

Large-Scale Structures and the Zone of Avoidance (San Francisco: ASP),ed. A. P. Fairall, & P. A. Woudt, ASP Conf. Ser., 329, 199

Huchra, J. P., Geller, M. J., Clemens, C. M., Tokarz, S. P., & Michel, A. 1995,Harvard Smithsonian Center for Astrophysics, The CFA redshift catalogue

Huchtmeier, W. K., Karachentsev, I. D., & Karachentseva, V. E. 2001, A&A,377, 801

Juraszek, S. J., Staveley-Smith, L., Kraan-Korteweg, R. C., et al. 2000, AJ, 119,1627

Lauberts, A. 1982, The ESO/Uppsala Survey of the ESO (B) Atlas, ESO:Garching

Lauberts, A., & Valentijn, E. A. 1989, The Surface Photometry Catalogue of theESO-Uppsala Galaxies, ESO: Garching

Karachentsev, I. D., Karachentseva, V. E., & Parnovsky, S. L. 1993, Flat GalaxyCatalog, ANac, 314, 97

Koribalski, B., & Dickey, J. M. 2004, MNRAS, 348, 1255Koribalski, B., Staveley-Smith, L., & Kilborn, V. A. 2004, AJ, 128, 16

(HIPASS-BGC)Kraan-Korteweg, R. C. 2000, A&AS, 141, 123Kraan-Korteweg, R. C. 2005, in From Cosmological Structures to the Milky Way

(New York: Wiley), ed. S. Röser, Rev. Mod. Astron., 18, 48Kraan-Korteweg, R. C., & Lahav, O. 2000, A&ARv, 10, 211Kraan-Korteweg, R. C., Cayatte, V., Fairall, A. P., et al. 1994, in Unveiling

Large-Scale Structures behind the Milky Way, ed. C. Balkowski, & R. C.Kraan-Korteweg (San Francisco: ASP), ASP Conf. Ser., 67, 99

Kraan-Korteweg, R. C., Fairall, A. P., & Balkowski, C. 1995, A&A, 297, 617Kraan-Korteweg, R. C., Woudt, P. A., Cayatte, V., et al. 1996, Nature, 379, 51Kraan-Korteweg, R. C., Henning, P. A., & Andernach, H. 2000, Mapping the

Hidden Universe: The Universe behind the Milky Way – The Universe in H i(San Francisco: ASP), ASP Conf. Ser., 218

Kraan-Korteweg, R. C., Henning, P. A., & Schröder, A. C. 2002, A&A, 391, 887(Paper I)

Kraan-Korteweg, R. C., Staveley-Smith, L., Donley, J., Koribalski, B., &Henning, P. A. 2005, in Maps of the Cosmos, ed. M. Colless, & L.Staveley-Smith (San Francisco: ASP), IAU Symp., 216, 203

Kraan-Korteweg, R. C., van der Heyden, K. J., Cluver, M. E., & Woudt, P. A.2009, in First Middle East-Africa Regional IAU Meeting (MEARIM), ed. A.Hady (Cairo University Press), in press [arXiv:0810.3929]

Mathewson, D. S., & Ford, V. L. 1996, ApJS, 107, 97Multibeam Survey Working Group, HI Parkes All Sky Survey Final Catalog

2006 (HIPASS)Mould, J. R., Han, M. S., Roth, J., et al. 1991, ApJ, 383, 467Nilson, P. 1973, Uppsala General Catalog of Galaxies, Uppsala, University of

UppsalaPaturel, G., Theureau, G., Bottinelli, L., et al. 2003, A&A, 412, 57Radburn-Smith, D. J., Lucey, J. R., Woudt, P. A., Kraan-Korteweg, R. C., &

Watson, F. G. 2006, MNRAS, 369, 1131Roman, A. T., Iwata, I., & Saito, M. 2000, ApJS, 127, 27Ryan-Weber, E., Koribalski, B. S., Staveley-Smith, L., et al. 2002, AJ, 124, 1954Saito, M., Ohtani, H., Baba, A., et al. 1991, PASJ, 43, 449Sanders, D. B., Egami, E., Lipari, S., Mirabel, I. F., & Soifer, B. T. 1995, AJ,

100, 1993Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525Schneider, S. E., Helou, G., Salpeter, E. E., & Terzian, Y. 1986, AJ, 92, 472

Schneider, S. E., Thuan, T. X., Magri, C., & Wadiak, J. E. 1990, ApJS, 72, 245Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 116Solanes, J. M., Giovanelli, R., & Haynes, M. H. 1996, ApJ, 461, 609Staveley-Smith, L. 1985, Ph.D. Thesis, University of ManchesterStaveley-Smith, L., Juraszek, S., Henning, P. A., Koribalski, B. S., &

Kraan-Korteweg, R. C. 2000, in Mapping the Hidden Universe: The Universebehind the Milky Way – The Universe in HI, ed. R. C. Kraan-Korteweg, P. A.Henning, & H. Andernach (San Francisco: ASP), ASP Conf. Ser., 218, 207

Stein, P. 1996, A&AS, 116, 203Strauss, M. A., Huchra, J. P., Davis, M., et al. 1992, ApJS, 82, 29Theureau, G., Hanski, M. O., Coudreau, N., Hallet, N., & Martin, J.-M. 2007,

A&A, 465, 71Two Micron All Sky Survey team 2003, 2MASS extended objects, Final releaseVauglin, I., Rousseau, J., Paturel, G., et al. 2002, A&A, 387, 1Visvanathan, N., & van den Bergh, S. 1992, AJ, 103, 1057Visvanathan, N., & Yamada, T. 1996, ApJS, 107, 521Vollmer, B., Cayatte, V., van Driel, W., et al. 2001, A&A, 369, 432Woudt, P. A. 1998, Ph.D. Thesis, University of Cape TownWoudt, P. A., & Kraan-Korteweg, R. C. 2001, A&A, 380, 441Woudt, P. A., Kraan-Korteweg, R. C., & Fairall, A. P. 1999, A&A, 352, 39Woudt, P. A., Kraan-Korteweg, R. C., Cayatte, V., Balkowski, C., & Felenbok,

P. 2004, A&A, 415, 9Woudt, P. A., Kraan-Korteweg, R. C., Lucey, J., Fairall, A. P., & Moore, S. A. W.

2008, MNRAS, 383, 445Yahil, A., Tammann, G. A., & Sandage, A. 1977, ApJ, 217, 903Yamada, T., Takata, T., Djamaluddin, T., et al. 1993, ApJS, 89, 57

Appendix A: Notes to individual galaxies

In the following we discuss cases where the cross-identificationis not straightforward or where the signal is a combination ofthe signals from two or more galaxies. In many cases we quotedata from Tables 1−4 (including the optical galaxy catalogue byWoudt & Kraan-Korteweg 2001), notably morphological types,sizes, and optical velocities. We have also made use of DSS4

images and of images from the DENIS (Epchtein et al. 1997)and 2MASS (Skrutskie et al. 2006) surveys.

WKK 0491/WKK 0512: there is a second detection in thebeam of WKK 0491. The small lopsided signal is probably dueto WKK 0512 (d = 12.′4, 28′′ × 8′′, SL) which is the largest late-type spiral in the vicinity. WKK 0493 at d = 10.′2 (28′′ × 6′′, L)is an early type galaxy and less likely to be the candidate.

WKK 0969/WKK 1117: there is a detection in the OFF ob-servation of WKK 1117, close to but separated from its signal.The nearest candidate is WKK 0969 at d = 8.′5 (16′′ × 12′′, un-known type, AB = 3.m4), which is also the only galaxy found by2MASS in this area.

WKK 1696 has also been detected in the beam ofWKK 1694 (not detected) at d = 8.′7 with v = 6680 km s−1,ΔV50 = 300 km s−1, ΔV20 = 318 km s−1, I = 2.47 Jy km s−1,rms = 2.4 mJy.

WKK 2163: the ID is ambiguous. The observed velocity isv = 3533 km s−1, and WKK 2160 at d = 3.′3 (27′′ × 24′′, S) hasan optical velocity of 3512 ± 58 km s−1 (FW98). It is possiblethat we have observed WKK 2160, but if the two galaxies aregenuine companions the signal probably comes from WKK 2163(74′′ × 56′′, S6) which is the larger of the two. HIPASS canbarely resolve the positions, but seems to favour WKK 2163.

WKK 2245: it is possible that WKK 2240 (ESO173-G015,d = 2.′6, S, 85′′ × 12′′) with an optical velocity of v = 3006 ±36 km s−1 (SH92) contributes to the signal.

WKK 2372/WKK 2402: the distance between the galaxiesis d = 16.′1, both have been detected at similar velocities, but theprofiles are not confused.

4 The STScI Digitized Sky Survey.

Page 23: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1071

WKK 2377/WKK 2388/WKK 2406: this is a group of fourgalaxies: WKK 2377 (S7:, 70′′ × 23′′), WKK 2375 (S5, 62′′ ×56′′, 4290 ± 37 km s−1 FH95), WKK 2388 (S5, 36′′ × 16′′,3976 ± 40 km s−1, FH95), and WKK 2406 (SL, 55′′ × 38′′).WKK 2388 lies between WKK 2377 and WKK 2406 and thepointing of WKK 2388 shows a confusion of the two lat-ter profiles at v � 4100−4400 km s−1. The signal at v �3800−4050 km s−1 belongs to WKK 2388 proper and the linewidth is assumed to be unaffected. However, due to difficultieswith fitting a good baseline the flux density is somewhat uncer-tain. Using HIPASS we have found that WKK 2375 does notadd (significantly) to the combined signal. The observations ofWKK 2377 and WKK 2406 at their respective pointings are notconfused at the noise level.

WKK 2390/WKK 2392: the close galaxy pair (at d = 1.′2and d = 3.′2, respectively, from the pointing position) is unre-solved, and the parameters given in Table 1 refer to the full pro-file. The quoted velocity by VY96 refers to the IRAS detectionwhich is also unresolved.

WKK 2503: also observed with HIZSS, the spectrum showsa profile reminiscent of the blended signal of two objects.WKK 2503 has a bright bulge and large faint halo with a brightstar superimposed close to the bulge. No other galaxy in thisarea is visible either in the optical or in the NIR. At an extinc-tion of AB = 3.m7 a late-type/LSB galaxy, WKK 2503B, could beinvisible even in the NIR. Table 1 gives the parameters of thefull profile. The two velocities found in the literature refer toH i observations and are equally unresolved.

WKK 2576/WKK 2595/WKK 2597: the observed profile isa combination of the signals from three galaxies: WKK 2595(S6, 102′′ × 40′′) and WKK 2597 (S5, 59′′ × 47′′, 3973 ±46 km s−1, SH92) are a close galaxy pair (d = 1.′2); ac-cording to HIPASS, WKK 2576 at d = 8.′4 (S5, 86′′ × 75′′,3948 ± 70 km s−1, DN97) has a strong narrow H i profile.Table 1 gives the measurement of the full profile for the un-resolved pair WKK 2595/WKK 2597, while, through compari-son with HIPASS, the width and velocity of the peak at v �3800−3950 km s−1 is given for WKK 2576. By removing thispeak we have re-measured the width and velocity of the under-lying low-intensity profile for the close galaxy pair and foundv = 3889 km s−1, ΔV50 = 266 km s−1, ΔV20 = 313 km s−1.

WKK 2640/WKK 2644: there are two detections in thebeam of WKK 2640: the narrow spike at v = 3705 km s−1

is WKK 2640 (I, 51′′ × 42′′), while the detection at v =9404 km s−1 is WKK 2644 (SM, 26′′ × 9′′) with an optical ve-locity of 9406 ± 100 km s−1 (WK04) at d = 4.′3. Due to the verylopsided profile of WKK 2644 the high-velocity end is uncertain.

WKK 2844/WKK 2863: two galaxies contribute to the de-tected signal. HIPASS shows that WKK 2863 (S5, 98′′ × 83′′,3778 ± 30 km s−1, SE95) at d = 8.′7 has a strong profile withv � 3600−3850 km s−1. At the position of WKK 2844 the ob-served profile is smaller but extends to v � 3950 km s−1; it istherefore assumed that WKK 2844 has been detected but it re-mains unresolved, with a velocity slightly larger than the one forWKK 2863. Table 1 gives the parameters of the full profile forWKK 2863, which is considered to be the main contributor tothe signal.

WKK 2924/WKK 2938: there are two detections in thebeam of WKK 2924: WKK 2938 (L, 34′′ × 22′′) at d = 7.′3has an optical velocity of 3024 ± 157 km s−1 (FW98) whichagrees with the narrow peak at v = 2864 km s−1. WKK 2924(S8, 58′′ × 22′′) is a more likely candidate for the signal atv = 3410 km s−1. HIPASS also shows the latter detection at the

position of WKK 2924, while nothing can be seen at the positionof WKK 2938.

WKK 2993 has a close companion (Woudt &Kraan-Korteweg 2001) which might contribute to the signal.

WKK 3002/WKK 3006: the two detections in the beam ofWKK 3002 can not unambiguously identified: WKK 3002 (SL?,56′′ × 20′′) is more likely to be the stronger signal at v =3436 km s−1 (cf. HIPASS), while the galaxy at v = 2820 km s−1

is more likely WKK 3006 (13′′ × 8′′, no type).WKK 3023: with AB = 22m the galaxy is unlikely to be real,

and nothing is visible on DENIS or 2MASS images.WKK 4016/WKK 4022: the profile is due to the blending

of two signals. HIPASS shows that the high narrow peak at v �4680 km s−1 is WKK 4016 (SL, 67′′ × 48′′) at d = 12.′1, whilethe broader profile is probably due to WKK 4022 proper (S5,91′′ × 34′′). Table 1 gives the parameters for the full profile forWKK 4022 and the measurements of the narrow peak alone forWKK 4016; all parameters are uncertain.

WKK 5240: the detection in the beam of WKK 5267 (not de-tected) at d = 11.′7 is WKK 5240 (S, 157′′ × 13′′; cf. HIPASS).The profile shape is very noisy and the parameters are uncertain.

WKK 5285: this galaxy has been detected in the beams ofthree other galaxies: in the OFF observations of WKK 5534(d = 6.′5) and of WKK 5556 (d = 2.′7), as well as in thebeam of WKK 5297 (not detected) at d = 6.′1. The detec-tion with the smallest distance to the beam centre is listed inTable 1 and shown in Fig. 1, while the detection in the OFFobservation of WKK 5524 is least affected by an RFI at v =5900 km s−1 next to the signal. The other measurements are:v = 5631 km s−1, ΔV50 = 353 km s−1, ΔV20 = 383 km s−1,I = 15.65 Jy km s−1, rms = 5.3 mJy (in the beam of WKK 5297);and v = 5635 km s−1, ΔV50 = 357 km s−1, ΔV20 = 396 km s−1,I = 15.17 Jy km s−1, rms = 3.3 mJy (in the OFF observation ofWKK 5534).

WKK 5366: the identification is uncertain: the optical veloc-ity is 4822± 82 km s−1 (WK04), but both HIPASS and JS00 con-firm the H i signal to be strongest at the position of WKK 5366.Since the extinction here is AB = 3.m8, an obscured galaxy closeby cannot be excluded.

WKK 5443OFF: the detection found in the OFF observationof WKK 5443 was subsequently searched for the “best” position.It has also been detected by HIZSS and JS00. No galaxy couldbe found in the optical or NIR (DENIS, 2MASS).

WKK 5562/WKK 5616/WKK 5642: in the observations ofboth WKK 5562 and WKK 5642 a narrow single peak appears atv � 4160 km s−1. Using HIPASS we determined that this signalmost likely comes from WKK 5616, a late-type galaxy (19′′ ×5′′) at d = 5.′3 from WKK 5642 (listed in Table 1) and d = 12.′2from WKK 5562 with the following parameter: v = 4157 km s−1,ΔV50 = 42 km s−1, ΔV20 = 75 km s−1, I = 1.95 Jy km s−1,rms = 4.7 mJy.

WKK 5595 is included in the catalogue since it is very closeto the observed but undetected WKK 5597 (28′′ × 11′′, L?)at d = 0.′7 and is of comparable size (30′′ × 19′′, type un-known), that is, the rms can be considered an upper limit forboth galaxies.

WKK 5642/WKK 5659: there are three detections in thebeam of WKK 5642 (48′′ × 17′′, SM): the spike at v =4167 km s−1 is WKK 5616 and has been discussed above. Thesignal at v = 6446 km s−1 is assumed to belong to WKK 5642since it also has two optical velocities of 6045 ± 42 km s−1

(SH92) and v = 6118 ± 100 km s−1 (WK04), though this isonly in moderate agreement. WKK 5670 (24′′ × 8′′, SE:) atd = 6.′6 with an optical velocity of v = 6329 ± 44 km s−1

Page 24: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1072 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

(WK04) can be excluded as a candidate since it is only d = 5.′6from WKK 5694, which has also been observed and shows nosignal at v � 6400 km s−1. A third signal has been found atv = 4418 km s−1 which is likely to be WKK 5659 (44′′ × 15′′,S6) at d = 3.′4.

IC 4584/IC 4585: this is a detection in the beam ofWKK 5581 (not detected). IC 4584 and IC 4585 are two largespiral galaxies at d � 9′ from the pointing. HIPASS confirmstheir identity but cannot resolve the pair, though clearly bothgalaxies contribute to the signal. The measurement of the fullprofile is given in Table 1.

WKK 5729: the three observations of WKK 5733 (vopt =

6215± 92 km s−1, WK99), WKK 5694 (vopt = 3412± 36 km s−1,FH95), and WKK 5709 show a very similar profile both in linewidth and peak flux at v = 5729 km s−1, v = 5730 km s−1, andv = 5723 km s−1, respectively. The left horn appears to comefrom WKK 5768 (also detected in the beam of WKK 5780),which lies at a distance of d = 13.′5, d = 17.′9, and d = 11.′7,respectively, from the three pointings; the peak flux of this hornvaries according to the distance. Due to the similar peak flux andhigh velocity end of the rest of the profile we conclude that thedetected galaxy must lie at a similar distance from these threepointings. WKK 5729 (48′′ × 16′′, SL) lies at d = 6.′9, d = 9.′1,and d = 5.′9 from WKK 5733, WKK 5694, and WKK 5709, re-spectively. It is a late-type spiral and therefore not visible with2MASS and DENIS. The signal is too weak to be detectable withHIPASS.

WKK 5768 is detected in the beam of WKK 5780 (not de-tected) at d = 9.′5. The low-velocity horn is also visible in theobservations of WKK 5709 (d = 11.′7; see plot of WKK 5729),WKK 5733 (d = 13.′5) and WKK 5694 (d = 17.′9).

WKK 5993/WKK 5999: the detection in the observation ofWKK 5993 is the blending of two signals. The low-velocitydouble-horn comes from WKK 5999 (also observed, see Fig. 1),while the high-velocity part is due to WKK 5993. The param-eters for WKK 5993 in Table 1 have been measured by cuttingoff the profile of WKK 5999 at v � 3350 km s−1. All the pa-rameters are uncertain since the low-velocity end of WKK 5993is undetermined. For the WKK 5999 profile we have measuredv = 3261 km s−1, ΔV50 = 180 km s−1, ΔV20 = 226 km s−1,I = 8.83 Jy km s−1, rms = 2.3 mJy.

WKK 6187 is included in the catalogue since it is very closeto the observed but undetected WKK 6189 (13′′ × 8′′, E) at d =0.′9 and is slightly larger (22′′ × 22′′, type unknown), that is, therms can be considered an upper limit for both galaxies.

WKK 6535/WKK 6570: there are two detections in thebeam of WKK 6570. WKK 6535 (39′′ × 9′′, S5) lies at d = 6.′5and is likely to be the detection at v � 4150 km s−1. SinceWKK 6570 (60′′ × 27′′, S3) is the larger and brighter of the twowe have assumed it to be the closer galaxy at v = 2938 km s−1,but the identities remain ambiguous.

WKK 6594: the H i galaxy is probably identical with theIRAS galaxy at d = 2.′2 with v = 642 ± 35 km s−1 (SH92).

WKK 6689/WKK 6732: the two galaxies with similar ve-locities lie 9.′6 apart. The observation of WKK 6732 shows nosignificant confusion with the signal of WKK 6689 (though theflux density may be uncertain), while the profile for WKK 6689is more uncertain.

WKK 7287/WKK 7289: the small signal at v = 5740 km s−1

detected in the beam of WKK 7289 is probably WKK 7287 atd = 3.′3 (30′′ × 20′′, I).

WKK 7460/WKK 7463 is an interacting system with a sep-aration of 1.′4: WKK 7460 (198′′ × 105′′, SL) is the larger com-ponent with an optical velocity of 775± 36 km s−1 (SH92), while

the profile gives v = 842 km s−1. Table 1 gives the full param-eters for WKK 7460 only, since the contribution by WKK 7463(82′′ × 67′′, S) is uncertain. However, considering the types andsizes of the two galaxies as well as the H i velocity as comparedto the optical of WKK 7460, we can assume that WKK 7463contributes to the profile.

WKK 7465/WKK 7198: WKK 7198 has been detected inthe OFF observation of WKK 7465 at d = 7.′2, and the profilesoverlap. The observation of WKK 7198 (see Fig. 1) shows thatthe profile extends from v � 3270 km s−1 to ∼3540 km s−1. Theprofile of WKK 7465 is therefore truncated and no line widthsand flux could be derived. The systemic velocity is likely to behigher than the one given.

WKK 7652/WKK 7689: WKK7652 has been detected inthe beam of WKK 7689 (not detected) at d = 11.′2. Optical ve-locities for this galaxy are v = 1350 ± 31 km s−1 (RC3) andv = 1478 ± 38 km s−1 (WK04), while other H i measurementsfind v = 1482 ± 6 km s−1 (RC3). While we find v = 1519 km s−1,HK01 has detected WKK 7689 at v = 1559 ± 3 km s−1 in H iwith the radio telescope at Effelsberg, which has a smaller beamsize (9′ as compared to 15′ for Parkes). We can therefore notexclude that part of the signal in our observation comes fromWKK 7689.

WKK 7776 has also been detected in the beam ofWKK 7794 at d = 10.′7 with v = 2790 km s−1,ΔV50 = 45 km s−1,ΔV20 = 55 km s−1, I = 4.11 Jy km s−1, rms = 5.6 mJy.

Appendix B: Galaxies in the Vela region

A number of galaxies outside of the Crux and GA region werealso observed within this observing programme, i.e., galaxies inthe Vela region (245◦ >∼ � >∼ 275◦). They were taken from theZOA deep optical galaxy catalogue (Salem & Kraan-Korteweg,in prep.; see Kraan-Korteweg & Lahav 2000, for preliminary re-sults) that covers the region between Puppis (Saito et al. 1991)and the Hydra/Antlia region (Kraan-Korteweg 2000); see Figs. 2and 3 in Kraan-Korteweg & Lahav 2000, for an outline of thesurveyed area and the distribution of the uncovered galaxies.

The data of the detected (N = 14) and non-detected galax-ies (N = 15) are presented in Tables B.2 and B.3, which areequivalent to Tables 1 and 4 (see Sects. 3 and 4 for the columndescriptions). The profiles of the detected galaxies are shownin Fig. B.1, and Table B.1 gives the independent velocity mea-surements found in the literature for the detected galaxies (seethe description of Table 2 in Sect. 3). The reference for KF95 isKraan-Korteweg et al. (1995).

Table B.1. Comparison of velocities for Vela galaxies.

Ident. Vhel Vother Origin Referencekm s−1 km s−1

(1) (2) (3) (4) (5)

SKK259- 15L 2730 2723 ± 7 H i HIPASSSKK261- 17L 2979 2974 ± 10 H i HIPASSSKK262- 89L 3513 3451 ± 50 opt FW98SKK262- 36L 4650 4651 ± 9 H i HIPASSRKK1949 4030 4002 ± 100 opt KF95

4037 ± 36 opt SH92SKK263-164L 4118 4116 ± 1 H i DN96SKK263-133L 1106 969 ± 54 opt FH95

1106 ± 6 H i HIPASSSKK263- 12L 4540 4600 ± 40 opt RC3

4545 ± 6 H i HIPASS

Page 25: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II. 1073

Tabl

eB

.2.Hi-

dete

ctio

nsin

the

Vel

are

gion

.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

helΔ

V50

ΔV

20I

rms

hann

Ndi

stI c

exci

sed

RF

I(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1km

s−1

kms−

1Jy

kms−

1m

Jy(′

)Jy

kms−

1km

s−1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

SK

K25

8-19

6LE

SO

258-

G00

207

5813

.9−4

701

0926

1.52−9

.16

S60×

4014

.90.

3261

7417

722

07.

253.

558

00S

KK

209-

184L

ES

O20

9-G

016

MI

0805

29.0−4

850

5626

3.74−9

.06

SB

R3

54×

5414

.60.

2981

9619

824

02.

983.

0S

KK

209-

123L

ES

O20

9-G

017

M08

0833

.2−4

903

5026

4.20−8

.74

S54×

1216

.20.

2681

3037

839

54.

713.

3S

KK

209-

5208

1134

.2−4

708

4126

2.83−7

.29

I34×

1316

.90.

6110

91:

79:

99:

3.49

:10

.2*

1000

SK

K25

9-15

LE

SO

259-

G00

108

1731

.4−4

537

1126

2.11−5

.60

SL

?34×

1916

.10.

8127

3027

829

915

.44

5.7

SK

K21

0-1

0846

54.4−4

747

5326

6.85−2

.82

?47×

1316

.81.

0089

6921

028

54.

202.

8S

KK

261-

17L

ES

O26

1-G

006

M09

2334

.0−4

245

3926

7.42

5.34

S5

40×

4015

.50.

6529

7915

620

77.

793.

5S

KK

262-

556L

ES

O26

2-G

004

0946

22.5−4

638

3827

3.06

5.21

S10

8×11

15.8

0.46

2709

288

319

13.7

34.

2S

KK

262-

89L

ES

O26

2-G

015

I10

0239

.2−4

529

5827

4.56

7.87

S1

60×

2415

.10.

1935

1326

428

27.

18:

3.5

4150

SK

K26

2-36

LE

SO

262-

G01

6M

1003

11.6−4

249

0827

2.99

10.0

6S

371×

4414

.50.

1646

5014

416

95.

923.

0

RK

K19

49E

SO

263-

G00

4M

I10

0646

.9−4

741

4827

6.45

6.53

SB

154×

4714

.70.

2040

3030

231

65.

26:

3.3

3350/4

150

SK

K26

3-16

4LE

SO

263-

G01

6M

1012

32.4−4

514

1327

5.82

9.11

S3

108×

8113

.40.

1941

1819

722

116

.08

5.3

SK

K26

3-13

3LE

SO

263-

G02

1I

1014

42.0−4

450

5927

5.91

9.64

74×

6014

.10.

2111

0683

106

5.92

7.8

SK

K26

3-12

LE

SO

263-

G03

5I

1026

14.4−4

544

1327

8.12

10.0

2S

112

1×47

13.6

0.18

4540

450:

491:

27.6

1:7.

143

50

Not

es:S

KK

209-

52:t

heR

FI

isne

xtto

the

profi

lean

dpo

ssib

lyaff

ects

the

line

wid

th.

Tabl

eB

.3.Hi

non-

dete

ctio

nsin

the

Vel

are

gion

.

Iden

t.O

ther

IRR

AD

ecga

l�ga

lbTy

peD×d

BJ

E(B−V

)V

obs

rang

erm

sV

pert

rang

eN

dist

Vot

her

Ref

orig

in(h

ms)

(deg

′′′ )

(deg

)(d

eg)

(′′)

(m)

(m)

kms−

1m

Jykm

s−1

(′)

kms−

1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

SK

K25

8-13

7M

0742

49.8−4

412

2725

7.70−1

0.14

S?47×

2715

.90.

3130

0−1

0250

4.0

SK

K25

8-89

M07

5507

.4−4

500

2625

9.49

−8.6

2SM

54×

817

.00.

2330

0−1

0250

3.2

700−

1100

*S

KK

209-

209

LE

DA

3098

730

M08

0453

.1−4

908

5026

3.95

−9.2

9S

54×

816

.80.

2950

0−1

0250

3.5

SK

K25

8-14

M08

0610

.6−4

352

2825

9.53

−6.3

4SM

40×

2415

.80.

4340

0−1

0250

4.5

SK

K31

2-4

M08

0918

.5−3

838

4625

5.42

−3.0

4?

20×

2016

.62.

4540

0−1

0350

3.8

900−

1100

SK

K25

9-18

M08

1420

.1−4

638

0726

2.65

−6.6

2?S

L67×

716

.90.

6950

0−1

0250

7.3

SK

K26

2-42

5LE

SO

262-

G00

6M

0948

40.3−4

529

4627

2.62

6.35

S74×

517

.00.

1930

0−1

0350

4.4

SK

K26

2-36

1E

SO

262-

G00

909

5131

.9−4

401

1427

2.07

7.81

S67×

716

.60.

2540

0−1

0250

3.3

300−

400

850−

1050

SK

K26

2-30

3LE

SO

262-

G01

0M

0953

47.3−4

558

0227

3.62

6.55

S54×

1316

.00.

2230

0−1

0250

4.1

820−

1020

SK

K26

2-12

7E

SO

316-

G01

5M

1000

53.3−4

241

0327

2.57

9.91

S74×

1116

.00.

2330

0−1

0250

4.6

800−

1070

*97

96±

10M

F96

opt

SK

K26

2-59

ES

O31

6-G

019

1002

47.0−4

234

4227

2.78

10.2

1S

67×

916

.30.

1930

0−1

0250

4.1

800−

1030

*S

KK

263-

65L

ES

O26

3-G

008

1007

46.1−4

329

4027

4.08

10.0

2S

83×

1615

.40.

1551

00−1

0250

4.0

SK

K26

3-15

7LE

SO

263-

G01

4M

I10

1100

.2−4

509

0627

5.54

9.02

S1?

67×

5014

.40.

1916

00−

6700

4.5

5200±1

00F

83op

tS

KK

263-

53L

ES

O26

3-G

024

MI

1015

33.7−4

507

5827

6.20

9.50

SE?

87×

40:

14.3

0.20−6

00−

4650

6.3−1

00−

300

1050±1

00F

83op

t

750−

1100

SK

K26

3-20

LE

SO

263-

G02

910

2109

.8−4

600

5327

7.52

9.31

SE10

8×30

14.2

0.25

300−

5500

5.4

900−

1030

2960±

60R

C3

opt

Not

es:S

KK

258-

89:d

etec

ted

HV

C94

7atv=

262

kms−

1;S

KK

262-

127:

dete

cted

CH

VC

1098

atv=

261

kms−

1;S

KK

262-

59:d

etec

ted

CH

VC

1098

atv=

263

kms−

1.

Page 26: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

1074 A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II.

Fig. B.1. H i profiles of the 14 H i detections in the Vela region. The vertical axis gives the flux density in mJy, the horizontal axis the velocity range(radio convention), generally centred on the radio velocity of the galaxy displaying a width of 1600 km s−1. All spectra are baseline-subtracted andgenerally Hanning-smoothed. The respective identifications are given within the panels.

Page 27: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II., Online Material p 1

Fig. 1. Baseline-subtracted H i profiles of the 162 detections in the Crux/GA region. The vertical axis gives the flux density in mJy, the horizontalaxis the velocity range (optical convention), generally centred on the velocity of the galaxy and displaying a width of 1600 km s−1. All spectraare baseline-subtracted and generally Hanning-smoothed. The identifications are given within the panels. Question marks indicate uncertainidentifications, stars denote a detection not at the centre of the beam.

Page 28: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II., Online Material p 2

Fig. 1. continued.

Page 29: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II., Online Material p 3

Fig. 1. continued.

Page 30: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II., Online Material p 4

Fig. 1. continued.

Page 31: Astronomy c ESO 2009 Astrophysicsmensa.ast.uct.ac.za/~kraan/papers/09_PKS_CxGA.pdf · A&A 505, 1049–1074 (2009) DOI: 10.1051/0004-6361/200912592 c ESO 2009 Astronomy & Astrophysics

A. C. Schröder et al.: Parkes H I observations of galaxies behind the southern Milky Way. II., Online Material p 5

Fig. 1. continued.


Recommended